Survey of Bacteria in the Farm of Faculty of Agriculture ,Al-Azahr University, Assiut Governorate,Egypt

Said A.M. El-Sayed¹

ABSTRACT

Two hundred and fifteen soil bacteria isolates able to reduce NO₃, 210 produced nitrous oxide (N₂O), even only 47 were respiratory denitrifiers \cdot . Nitrite or NH⁺₄ was the major product of NO⁻₃ reduction by the non-denitrifying organisms, but typically about 5 to 10% and up to 34% of the NO₃ reduced by them was released as N₂O during a 2week incubation period. Bacillus and Enterobacter were the most commonly observed genera of non-denitrifying N₂O producers. Fermentative NO⁻₂reduction and N₂O production by a Bacillus sp. and a Citrobacter sp. were characterized in pure culture studies. Dinitrogen (N₂) was not produced in detectable quantities by these organisms. When added to autoclaved soil, they accumulated more N₂O than two denitrifying *pseudomonads*, since the latter consume and produce N₂O. In tryptic soy broth (TSB), which allows active fermentative growth, NH⁺₄ was apparently the major product of NO₃ reduction. Added NH⁺₄ did not inhibit N₂O production or apparent reduction to NH⁺₄, indicating that these processes are not essimilatory . The effect added glucose on N₂O production varied with the organism and media composition. Nitrous oxide production from NO⁻₂ by these organisms was shown to be at least partially a biochemical reaction. The N₂O evolved slowly in bath cultures and mostly after apparent growth ceased. This is apparently a novel mechanism of N₂O generation which differs significantly from respiratory denitrification.

Key words: Nutrient broth (NB), tryptie soy broth (TSB), nitrite reduction, denitrification, dissimilatory ammonium production.

INTRODUCTION

There is much current interest in soil denitrification, promoted by the need to utilize nitrogen (N) fertilizer more efficiently, and in soil evolution of nitrous oxide (N_2O) , promoted by the hypothesized role of this gas in the destruction of atmospheric ozone (C.A.S.T, 1979; Caskey and Tiedje, 1976; Crutzen and Ehhalt, 1977; Mc Elroy et al., 1977). This has led to reevaluation of the mechanisms and organisms responsible for the production of gaseous N and the reduction of N oxides. Recent evidence suggests that NH_4^+ – oxidizing bacteria like Nitrosomonas are important sources of N₂O (Bremner and Blackmer, 1978; Breitenbeck et al ., 1980), and that production of this gas is not the exclusive province of denitrifying bacteria as previously believed. The term denitrification has been used to refer

¹¹Soil and Water Science Dept.,Faculty of Agric. In Assiut, Al –Azhar University to any conversion of NO₃ or NO₂ to N gas. It is now commonly used by microbiologists; however, to describe only the reduction of NO₃ and NO₂ to NO, N₂O or N₂ in bacterial respiration, and the term will be used in this sense here. Other known mechanism of N₂O production include a variety of chemical reactions (Nelson and Bremner, 1970), production by nitrifiers, and by a miscellany of non-denitrifying fungi and bacteria (Yoshida and Alexander, 1970). The nature and relative significance of these various mechanisms are only vaguely understood at present.

Dissimilatory NO₃ -reducing bacteria have conventionally been considered to be of two types: (i) respiratory denitrifiers which can reduce NO₃ completely to N gasses, and (ii) NO₃ respires or NO₂ accumulators which are able to respire NO₃ only as far as NO⁻₂ (Payne, 1973 and EL-Sayed, 2002(a and b)). Though it has been known that at least a few of the latter type of organism growing fermentatively can further dissimilate NO_2^- to NH_4^+ , the significance of this process has been suggested only in publications (Caskey and Tiedje, 1979; Sorenson, 1978; EL-Sayed, 2003 a). These fermentative organisms presumably attain greater ATP yields, by recycling reduced nucleotides via NO_2^- reduction to NH_4^+ (Cole and Brown, 1980; EL-Sayed, 2003 b), from substrate level phosphorylation. In contrast, respiratory denitrifiers reduce NO₂ to N gases and generate ATP by electron transport phosphorylation. Ammonium is the only product of fermentative, dissimilatory NO⁻² reduction which has been considered in the literature.In earlier work, however, it was noted that N2O was evolved from NO₃ by a variety of organisms presumed to be nondenitrifying NO₃ reduces (Caskey and Tiedje , 1979 ; EL-Saved, 2013). The objectives of this study were to characterize the mechanism of N₂O production. examine its significance as a source of N₂O in soil, and determine the end products of NO₃ reduction for a large sample of soil isolates.

MATERIALS AND METHODS

Isolation of soil NO₃ Reducers:-

Samples of silt loam soil (mixed mesic Typic), pH 7.1, and 1% organic matter) and silty clay loam soil

(mixed thermic cumulic of pH 7.1 and 1.3% organic matter) were collected from the surface (0-15cm) of

Received December 07,2017, Accepted December 30, 2017

corn fields. These samples were stored at field moisture contents at 2 to 4° C. In some experiments 20.0 gm, soil samples were pre incubated anaerobically for 78 hours prior to isolation of NO⁻³ reducers. Twenty grams of soil were blended for 60 seconds in 190 ml 0.85% Nacl solution with 1 drop of Tween 80. A tenfold dilution series was prepared in sterile Nacl solution. Dilutions were spread on plates of either tryptic soy or nutrient agar (Difco) with 5 m M KNO₃. Results for the two media were pooled since no significant differences were observed among the NO₃ reducing organisms . Plates were incubated 4 days in anaerobic chamber at room temperature. Isolated colonies were picked at random and in some experiments were further purified by streaking on NO₃ nutrient agar and incubating anaerobically. In other experiments, isolated colonies were assayed directly without further purification(EL-Sayed et al., 2001).

Characterization of NO⁻₃ Reducing Isolates

Isolates were used to inoculate 5 ml of nutrient broth plus 5 m M KNO₃, contained in Hungate tubes (Bellco). Oxygen was removed from the tubes by evacuating and flushing with N₂ gas passed through 0.45- u Gelman filters.

To fervent the reduction of N_2O to N_2 , acetylene (C_2H_2) was injected aseptically to a partial pressure of 8 KPa. In the same experiments , the isolates were also cultured in tubes without C_2H_2 or with trypic soy broth (with dextrose) in place of nutrient broth. Nitrous oxide was sampled after through mixing by withdrawing 0.5 ml from the headspace with a tuberculin syringe. Following gas analysis, cultures were centrifuged, and the clear supernatants were frozen for later NO_3^- and NO_2^- determinations(EL-Sayed,2005).

Pure Culture Studies

Cultures from selected tubes were checked for purity and maintained on NO_3 agar (Difco) for further taxonomic or physiological characterization. Gram stain, sporulation, motility, and standard tests for reaction with sugars, litmus milk, citrate, and indole were observed for these isolates to identify them at the genus level.

All pure cultures were grown at 24°C with 10 ml of the appropriate media in Hungate tubes. Tubes were inoculated with 0.1 ml of an (18 to 24), hour culture (early stationary phase) grown anaerobically in NO⁻₃ broth, then immediately evacuated and flushed with N₂ gas aseptically. The time course of NO⁻₃ reduction and NO⁻₂ and N₂O production during growth in nutrient broth with 5 m *M* KNO₃ was determined by periodical analyzing three replicate tubes for N₂O an absorbance and by sacrificing, at frequent intervals, three additional replicates for NO⁻₃ and NO⁻₂ analysis. Growth yield responses to NO₃ and NO₂ were measured gravimetrically after washing cells in distilled water and drying at 85° C. Filter- sterilized NO₂ was added to media after autoclaving, but NO₃ was autoclaved with the broth. The effect of pH on N₂O production was observed by adding HC 1 or NaoH to nutrient broth before autoclaving. The pH of replicate tubes was measured after autoclaving and was either unchanged or increased by only 0.1 unit. The appropriate quantities of (NH₄)₂ SO₄, KNO₃, or glucose were added to either tryptic soy broth (without dextrose) or nutrient broth to observe the effects of media composition on N₂O production. To assay for N₂ production, tubes were initially flushed with helium and incubated under water to minimize atmospheric contamination.

Resting cell suspensions were prepared from early stationary phase cultures harvested by centrifugation and repeated washing in 50 mM pH 7.0 phosphate buffer plus 200 ug. M /L chloramphenicol to inhibit protein synthesis. In separate assays this chloramphenicol concentration was sufficient to totally inhibit growth of the organisms studied. Cell density in the reaction mixture was approximately 2 times the maximum cell density attained in culture. Complete reaction mixtures consisted of 10 ml of 50 m M , 200 ug M/L phosphate buffer (pH 7.0) chloramphenicol ,2.8 m M glucose, 5 mM NaNO₂, N₂ atmospheres, and cells in Hungate tubes. Resting cell suspensions were continuously shaken during the 2hour incubation at room temperature. Gas samples were removed periodically by syringe (EL-Soury et al., 2015).

N₂O production in Inoculated Axenic Soils

Twenty- gram samples of the soil were autoclaved for 1 hour on 2 consecutive days. Twenty- four hours anaerobic cultures of two NO⁻² accumulators and two denitrifiers in nitrate broth were harvested and washed in 10m M CaCl₂ plus 1.7m M KNO₃. The two denitrifiers had been isolated from soil and characterized in previous studies (Gamble et al, 1977; and EL-Sayed, 2005). Suspensions were diluted in CaCl₂, KNO₃ solution to give equal optical densities for all the organisms, and 10ml was added to 20 g of autoclaved soil, given approximately 5×10^8 cells/g of soil. Control soils not inoculated received 10ml of CaCl₂, KNO₃ solution with no cells. The flask containing the slurries were made anaerobic and incubated on a rotary shaker (150 rpm) at room temperature. Frequent headspace samples were removed by syringe for N₂O analysis.

Chemical Analysis

Nitrous oxide (N_2O) was measured with a Varian 3700 gas chromatograph equipped with Porapak Q columns and operated isothermally at 50°C. Samples

containing 0.05 to 30 ppm (v/v) N_2O were measured with a ⁶³Ni electron capture detector at 340°C with 10% CH₄ in argon carrier gas. Separation between CO₂ and N₂O was sufficient to prevent CO₂ interaction with N₂O response. A four-port in-oven venting value was used to prevent other gases from reaching the detector. Samples with N₂O concentrations exceeding 30 ppm were measured by thermal conductivity detector with helium as the carrier gas, again using Porapak Q columns at 50°C. Quantities of N₂O in solution were calculated using published values of the Bunsen absorption coefficient. Dinitrogen was separated on a molecular sieve 5 Ation column and analyzed by thermal conductivity detector.

The presence of NO_3 was determined qualitatively in the characterization of soil isolates by treating a small subsample, about 0.1ml, with 2 drops of 5% sulfamic acid to remove NO₂, then adding 3 drops of diphenylamine HCl in concentrated H₂SO₄. A strongto- moderate blue color was developed with concentrations greater than about 0.5 m M NO⁻₃,. Quantitative NO₃ determinations were made with an Orion NO₃ electrode after removing NO₂ with sulfamic acid, then mixing the sample with an equal volume of 0.052 M AL₂ (SO₄)₃. The validity of this technique was verified by analysis of NO₃ an NO₂. Nitrite was measured by autoanalyzer using the reaction with N-1naphthyleth-ylenediamine dihydrochloride and sulfanilamide (Lowe and Hamilton, 1967; and EL-Sayed, 2004).

RERSULTS AND DISCUSSION

Isolation and classification of soil NO⁻₃ reducers:-

Soil isolates classified into four distinct categories with regard to the products of NO_{3^-} reduction (Table 1).Those for which> 50 %(usually 75 to 100%) of the NO_{3}^-N added in nutrient broth (N B) was recovered as NO_{2}^- after 2 weeks and called NO_{2}^- accumulators.Those for which <50% of the NO_{3}^-N in nutrient broth was recovered as $N_{2}O$ plus NO_{2}^- , called NH_{4}^+ producers, though NH_{4}^+ accumulation and was not directly measured.Those organisms which reduced >50 %

(usually 75 to 100%) of the NO₃ to N₂O in nutrient broth with 8 KP_a C₂ H₂, presumed to be respiratory denitrifiers.Those organisms which did not reduce NO₃ or which grew too slowly to reliably determine the products of NO₃ reduction during a 2- week incubation (Abdel-Aziz *et al*, 2003; Christopher *et al.*,2017).

Table (1) gives average recoveries of N₂O and NO⁻₂ for the various categories. These indicate that recovery of N was good (except for the NH^+_4 producers) and that the categories are distinctly different with regard to end products. Summing the results for all soils, there were 155 NO⁻₂ –accumulating isolates, 46 denitrifiers, 13 NH^+_4 producers, and 136 inactive isolates.

Table 1. Characterization of soil isolates with regard to products of NO ₃ reduction after a 2- week incubation
in anaerobic nutrient broth (NB) or tryptic soy broth (TSB) with 5m M KNO ₃ and 8K Pa C ₂ H ₂ added

Soil treatment and type	Number	Number producing	Number which	%Recovery of ad	lded NO ⁻ ₃ –as N
of isolate	of isolate	sN ₂ O	depleted NO ₃ and NO ₂	N ₂ O	NO ⁻ 2
no incubation:-					
NO_2 accumulators	59	59	$(49)^{+}$	8.8	87.8
Presumptive NH ⁺ ₄ producers.	13	13	8(10)	16.2	15.5
Denitrifiers.	19	19	18(17)	79.9	3.6
Poor growth or in active NO ⁻ ₃ reduction.	13	nd #	1 (1)	nd #	nd #
Anaerobic incubation:-	<i>c</i> 1	(0)	1	0.1	95.0
NO_2^{-} accumulators.	61	60	1	8.1	85.2
Presumptive NH_4^+ producers.		2	1	12.4	37.1
Denitrifiers.	17	17	17	89.4	0.9
Poor growth, inactive NO ⁻ ₃ reduction. soil, no pre incubation:-	74	nd #	1	nd #	nd #
NO_2 accumulators.	38	34	1	11.3	82.7
Presumptive NH ⁺ ₄ producers	1	1	1	1	1
Denitrifiers.	13	13	13	89.9	1
Poor growth or inactive NO ⁻ reduction.	52	nd #	1	nd #	nd #

(+) Number which completely reduced NO⁻₃ and NO⁻₂ in TSB with dextrose given in parenthese; all other results are for incubation in NB.

(++) nd = not determined.

Anaerobic preincubation of soil did not appear to have a large effect on the results, but the survey is too limited to be conclusive on this point.

A most significant observation is that 150 of 155 NO_2^- accumulators and all of the presumptive NH_4^+ producers evolved significant quantities of N₂O, though the gaseous products were always less than the apparent ionic products (NO $_2$ and NH $_4$) (EL-Sayed , 1999; Faith et al., 2017). From 2 to 24 %(mean 9.0%) of the NO⁻₃- N added was converted to N₂O by isolates in the NO²- accumulating category (EL-Saved, 2013). Nitrous oxide production by NO⁻₂- accumulating isolates from the soil with no anaerobic soil incubation was measured in NB with C₂H₂, average 8.7% N₂O; in NB without C₂H₂, 6.9% N₂O; and in tryptic soy broth with dextrose (T S B) with C₂H₂, 6.3% N₂O.On the average, C₂H₂ and T S B had minimal effects on N₂O production through media composition by individual organisms as shown below. It is interesting that most of the organisms which accumulated NO⁻² in NB apparently produced NH⁺₄ in TSB; 48 of 58 isolates completely removed

 NO_{3}^{-} , and NO_{2}^{-} from TSB, but no one of them did so in NB.

Table (2) indicates that these categories of NO_3^{-3} reducers are taxonomically as well as functionally different. *Pseudomonas*, *Flavobacterium*, and *Alcaligenes* were the only denitrifying genera observed genera. This is in accord once with work by Gamble *et. al.* (1977) and (EL-Sayed , 2013) whom found that are these three genera numerically dominant in a large-Scale *Survey* of many soils. One NO_2^{-2} accumulator was

also classified as a *Flavobacterium*, *but Bacillus* and *Enterobacter* were more frequently encountered, with one *Citrobacter* isolate.

Pure Culture Characterization Fermentative N₂O producers

There is an attempt to determine whether or not N₂ was evolved by that two N_2O^- producing, $NO_2^$ accumulators, (Bacillus sp. B37 and Citrobacter sp. C48). In NB and in TSB with 5 m M KNO₃ and He atmosphere, no N₂ was detected after 14 days of incubation. All of the NO₃ and NO₂ was reduced in TSB, and all of the NO⁻³ was reduced in NB, during this time. The N₂could have reliable detection of N₂, in this experiment only if 1% or more of the N added were released in this from. This can be due to slight atmospheric contamination during syringe sampling and injection. In some of these sampled, very small peaks with retention time corresponding to nitric oxide (NO) were observed. It was apparent that NO was not a major end product of NO₃ reduction, and further work is needed to verify NO produced by these organisms (EL-Sayed,2005; and EL-Sayed 1995 a and b).

The inability of these isolates to produce N_2 is further indicated by the observation that C_2H_2 did not increase N_2O accumulation (Table 3) (EL-Sayed & Abo-ELwafa, 2001 ; Khalafalla and Hamed, 2015). Reduction of N_2O to N_2 is inhibited by C_2H_2 . It appeared, in fact, that C_2H_2 slightly inhibited N_2O production. The effect of C_2H_2 shown in Table (3) was not statistically significant in some cases, but when this experiment was repeated with C48 in NB and in TSB,

Table 2	Taxonomic	characterization (of selected NO	³ reducing soil isolates
I AUIC 4.				

Туре	Genus	Number of isolates
Denitrifiers.	Pseudomonas	7
	Flavobacterium	4
	Alcaligenes	3
NO ⁻ ₂ accumulators	Bacillus	10
	Enterobacter	4
	Flavobacterium	2
	Citrobacter	2

Isolate C ₂ H	C_2H_2	Perce	ent NO ⁻ ₃ -N converted t	o N ₂ O
		Day 2	Day 6	Day 13
B 37	-	2.53	3.45	4.76
B 37	+	1.75++	2.90 n.s	4.20 n.s
C 48	-	0.41	1.04	1.18
C 48	+	0.40 n.s	0.81 + +	0.92 n.s

Table 3. Nitrous oxide production by *Bacillus* sp (B37) and *citrobacter* sp. (C48) with and without 8 KPa $acetylene^+$

+ Anaerobic incubation in nutrient broth with 9.8mM KNO⁻₃.

++ Comparisons followed by ++ are significantly different at 0.95 level by two-tailed T-test. N.s. = No significant differences. Values are means of two replicates.

Isolate Media		Added glucose g*	Added (NH ₄) ₂ SO ₄ g*liter ⁻¹	% of NO ⁻ 3-N	% of NO ⁻ ₃ -N added converted to (1/ v)		
		liter ⁻¹		N ₂ O	NO ⁻ 2	$(NH_{4}^{+}) ++$	
(C 48)	NB	1	1	1.4	90.5	8.4	
	NB	1	0.48	1.3	89.7	9.3	
	NB	0.6	1	7.0	53.0	40.3	
	NB	0.6	0.48	12.5	41.5	46.3	
	NB	2.6	1	6.9	50.1	43.03	
	NB	2.6	0.48	11.7	40.5	48.1	
	TSBND	1	1	11.7	6.7	81.9	
	TSBND	1	0.48	12.1	5.3	82.9	
	TSBND	2.6	1	3.0	1	97.2	
	TSBND	2.6	0.48	3.0	1	97.2	
B37	NB	1	1	9.7	70.0	21.5	
	NB	1	0.48	6.6	79.7	14.0	
	NB	0.6	1	7.2	71.5	21.6	
	NB	0.6	0.48	9.1	71.5	19.7	
	NB	2.6	1	5.8	68.7	26.8	
	NB	2.6	0.48	7.4	68.2	24.7	
	TSBND	1	1	3.5	0	96.7	
	TSBND	1	0.48	3.9	0	96.3	
	TSBND	2.6	1	1.3	0	98.9	
	TSBND	2.6	0.47	1.3	0	98.9	

Table 4. Effect of media composition on products of NO⁻³ reduction by *Bacillus* sp. (B37) and *Citrobacter* sp. (C48), measured after 14 days of anaerobic incubation

+ NB= nutrient broth, TSBND= Tryptic Soy broth without dextrose, all with $5mM \text{ KNO}_3$. ++ NH⁺₄ not measured directly, estimated from [NO⁺₃-(N₂O+NO⁺₂)].

All observation means of three replicats.

consistent inhibition, averaging 18%, was observed. The extent of inhibition was not related to C_2H_2 concentration in the range of 2 to 32 KPa.

 N_2O production either. Assimilatory N_2O^- reduction is repressed by NH^+_4 (Payne, 1973 ; EL-Sayed , 2013). It is concluded that reduction of NO^-_2 to NH^+_4 and N_2O by these organisms is dissimilatory (EL-Sayed,2016).

The effects of media composition on the products of NO₃ reduction by C48 and B37 are shown in Table (4). Nitrous oxide was produced under all conditions, but was never the major product (EL-Sayed, 2002 (a and b); and Rajesh *et al*., 2017). In complex media it is not feasible to measure directly NH_4^+ production from NO³ without an ¹⁵N label. This is due to confounding reactions such as amino acid degradation and NH_4^+ assimilon.

Since, showing that N_2 and NO are not major products, it is highly probable that the unaccounted - for N was reduced to NH_{4}^+ , the observation of NH_{4}^+ accumulation by these organisms, which relates well to the results in Table (4). In parallel experiments. Therefore, NH_{4}^+ production was estimated by subtracting the NO₂⁻ N and N₂O- N from the NO₃⁻ N added (no NO₃ remained after 13 days). The addition of NH_{4}^+ did not have a significant effect on the apparent reduction of NO₂⁻ A NH_{4}^+ , causing slight increases in NH_{4}^+ production with C48 and slight decreases with B37. Ammonium additions did not consistently alter Glucose additions consistently increased the apparent production of NH_4^+ Table (4), presumably by permitting more fermentative growth. In NB, NO_2^- was the major product; but in TSB, with or without dextrose, NH_4^+ was.This is consistent with results presented in Table (1).Glucose did not affect N₂O production consistently. *Citrobacter* C48 in NB produced significantly more N₂O when glucose was added, but B37 in NB tended to produce slightly but not significantly less. Glucose significantly depressed N₂O evolution by both organisms in TSB.

Nitrous oxide production and growth of C48 and B37 with various NO⁻₃ concentrations are shown in Table (5). Growth responses in NB were observed up to 15 m M NO⁻₃, AT 5 m M NO⁻₃ in NB, therefore, the supply of electron acceptor is growth- limiting. Under these conditions, rapid reduction of both NO⁻₃ and NO⁻₂ would be expected for respiratory denitrifires, yet C48 and B37 do not rapidly reduce NO⁻₂ as shown in Fig ,(1) and in Table (4).

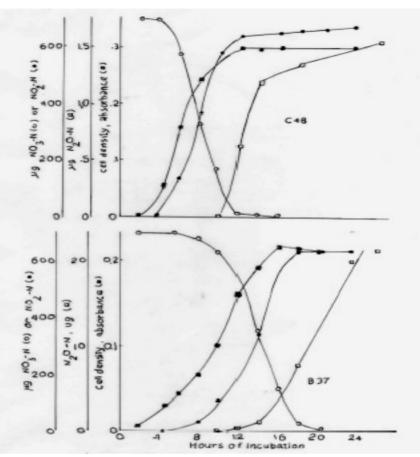


Fig. 1. reduction of NO₃⁻ (o), production of NO₂⁻ (\bullet) and N₂O (\Box),and increase in turbidity (\blacksquare) by cultures of Bacillus sp. B37 (1B) and Citrobacter sp. C48 (1A in anaerobic nutrient broth initially containing 5mM KNO₃. All observations are means of 3 replicates

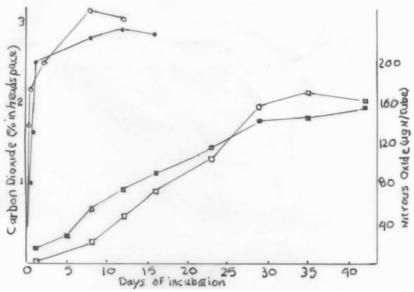


Fig. 2. Long-term production of N2O (Squares) and CO2 (circles) by Bacillus Sp. B37 (solid symbols) and Citrobacter sp. C48 (open symbols) in anaerobic nutrient broth initially conraining 5 mM KNO3. All observations are means of 3 replicates

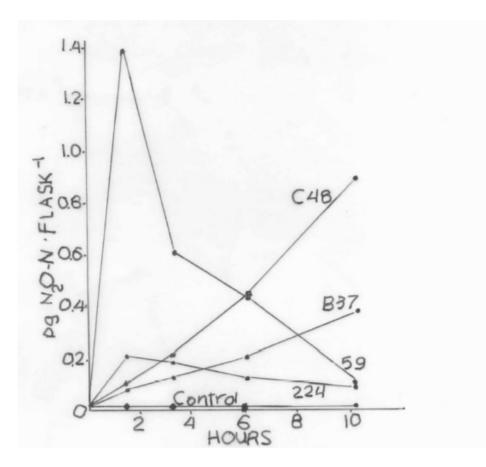


Fig. 3.N2O production by two denitrifiers (59 and 224) and Two Fermentative NO3- reducers (C48 and 837) following addition of cells to anaerobic soil slurries. All observations are means of 3 replicates. All comparisons at a given Time are significantly different at the 0.95 level except 59 vs. C48 at 6 hours and 59 vs.224 at 10 hours

Table 5.Effects of NO_3 concentration on growth and N_2O production by *Bacillus* sp.(B37) and *Citrobacter* sp. (C48) +

Isolate	NO ⁻ ₃ added (m <i>M</i>)	Maximum cell density (abs.)	N ₂ O produced (ug N)	N ₂ O-N as% of NO ⁻ ₃ -N added
В 37	0	0.06	0	-
	2	0.12	9.2	13.1
	6	0.18	15.3	4.4
	16	0.29	43.1	4.2
	46	0.32	172.7	5.6
C 48	0	0.16	0	-
	2	0.20	7.9	11.2
	6	0.31	8.8	2.6
	16	0.36	11.9	1.2
	46	0.35	35.8	1.2

+ N₂O measured at 8 days. Values are means of three replicates in anaerobic nutrient broth.

Increased N₂O production with increased NO⁻³ was observed upto the highest concentration tested. The percentage of NO⁻³ – N converted to N₂O, however, generally decreased with increasing NO⁻³ concentrations (EL-Sayed and Ahmad , 2003).

Table (6) illustrates N_2O production at various pH values. Neither organism grew at pH 4.0, and there was no significant accumulation of N_2O in these tubes. Both organisms produced N_2O between pH 5.0 and 8.0, and

both accumulated maximum amounts at pH 8.0, the highest value tested.

In an attempt to elucidate the physiological function of N₂O production, the observation of growth yields with and without added NO⁻₃ or NO⁻₂ are shown in Table(7).The results are confounded by NO⁻₂ toxicity which was observed in all cases at 10 m *M*. The greatest growth response occurred with NO⁻₃ addition, presumably due to respiratory reduction to NO⁻₂. No growth response to added NO⁻₂ increased cell yield. Using the data in both Tables (7 and 4) TSB in Table(7) is chemically equivalent to TSBND plus 2.5 g. liter⁻¹ glucose in Table(4); and NB in Table (7) is equivalent to unamended NB in (Table 4), the following observations are: (i) in TSB, growth responses to NO⁻₂ occur, NO⁻₂ is reduced mostly to NH⁺₄, and small amounts of NO⁻₂ are reduced to N₂O; (<u>ii</u>) in NB, there were no growth responses to NO⁻₂, little of the NO⁻₂ is reduced to NH⁺₄ and small- to- moderate amounts are reduced to N₂O (EL-Sayed and Abo-EL-Wafa , 2001). The results are not conclusive but it appears likely that the observed growth responses to NO⁻₂ are associated with reduction to NH⁺₄ and not to N₂O (EL-Sayed,2013 ; EL-Soury *et al*,2015).

Figure (1) illustrates the temporal relationships among growth, NO_3^{-} reduction, and N_2O production for B37 and C48 in NB. Nitrate is essentially reduced completely to NO_2^{-} (90% recovery for B37, 96% for C48) at which time growth, as indicated by optical density, ceases. Only at this time does significant N_2O production occur.

Isolate	Isolate pH	Perce	Percent NO ₃ -N converted to N ₂ O		
		Day 2	Day 8	Day 15	
B37	7.0	0	0	0	
C48	7.0	0	0	0.09	
B37	7.1	0.6	0.9	0.91	
C48	7.1	6.9	7.3	6.7	
B37	7.3	3.6	5.1	5.5	
C48	7.3	2.0	2.4	2.5	
B37	7.5	7.2	9.9	16.3	
C48	7.5	2.9	6.7	9.1	
B37	8.1	17.0	32.1	34.5	
C48	8.1	4.1	12.5	20.8	

Table 6. Effect of pH on N₂O production by *Citrobacter* sp. C48 and *Bacillus sp.* B37.+

+ In nutrient broth with 5mM KNO₃, anaerobic incubation. All observations are means of three replicates.

N amendment	Cell yield in NB# (ug cell dry wt. ml ⁻¹) (+)) Cell yield in TSB# (ug cell dry wt.	
	C48	B37	C48	B37
None	77	73	514	474
$1 \text{m}M \text{NO}_2$	82	73	521	501
$5 \text{m} M \text{ NO}_2^-$	65#	70	577#	628#
$10 \text{m}M \text{ NO}_2$	45#	49#	497	271#
$5 \text{m}M \text{ NO}_3$	176#	162#	698#	698#

+ Cells harvested in distilled H_2O at early stationary phase when maximum optical density was attained, weight determined gravimetrically after drying at $85^{\circ}c$.

++ NB is nutrient broth; TSB is tryptic soy broth with dextrose.

#Significantly different from broth with no NO_3^{-} or NO_2^{-} at 0.95 level by two-tailed T- test. Values are means of three replicates. **Table8.Production of N₂O by resting cell suspensions**

Treatment	N ₂ O prod	uction P g N ₂ O-N.(min ⁻¹)
	Citrobacter sp.	Bacillus sp.
No cells	0	0
Boiled cells	0	0
Aerobic atmosphere	87	0
Glucose omitted	356	50
Complete anaerobic reaction mixture	+ 1153	386

+ Reaction mixture consists of 50 mM pH 7.1 phosphate buffer, 200 ug*ml⁻¹ chloramphenicol, 5mM Na NO₂, 2.8 mM glucose, washed, late log phase cells, and N₂ atmosphere in 10 ml H₂O. Values are means of two replicates.

Figure(2) presents a surprising aspect of N_2O production by these organisms . Nitrous oxide production occurs at a more or less linear rate for up to 35 days, long after growth steps(EL-Sayed, 2003 (a&b)). Most of the CO_2 in the headspace of these tubes accumulated within 24 hours, and no significant increases were observed after 8 days. The results suggest that N_2O production is not directly associated with growth of the organism (Fathi ,2014).

These results indicate that N_2O production by these organisms is a biological and not a chemical process. In one experiment, Hg Cl₂ was added to early stationary phase cultures which had accumulated NO_2 and were producing N_2O . This abolished N_2O production; distilled H₂O did not. Further evidence of enzymatic involvement ; in N₂O production was provided by resting cell suspensions prepared from washed, early stationary phase cells (Table 8). Boiling cells for 5 min abolished activity. These experiments also show that O₂ is an effective inhibitor of NO_2^- reduction to N₂O. Furthermore, it was observed that glucose caused a several- fold increase in N₂O production. Boiled and live C48 cells from a 28-day-old culture were also assayed with results consistent with those in Table (8).

An additional resting cell experiment was performed to determine the effect of growth conditions on N₂O producing activity from NO⁻₂, *Citrobacter* C48 was grown in TSB aerobically with no NO⁻₃ or NO⁻₂, anaerobically with neither NO⁻₃ nor NO⁻₂, and anaerobically with 5 m M KNO₃ (EL-Sayed , 2005). The relative activities were 1.4, 7.5, and 100, respectively. It appears that N₂O producing activity is inducible.

N_2O Production by Fermentative NO_2 Reducers in Soil

The results presented in Fig (3) showed that these organisms produce immediately N2O when added to autoclaved soils. anaerobic Two denitrifying pseudomonads (isolates 59 and 224) were included in this experiment for purposes of comparison. The denitrifiers initially produced N₂O at a greater rate than the fermentative NO_2 reducers, but N_2O did not accumulate in the soils with denitrifiers due to reduction to N₂. After 10 hours of incubation, C48 and B37 had accumulated significantly more N₂O than the denitrifiers (EL-Sayed, 1999 and 2016).

CONCLUSIONS

Most soil isolates capable of dissimilatory NO_3^{-1} reduction to NO_2^{-1} also produced N_2O , though most of these isolates were not true respiratory denitrifiers. Nitrous oxide production by nondenitrifiers differed

from denitrification in several ways. Ionic forms of nitrogen (NH⁺₄ or NO⁻₂) were the predominant products in the former process, with lesser amounts of N₂O, whereas denitrifiers have the potential for complete conversion of NO⁻₃ sto nitrogen gas. The bacteria characterized in this study apparently cannot reduce N₂O to N₂, but most denitrifiers can.Production of N₂O by denitrifiers is directly linked to growth and respiration and so is a relatively rapid process when conditions are favorable.Production of N₂O by nondenitrifiers is slower and occurs mostly after apparent growth is completed.

The results suggest that N₂O production by nondenitrifying NO₃ reducers is enzymatic, though the involvement of a nonenzymatic step cannot be definitely ruled out. Boiling cells and treatment with HgCl₂ abolished activity. Nitrous oxide producing activity apparently was induced by anaerobic growth with NO₃. Activity was favored by high pH, suggesting that N₂O production is not due to chemical decomposition of HNO2. The physiological function, if any exists, of N₂O production by these organisms is not clear. The results do not indicate that this process is directly linked to growth or energy generation, as is the case for respiratory denitrification and for fermentative reduction of NO⁻₂ to NH⁺₄. IF N₂O production serves as a means of detoxifying NO_2 , it is a rather inefficient mechanism since NO₂ conversion is slow and incomplete. Since added NH_4^+ did not inhibit N_2O production; NO_2^- reduction to N_2O is not associated with assimilatory NO⁻₂ reduction.

The supply of energy substrate had variable effects on N_2O production. Glucose addition enhanced N_2O production in resting cell suspensions, but in Batch cultures it sometimes increased and sometimes decreased evolution of N_2O . Growth in TSB often resulted in less N_2O release than in nutrient broth, but in a few cases ; more N_2O was produced in TSB. No facile explanation for these varying effects is at hand.

Most of the nondenitrifying N₂O producers were apparently capable of fermentative dissimilatory reduction of NO⁻₂ to NH⁺₄ under the appropriate conditions. The *Bacillus* and *Citrobacter* isolates were NO⁻₂ accumulators in NB, in TSB they were NH⁺₄ producers. This was also true for 48 of 58 soil isolates which were initially classified as NO⁻₂ accumulators in NB .This suggests that, for many bacteria, reduction beyond the initial NO⁻₃ to NO⁻₂ step is limited more by the environment than by the genetic potential of the organisms. In any case, more ionic N was produced than gaseous N, so fermentative NO⁻₃ reducers might be less likely than denitrifiers to cause significant volatile loss of fixed soil N. If NO_2^- reduction to NH_4^+ were competitive with denitrification, gaseous N loss could actually by reduced by these organism.

It is difficult to evaluate the significance of nondenitrifying NO₃ reducers as a source of soil N₂O. These organisms did produce N₂O under a wide variety of conditions. From the survey it appears that they are more numerous than denitrifiers in soil. When added to autoclaved soil, fermentative NO₂ reducers initially produced N₂O at a lower rate than denitrifiers but, because they also consumed N₂O,denitrifiers accumulated less N₂O as the incubation proceeded. Nondenitrifying NO₃ reducers may thus contribute to N₂O evolution from soil .

ACKNOWLEDGMENTS

The author wish to acknowledge grateful and special thanks to the irrigation Eng.Mohammed Said Abbas Mohammed EL-Sayed and his wife irrigation Eng.Mariam Ehab Ibraheem for valuable practically supported to this research for providing inoculum.

REFERENCES

- Abdel-Aziz, N.A.M ; M.A. Abdel-Samad and S.A.M. EL-Sayed .2003 . Relationship between soil texture , mineralization rate of nitrogen , carbon and microorganioms in soil . J . Agric . Sci . Mansoura Univ . 28 (4) : 3275 – 3298.
- Breitenbeck, G.A.;A.M.Blackmer, and J.M. Bremner. 1980. Effects of different nitrogen fertilizers on emission of nitrous oxide from soil. Geo- phys. Res. Lett. 7:85-88.
- Bremner, J.M., and A.M. Blackmer. 1978. Nitrous oxide emission from soils during nitrification of fertilizer nitrogen. Science. 199:295-296.
- Caskey, W.H., and J.M. Tiedje. 1979. Evidence for clostridia as agents of dissimilatory reduction of nitrate to ammonium in soils. Soil Sci. Soc. Am. J.43:931-936.
- Christopher, F; D, Ryan; E. Marie and G.Carcia Cabellos . 2017. Developing microbial inocula to support biofuel crop cultivation on tributyltin contaminated marine sediments. Journal of Applied & Environmental Microbiology. 5 (2): 47–56.
- Cole, J.A., and C.M. Brown. 1980. Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbial. Lett. 7:65-72.
- Council for Agricultural Science and Technology (C. A. S. T.). 1976. Effect of increased nitrogen fixation on stratospheric ozone. Report no. 53. Iowa State University. Ames.
- Crutzen, P. J., and D. Ehhalt. 1977. Effects of nitrogen fertilizer and combustion on the stratospheric ozone layer Ambio. 6: 112-117.
- EL-Sayed , S.A.M . 1995a . Manure decomposition during arobic and anaerobic condition . Menofiya . J . Agric . Res . 20 (2) : 777 – 788.

- EL-Sayed , S.A.M. 1995 b. Identification of rhizobacteria from forage sorghum and apppraise their plant growth promoting activity . J . Agric .Sci . Mansoura Univ . 20 (1) : 441–451.
- EL-Sayed , S.A.M. 1999 . Denitrification by guar rhizobia strains in New Valley Governorate . Egypt . J . Soil Sci . 39 (2) : 223 – 236.
- EL-Sayed , S.A.M . 2002 a. Effectiveness of some nitrification inhibitors in soil amended with sewage sludge compost . Int . Conf . for Develop. and The Env. In the Arab world , March , 26 – 28 , 2002 . Assiut Univ. Center for Environ Studies . Egypt . pages from 223 to 236 .
- EL-Sayed, S.A.M 2002b. Relationship between ammonium thiosulfate (ATS) and inhibition of nitrification or urea hydrolysis in soil . Alex . Sci . Exch . 23 (3) : 243 254 .
- EL-Sayed, S.A.M . 2003 a. The effect of soil temperature on denitrification and ammonification . Egypt . J . Soil Sci . 43(4): 447-465.
- EL-Sayed , S.A.M. 2003b . Nitrogen immobilization and mineralization as affected by fertilizer application in soils . Egypt . J . Soil Sci . 43 (4) : 467–480.
- EL-Sayed , S.A.M. 2004 . Relationship between nitrification inhibitors and many of acetylenic compounds in soils . J . Agric . Sci . Mansoura Univ ; 29 (3) : 1527 – 1538.
- EL-Sayed , S.A.M . 2005 . Relationship between soil amended with manure and emissions of nitrogen oxides . Alex . Sci . Exch. Jour. 26 (3): 199 – 210.
- EL-Sayed , S.A.M . 2013 . A stimulating effect of humic compounds on the growth of legumes , nodulation and biological nitrogen fixation . Alex . Sci . Exch . Jour . 34 (4) : 387 – 394.
- EL-Sayed , S.A.M. 2016 . Survey of Vesiculare Arbuscular Mycorrhizal Fungi in the Faculty of Agriculture Farm , Al-Azhar University , Assiut Governorate. Alex . Sci . Exch . Joul . 37 (3) : 507 – 514.
- EL-Sayed, S.A.M;A.S.A, Abdel-Mawgoud ; S.A.M . Hegab and M.H.E , Salem .2001. Soil salinity and nitrification inhibitors in barley plant . Egypt . J . Soil Sci . 41 (4) : 539 - 550.
- EL-Sayed, S.A.M. and A.M. , Abo-EL-Wafa .2001 . Effects of biofertilizers on nitrogen fixation , nitrogen uptake and yield of wheat . J . Agric . Sci . Mansoura Univ , 26 (7) : 4583 4592.
- EL-Sayed , S.A.M and M.E. Ahmad.2003. Effect of water shortage and potassium on efficiency of symbiotic nitrogen fixation in some legumes. Egypt J . Soil Sci . 43 (2): 193 – 210.
- EL-Soury , A.H; A.E .Shouman ; S.A.E. Abdelrazek and H.M.EL-Komy.2015.Microbial biomass and activity in a calcareous soil amended with municipal solid waste compost . Alex . Sci . Exch . Jour . 36 (3) : 262–266.
- Fathi , N.O.2014. Crop yield and nitrogen bioavailability mediated by nitrogen fertilization in maize \ soybean intercropping system with and without rhizobium inoculation . Alex . Sci . Exch . Jour . 35 (2) : 115 125.

- Faith , B ; S.L ,Jacquelyn ;H.J.S.L., Norma .2017 . Fresh produce microbial indicator contamination farms and packing facilities : elucidation of environmental routes. Applied and Environmental Microbiology (article) .
- Gamble. T. N., M. R. Betlach, and J. M. Tiedje. 1977. Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbial. 33:926-939.
- Khalafalla , M.y and M.H. Hamed . 2015 . Impact of nitrogen fertilization on soil organic carbon decomposition . Alex . Sci . Exch . Jour . 36 (4) : 381–389
- Lowe, R. H., and J. L. Hamilton. 1967. Rapid method for determination of nitrate in plant and soil extracts. J. Agric. Food Chem. 15:359-361.
- Mc Elroy, M. B., S. C. Wolfsy, and Y. L. Yung. 1977. The nitrogen cycle: Perturbations due to man and their impact

on atmospheric N_2O and O_3 . Philos. Trans. R. Soc. London. 277B:159-181.

- Nelson, D. W., and J. M. Bremner. 1970. Gaseous products of nitrite decomposition in soils. Soil Biol. Biochem. 2: 203-215.
- Payne, W. J. 1973. Reduction of nitrogenous oxides by microorganisms. Bacterial. Rev. 37: 409-452.
- Rajesh,M; M.Samundesswari and B.Archana . 2017 . Isolation of biosurfactant producing bacteria from garbage soil . Journal of Applied & Environmental Microbiology . 5 (2) : 74–78.
- Sorenson, J. 1978. Capacity for denitrification and reduction of nitrate to ammonia in a costal marine sediment. Appl. Environ. Microbiol. 35: 301-305.
- Yoshida, T., and M. Alexander. 1970. Nitrous oxide formation by *Nitro- somas europaea* and heterotrophic microorganism. Soil Sci. Soc. Am. Proc. 34: 880-882.

الملخص العربى

حصر للبكتيريا الموجودة بمزرعة كلية الزراعة – جامعة الأزهر بمحافظة أسيوط

سعيد عباس محمد السيد

تم عزل ٢١٥ من البكتريا القادرة على اختزال النترات (NO⁻3) و كذلك ٢١٠ من البكتيريا المنتجة لأكسيد النيتروز (N₂O) وكذلك توجد ٤٢ من البكتيريا التنفسية كنتيجة لاختزال النترات الى غاز النيتروجين .

أوضحت النتائج أن النتريت أو الامنيوم كان الناتج الرئيسى نتيجة لاخترال النترات بواسطة الكائنات الحية الدقيقة نتيجة لبكتيريا عكس التأزت .

أشارت النتائج أن حوالى ٥ – ١٠% وحتى ٣٤% مــن النترات يتم ا خترالها وتتحررالى مادة N₂O نتيجه تحضينها لمدة اسبوعين ببكتيريا عكس التأزت، نتيجــة لاســتهلاك وانتاج N₂O.

أوضحت النتائج أن بكتيريا Bacillus و بكتيريا Enterobacter تكون ملحوظه نتيجة لوجود أجناس بكتيريا عكس التأزت والتى تنتج مادة N₂O وأن تخمر مادة N₂O تختزل وتنتج مادة بواسطة جنس بكتيريا Bacillus و كذلك جنس Citrobacter تكون مميزة لانتاج مازرع

نقية، كذلك عند وضع التربة فى جهاز التعقيم (الاتوكلاف) تتجمــع كميــات كبيــرة مــن N₂O نتيجــة بكتيريــا Pseudomonads نتيجة لاستهلاك وانتاج N₂O.

أوضح البحث أن النمو يكون نشطا عندما يحدث التخمر، لذلك فان الناتج الأعظم يكون الأمونيوم نتيجة لاختزال النترات، فى بيئة المرق المغذى (NB) و يحدث تجمع لمادة NO² . وعند اضافة N₂O لا يحدث تثبيط للناتج، أوحدوث اختزال للامونيوم كدليل لعدم التمثيل أو الامتصاص.

تأثير اضافة الجلوكوز الى الناتج يختلف باختلاف الكائنات الحية الدقيقة فى الوسط البيئى، اكسيد النيتروز الناتج بواسطة الكائنات الحية الدقيقة يكون واضحا فى هذا التفاعل الحيوى .و ينتج N2O ببطء فى بيئة النمو و يكون واضحا ومعنويا وكنتيجة لتنفس البكتيريا ينطلق الازوت .