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ABSTRACT 

This paper presents a theoretical and experimental investigation of tube- 
:bulge-forming. The study is concerned with bulging deformations together • 
with the limiting strains and the factors affecting instability. 

:Theoretical analysis considers bulging of open thin-walled tuhes made of . 
•strain-hardening material. A simple approach is adopted in which the bulge: 
profile shape is assumed to be elliptical and the ellipticity ratio is obt-
ained by calculating the constant pressure required to retain this assumed 
profile shaped Results obtained according to this assumption and the ass-
umption of circular profile shape when compared with bulging experiments of 
commercially pure aluminium tubes, reveal that the actual profile shape 
approaches an elliptical arc rather than being circular. 

Limiting strains during tube bulging have also been investigated for long 
tubes subjected to an internal hydrostatic pressure together with an exter-
nal axial force. A strain instability criterion which takes into consider: 
:ation the inevitable geometrical defects in the tube-•ell is developed. 
The results revealed that small eccentricities produce a substantial dec-
rease in the amount of deformation sustained by the tube at instability 
conditions. Moreover, the sensitivity to such defects increases for tubes .  
made of low strain hardening materials. The developed strain instability; 
:criterion has been subjected to an experimental verification where commer-
cially pure aluminium tubes have been bulged to fracture. Experimental 
results are found to be in good agreement with theory, thus justifying the 
validity of this instability criterion and the resulting limit strains. 

INTRODUCTION 

Theebulge-forming of thin-walled tubes has two application, one is related 
to industry while the other is related to material testing. In industry, 
:the bulge-forming technique is utilized to produce tubes with curved profile 
•shapes from straight cylindrical ones. Tube bulging under internal pres-
sure combined with axial upsetting pressure allowed high expansions to be 
:obtained in one operation 1 11 andi  2 I •  
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sfOrMateria1 testing and evalUation,  the bulge test of thin tubes has 
been utilized to obtain the stress-strain characteristics of strain-hard- 
ening materials 131 and 141• 

The problem of hydrostatic. bulging of thin-walled tubes has been experim-
entally and theoretically studied by a number of investigators 15

-101 . In their investigations, they were mainly interested in the prediction of 
bulge profiles, stresses, strains and thickness distributionss. Some of 
them 161 and 171 extended their work to predict the limiting deformations 
and the bursting pressures. Well 161 presented a theoretical study for 
the case of a closed tube having finite length and subjected to an inter-
nal pressure. His solution ties based on the assumption of circular deformed 
meridional profile. The study was extended to investigate the maximum pre-
ssure instability at the bulge crown. Banerjee 171 , using the same assum-i 
ptions was able to study the limiting deformations in bulge-forming of short tubes, His experiments on impact extruded and annealed aluminium tubes 
indicated large discrepancy between measured and theoretical bulge diameterS 
for short tubes. A gerneral numerical method of analysis was suggested y 
Woo 

131 for axi- symmetric forming of metallic shells. The analysis showed 
that the ratios f(xthe principal stra_i,, e:main nearly constant. during the forming process and accordingly, the tote 

i strains may be directly utilized 
in analysis. The solution did not howEqer satisfy the boundary conditions 
due to the large accumulative errors produced at the boundaries during suc 
Cessive computational iterations. 

According to the availabib literature of bulging mechanics, the analysis 
have been limited to the assumption of a circular profile shape whose 
validity has been only checked during bulging of rate-dependent superplastic 
tube 191. It was found that a hypothetical constraining outside non-uniform 
pressure was needed to maintain circular profile shape. The validity of the 
assumption of circular bulge profile shape for tubes made of strain-harden- 
ing materials has not been checked and no other configurations for the tube, 
bulge profile were considered. 

As 
for the limiting deformations, the study of plastic instability of long : thin-
-walled tubes shows to be of a prime interest and has been considered 

by many investigators 110-131 . Swift 1101 considered the plastic insta-
bility of closed thin-walled tube subjected to internal pressure and indep-
endent axial tensile force. Heassuled instability to occur when both the 
internal pressure and the axial load reach a maximum simultaneously. His 
analyses were extended by Mellor 1111 who assumed instability to occur 
when there is a maximum in either the total axial load or in the internal 
Pressure. Both of them considered instability as a broadly and symmetric-
ally distributed flow that produces uniform shell-thinning termed as dif- 
fuse necking without any reference to localised defects in the origninal tube. 

The instability of a thin tube subjected to internal pressure, torsion and 
axial tension, all of which are independent of each other has been consid-
ered by Storakers 1121 . The analysis was carried out for a strain- hard-
ening material, and the system was defined to be fully stable if small 
loading perturbations cause only small changes in configuration. It was 
shown that stability may be lost without either of the loads attaining a 
maximum, but the results obtainded when the torsion stresses are excluded 
reduced to the same criterion previously obtained bv Swift 1101 . Franklin' 
1121, assumed instability to occur when inhonogeneity of section begins to 
eform faster than the bulk material. His results for non-strain-rate sensli 

-2 - 
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4tive materials are not consistent with the previously obtained criterion 1 
based an maximum pressure condition. An instability criterion which corres-
:pon& to a state when an element of the sheet metal can no longer transmit 
plastic strain to its neighbouring element.has been developed by Kaftano-
glu [13]. This criterion could not be analytically expressed and a large ; 
computer programwith extensive calculations was naquimd to solve tl-eprobem- 

The analysis of stability loss and the Phenomenon of localized necking, for: 
;states of stressing between plane strain and equi-biaxial tension condition 
have been presented by Marciniak and Kuzynski r14] . Instability was assu-
med to take place as a result of an initial inhomogenity in the sheet metal: 
!which could simply be a thickness ncnuniformity. Marciniak's theory [1] 
and [16] has been further discussed by several investigators, but its app-
lication to the case of thin-walled tube bulging instability was not consi-: 
:ered by any of them. 

In this work, the problem of thin-walled tube bulge forming is investigated 
theoretically and experimentally to get both the free-bulge profile shape 
and the limiting deformations. An elliptical bulge profile satisfying the 
conditions of equilibrium, continuity, material flow rules and boundary 

:conditions is proposed for open short tubs subjected to internal pressure. 
The ellipticity ratio is chosen so that the uniformity of the pressure dis-
tribution inside the tube is satisfied. Moreover, a realistic instability; 

:criterion based an considerations of initial thickness defects which are 
highly probable in seamless tube production, material properties and mode 
of loading is suggested for long open tugs subjected to internal pressure: 
and independent axial load. In the experimental investigation, the results, 
obtained by bulging aluminium tithes having different length over diameter 
ratios are used to examine the validity of both the proposed theoretical 

:bulge profile shape and the dOveloped instability criterion. 

ANALYSIS 

Prediction of Bulge Profile and Thickness Distribution  

The equilibrium conditions for axisymmetric thin shells where radial, bend:- . ing and shear stresses are small in oamparison to the membrane stresses, 
reduce to [17] . 

(raft) - o4t. R cos 4 = 0 	(1-a) 

	

a /R + aA/rc  = p/t 	
(1-b) 

•Combining both equations and integrating yields with reference to Fig.1, 
CI 

	

prc 	r2  - r8 	(2 -a ) 	
is 

 

4) 	2t 	r2  

Pt 2  r-r O  0. 	 ) 	(2-b) 	cr (1) 	CZ:17 	
1 1 2r2 rc 

	

2t 	2  R ' ' r2 0 

(3) 

The stress ratio a is defined as : 

R(r2  - 

2R.r1  - r (r2-r2) 
-•• 

Fig.1 - Equilibrium of a 
bulged tube 

L.. 
	a = a /a e 
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•The equivalent stress given by 

eq. (3) to: 

a2 
e =ij 6  i ./2, thus simplifies using.  

ae 	1- 	a2 

	

(4) 

The strain components at any point of the tube wall are given by: 

e 	= kn (r/ro) 	and Et  = 9.11 (t/to) 
	

(5 ) 

Applying the constant volume condition namely: e..
11 

= 0 yields for the '  

t = to  exp {- (1+ 6(1)/E0 )col 	 (6) 

The equivalent strain defined by E 	26. . E
i  73, reduces by virtue 

,of the constant volume condition to: 	
ij 	j 

ce 	
$ 

= 	(4/3) (62  + (

I) 
E

6 	0 
+ 62  ) 2  

Ler-vy-Mises flow rule 	Eij 
= (3

e/2Ge 

E, 
U = Eq)   -  - Et  _  Ee 

(2-a) 	(2 a-1) 	(1+a) 	2/ 1-a+a2  

and hence 

Ee = 26 ✓  1-a+ a2/ (2-a) 0 	 (9) 

For a strain -hardning material the behaviour is often lapmsented by: 

n 
0 = G E 	

(10) 

'Eqs. (4) and (9) are thus combined with eq. (10) to yield: 

e 	o 	

n-1 
2 

= 0_ (- 
2-a 

)n (I-  + a
2 ) 

From eqs. (2-
b) amd (11); employing eq. (5), the bulging pressure is 

expressed as : 

P= at ( 
2Rnr/ro n 	

n71 r  

	

0 o 	2- a 	(1— ct+ a2) 2 ( 0 2t ,) 
	- , 	(arc 4_ 

	

reR 	
(12) 

In order to proceed further with the analysis the current profile shape 

for the deformed tube has to be assumed. 

!current thickness 

(7)  

niaY be thus rewritten as: 

(8)  

e 	o e 

L 
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Fig. 2 - Geometry of ellip-
tical bulge profile 
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a. Elliptic Profile Shape 

Assuming elliptic profile as shown in Fig. 2- the geonetry at any point may 
be descrihPd by: 

r = r - (b/a) ✓  a- (a 2  - x2) or 	(13) 

R = {a4  - x2(a  2 - b2) } 3/2/ a4b 	 (14) 

where w = b/a is the ellipticity ratio . 

The second radius  of curvature is obtained from eq. (13) according to 

rc = r/sin = r 	+ (dr/dx)2  = r (abR) 1/3 /4/ 	a2 -x2  (15) 

&js. (13), (14) and (15) give the current tube radii of curvature at 
any profile point as far as the ellipticity ratio w is defined. 

Substituting R and rc  in eq. (12) and rearranging results in: 

n-1 	3 	  

P = 

	

	
(1-a+ a 	

, 
a o o 2r2a 	2 ) 	( 2 22m r/ro.n 	

) 
a-2 /a`  -x2  

0 	r -r 2 	 2-a  (abR)Y/3 
0 

(16) 

b. Circular Profile She 

If the assumption of circular bulge-profile shape proposed in the litera-
ture was adopted, the solution is obtained by substituting (w = b/a =1.0)' 
in the group of equations (13) to (15). The corresponding pressure dis-
tribution is thus given by: 

a 	2r2a 	2 )  2 2tn r/ro 
 , )n 	2„r , a -2 	1 

r 	
k 	-x ) k (7) p 	oto 	 r- (1-+a ro 	2 I.6 

n-1 	 3 
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Eq. (16) gimEcs: the theoretical pressure at any posit on along the tube 
axis for a certain value of the crown radius f and ellipticity ratio w. 
For bulging with hydrostatic pressure, there is obviously no variation 
of pressure along tube length. Adopting an inverse method of solution 
[18] , the validity of the assumptions concerning the bulge profile shape 
could be checker;. An assumed profile shape which is close to reality must 
produce constant pressure distribution along the tube length at any defor-
mation stage. For instance this check is achieved through solving eq . 
and the bulging pl.essure P at the crown (x= 0) is obtainad from sane 
eq. . Another value for tie pressure (designated by pl) is obtained 
near the tube end i.e. at x/L = 0.95. If p1  is different from p then, 
the assumed ellpLicity is modified and the procedure is repeated until the 
relation po  ,... pi  is realized. The sane method of solution could be app7 
lied to the circular profile using eq. (17). 

Pie diction of Limit Strains 
• • 

The mode of instability considered here assumes that at a certain moment 
while bulging, some selected sections continue to deform while others 
begin to unload 1141 . That phenomenon may occur due to the presence of 
an infinitesimal thickness variation in the tube due to either manufactur-
ing imperfections or microstructural inhomogeniety. The section having 
minimum thickness will be the most stressed one at which stability loss 
is predicted to occur. But, at early stages of loading, all sections are 
fairly subjected to equal stress values with infinitesimal differences. 

In the appendix the strain instability criterion as developed in reference 
191 is applied to a long thin.-walled tube of localized wall defect and 

the condition of instability is found to be: 

d 1 / 1 
	dtI / tI = 0 
	

(18) 

For a strain-hardening material of behaviour represented by °e = Co Een . 
the limit strains are given by: 

e 	= (2- a/ 11- a)n 

e = (2a -1 / 1+a)n 	 (19) 

6t = -n 

In the solution obtained above, it is assumed that the tube thickness is 
initially homogeneous, and that instability takes place due to the pre- • 
sence of an infinitesimally small geometrical inhomogeniety in the tube 
wall. 

In general, most tubes are of a non-uniform thickness (t) which could be 
described as a function of the element position (e ) around the periphery 
namely : t = t (e). For eccentrically drawn tubes - Fig. 3 the initial 
• thickness diStribution may be represented by the equation: 

t
o = To  - A ODS 00 	 (20) 

L 
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'where To 
 and A are the initial average thickness and initial eccentricity 

minimum thickness. 
respectively while eo 

 is the angular position referred to the section of 

The tangential strain and strain increment at any point is respectively 

given by: 

de0 	
d(r dO) / (r dO) 	 (21) 

and 
E 	= 

where r is the current mean radius of the tube and r is the original 
• mean radius. It must be taken into account that de differs from de

o  

since obviously the material point does not move radially during deformation 
of tubes having non-uniform thickness. Both ee  and dee 

 are functions of 8: 

- and are not uniform along the circumferential profile. Now, considering an 
average circumferential strain, defined by: 

E
e 

= £n (r /ro) 
	 (22) 

Utilizing eq. (21) and integrating along the circumferential profile, 

yields: 
2.11.  

r 	__ xn  ee 
= in — = 	{ 1,7- f exp (e0) deo 	

(23) 
ro 	o 

The thickness strain (et) and its increment are functions of e and given 

by: 

t(0) = 
n{ t(e) /to(0} 	

(24) 

According to the strain instability criterion presented in the Appendix, 
instability takes place at the weakest section while other sections start to 
unload. Bence the same instability condition as given by eq.(18) could be 
applied. For small orders of thickness varition, the stress and strain • 
ratios may be assumed to remain constant for all sections so that the in-
tegrated form of the Levy-Mises flow rule applies. According to the 
assumption of uniform distribution of 	stress ratio together with pro-: 
portional loading conditions, eq. (4) applies. Utilizing eq. (24), the 

',instability condition (13) reduces to: 
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due1/0  eI 
	

(25) 

Substituting the plastic stress-strain relations,eq. (8) in eq. (25), 
gives: 

duei 	- (14-a) de
tI 

= 	= 	 de 
a
eI 	2/1:a+u- 

el,  (26) 

Using eq. (9) together with eq. (10) and substituting into eq. (26), 
the instability strains at the section originally having minimum thickness 
will be the same as previously obtained for a tube with localized defect 
and given by eqs. (19) . Referring to Fig. 3, and considering the general 
section (J), having position angle (0), and assuming the sane curvature 
for both sections I and J, then, at any stage of deformation, it may be 
written: 

001. t 1 = 	tJ  eI 	0 

Combinging eqs. (24) and (27) for sect,  's I and J and rearranging yields: 

061 / a0] 
= (t

3 	I 
/ t. )o  ex 
	

(28) 

According to the assumption. of uniform stress ratio; it maybe seen that: 

(27) 

(29) 

Substituting eq. (29) into er• (28) a - rec,rrangin:-  yields: 

(t3 
/ 

)0 = 

	

	 (3)) t] 

Substituting from eq. (19) into eq. (0 (jives 	 I: anY section (4):fn 

(t3  / t1)0  = - (n/ et)
II 

exp 	- n - E 
tl 	

(31) 

Referring to the thickness distribution chi 	r.
(20) yields: 

t
I0 

= T
o 
- A 	

(32) 

Also, rewriting eq. (20) in terms of t10 

(t /t1)o = 1 + (A/tio) (1-  cos On) 	 (33) 

Substituting eq.(33) into eq. (31) and rearranging , results in: 



r • 
To  

1  ) exp (- n - et) - 1 } COs 0o ----- 1 - 

	

A 	1) 1 (-: 
't 

Substituting eq. (8) into eq. (29) gives: 

1 a 
qos eo = 1 —( 

	

A

T
o 	1){ ( 	 1+ a e )n exp (2+ a Ee  - 

n) -11 
- 	

(35) 
0 

(34) 
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This equation defines the local strains ce  at any section knowing initial 
distribution of thickness i.e. To, A , 0 	the stress ratio a and the 
material hardening exponent n. Using this distribution of 60(0) in eq. 
(23), the mean current radius at instability is obtained by integration. 
A good approximation is to take exp (co) in polynomial form of 0 as: 

exp (e0  ) = exp (21_; A) + Eak  0 k 
	

(36) 

where the first constant gives ee  at section I independently of ( A/T ) 
as obtained from the analysis in the Appendix. A reasonably selected ° 
number of constants a could be determined for each specific case by 
curve fitting. The tube radius at instability is then obtained by direct 
integration of eq. (36) i.e.: 

(r/ro ) instability = exp ( 1 	
n) + Z ak

k/(k + 1) 2 -a  
 1-o, 
	 (37) 

1-thSULTS AND COMPARISON WITH EXPERIMENTS 

Experiments 

Experimental work was conducted to inspect the validity of the derived 
theoretical relations given above. The experimental investigation , deals 
with two basic parts. In the first part, free bulging of open tubes was 
performed by applying an internal pressure together with a negligibly 
small axial load which was directly applied on the tube walls. Experi-
ments for bulging of tubes having L/ro  values of 0.5, 1.0 and 3.0 were 
conducted. The bulged tubes were thereafter carefully split so that the 
profile shape and thickness distribution were measured. The results 
are compared with elliptic and circular profile shapes and their corres-
ponding thickness distribution. 

The second part deals with instability where initial thickness variation 
plays the most important role. Specimens were arranged in groups having 
different values of ( A /To) ranging fran 0.015 tc,  0.17. Measurements 
were limited to tubes having L/r value of 3.0. Hydrostatic bulging was 
performed with a constant axial loadand bulge-diameters at instability were 
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measured. Results are compared with the predictions of eq. (37). A group 
of experiments was performed under the same loading conditions to measure 
the effect of the tube thickness variations on the instability diameter. 
while another group of experiments was conducted on tubes having almost 
similar thickness variations to measure the effect of the axial load on 
limiting deformations. 

Test specimens were extruded seamless tubes produced by further sinking 
to 25 'RH external diameter and 1.0 mm nominal thickness. The tube material 
which is commercially pure aluminium (99.7% Al) was found to have a flow 
curve equation given by: 

(38) = 
145 6  0.25 wa)  a

e 

A test rig for tube-bulging process was constructed so that an axial load.  
can be applied independent of the hydrostatic pressure. Vulcanized rubber 
was utilized, instead of oil as a bulging medium so that the problems of 
sealing could he avoided. 

Results: 

. Bulge Profile and Thickness Distribution 

The experimentally uniform pressures used to bulge tubes having L/r 
values of 0.5, 1.0 and 3.0 are presented in Fig. 4 with the associated 
theoretical pressure distributions as predicted by both the proposed sol-
ution - eq. (18) - and that according to the assumption of a circular pro-
file shape, eq. (19). Inspection of the given curves reveals that the 
proposed solution is in good agreement with experimental results for the 
range of x/L from zero upto 0.95 with maximum deviations, within 4-12% from 
the experimental pressures. Tleanwhile the solution according to the ass-: 
umption of circular profile gives within the same range of x/L, maxi 
mum deviations ranging from 8-26%. These results favour the pronosed 
solution over the often-made assumption of circular profile. 

In Fig. 5, the experimental bulge profiles are drawn together with both 
the proposed elliptical profile solution and the circular profile for the 
same values of L/r o= 0.5, 1.0 and 3.0. These curves indicate that the 
proposed solution satisfactorily agrees wila the experimental profile with 
maximum deviations of 4.4% , 2.1% and -13.25% for crown expansion. Mean-
while the circular profile gives within the same range of x/L,maxhmi.m 
deviations of -- 16.2%, - 18.3% and - 36% paEpE.,ctively 

• The experimental thickness distribution of the deformed tubes is piottcd 
in Fig. 6 along the tube axis together with the proposed theoretical dis-
tribution and that corresponding to the assumption of a circular proilkt. 
For L/r values of 0.5, 1.0 and 3.0 it may be seen that the proposed 
solutioR gives thickness distributions in good agreement with experiments 
for the range of x/L from zero upto 0.9. Again, these results favour the 
proposed elliptical profile over the assumption of circular profile for -
which the maximum error is about 18% for the range of x/L from zero upto 
0.9. L.. 

6 

- 10 - 
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r 
Limiting Strains  

al Effect of Initial Thickness Defects: 
In order to experimentally investigate the effect of tube geometrical 
defects, the test tubes were classified according to the original thick-
ness variation A from the mean thickness Tn-eq. (20). Groups of sreci-

rens having values of (A/2 ) in the range of-0.015 to 0.17,are bulged 
to failure under the same Sonditions of loading: The bulged tubes which 

' are of the same material, have also the same dimensions of 25 nn external 
diameter, 1.0 nmmean thickness and 72 mm free bulge length, thus produ-
cing L/ro  values of 3.0 for all the specimens. 

The effect of thickness varition of tube-bulging instability is clarified: 
in Fig. 7. The experimental results are plotted with both the developed 
theoretical solutions and the expected values from literature, for the 
range of A/T fram 0.015 upto 0.17. Inspection of these curves shows 
that the proposed solution gives good agreement for this range. The solu-
tion for a tube having an initially small localized thickness defect, which 
neglects eccentricity, eq. (19) overestimates the instability strains. 
Swift instability criterion 1101 as well as Mellor criterion (maximun pre-
ssure) underestimate the expected instability diameter. Inspite of this 
fact, these theories were, accidentally, in good agreement with the exp-
erimental results for the range of A/T from 0.12 upto 0.17 only, while 
for a tube having Ali = 0.015 devia?ions from experiments are about 
60% for the two criteria4 

1.2 

1.4 

• ,s1: 
10 

13 

OS 

1.2 

u.1 
rx a. 06 

0 

cn — 0. 
ft 

1 	1 

54c 04 
0 1.0 

0,2 

w 
0.0 

0.0 

Fig. 4 - Pressure distribu-
tion along bulged tube.-- 
theoretical elliptical pro-
file,---- ,---theoretical 
circular,------- experimental 

bi_ Effect of Stress Ratio: 

0.0 	02 	0.4 	06 	06 	1.0 

FRACTIONAL DISTANCE I X / L 

l 

on L/6= 1.0  

0 

111111ria6 

- c o •-•., 	. 

li 

I 

, 

♦ L / ro  .-.. 3 0 

1 
1---  

0.0 	0 2 	0.4 	0 6 	0 8 	1.0  

FRACTIONAL WS1ANCE f x / L ) 

Fig. 5 - Bulge profile shape. 
theoretical elliptical profile, 

--- theoretical cir-
cular profile. 

Fig. 8, represents the effect of the state of stress on tube instability: 
The experimental results are oampankl with both the proposed criterion 
and the previously suggested cases . It is seen that the theoretical 
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solution gives good results for the range of stress ratio a = Gq✓cie from 
-0.1 upto 0,3. Again both the maximum pressure criterion and that of 
simultaneous maximum pressure and axial load, underestimate the bulge 	• 
diameter with a deviation about 50% less than the obtained experimental 
values. They have however the sane decaying trend with the stress ratio, 
as the experimental curves. On the other hand, the developed solution 
for a tube having iritiallya small localized thickness defect (neglecting 
thickness variations), overestimates the instability strains as shown in 
Fig. 8. It gives the same trend with a deviation of about 65% over the 
experimentally obtained values. Note that the experimentally obtained 
stress ratio a comes from actual load cell measurements at the instability 
point. 

Effect  of  Strain - Hardening  Exronent 

The effect of tube sinking eccentricity on maximum diametral expansion at 
instability is found to be very harmful even for very small values n as 
shown in Fig. 9. The drop in ductility becomes less pronounced for fur- 

: ther increase of A/T 	The sensitivity of bulging instability to tube 
eccentricities is also

o 
 clarified for different tube materials. Comparison 

reveals that materials _having lower strain-hardening exponents are more 
sensitive to sinking eccentricities. 

CONCLUSION 

In the theoretical analysis, the bulge profile shape of thin walled tubes, 
is assumed to be elliptical. The required pressures and the resulting 
thidkness distributions are compared with those obtained according to the 
often-made assumption of circular profile shape. The experimentally obtai-
ned. bulge profile shapes, bulging pressures and thickness distributions 
for commercially pure aluminium tubes are compared with the theoretical 
results given by both assumptions. The comparison favours the assumption 
of elliptical profile shape over the circular one for all values of tube 
length diameter ratios. 

A strain instability criterion which takes into consideration the inevit- 
: able geometrical local defects in the tube wall has been developed and the 
effect of radially continuous thickness defects on tube-bulging instability 
has been thus investigated. The results indicate that small eccentricities 
produce a substantial decrease of the amount of deformation sustained by 
the tube at instability conditions. The developed strain instability 
criterion has been subjected to an experimental verification where coroner-- 

: cially pure aluminium tubes produced by extrusion and further sinking have 
been bulged to fracture. Experimental results are found to be in a good 
agreement with the theoretical assumptions given before. This justifies 
the validity of this instability criterion together with the related 
analysis considering the effect of initial tube geometrical defects on the 
limiting deformations. 

L.. 
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NOMENCLATURE 

a Major radius of the ellipse 
b Minor radius of the ellipse 
L Current tube half - length 
n Strain-hardening coefficient 
p Internal pressure 
R Meridional radius of curvature at any position (x) 
rc  Second radius of curvature at a general section. 
✓ Deformed tube radiwpat any position. (x) 
• Deformed tube radius at the crown (x-41)) 

L ro  Undeformed tube radius 
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. T 	Initial average tube thickness 
to Initial tube thickness at angular position (0) 
to Tube thickness at angular position (0). 

	

w 	Ellipticity ratio (b/a) 

	

x 	Current axial position of a point referred to the crown 

	

a 	The stress ratio (u Alae) 

	

. A 	Original tube eccenfricity 

	

0 	Peripheral angular position 
Meridional angular position 

	

a 	True stress 
ue 	Effective stress 
ao Material strength parameter 

	

6 	Natural strain 
 Equivalent strain _e 

Average circumferential strain 6 

APPENDIX 

Considering a thin-walled tube of a thickness defect where region (I) re-
present;an infinitesimal defect, while region (II) is of uniform thickness 
the following equilibrium condition could be written: 

uOI = pr/t 
	

(39-a) 

0011 =  Pr/tII 
	 (39-b) 

Rearranging, taking logarithms and differentiating gives: 

dual  /00  + dt, / ti  - dr, / ri = °II/ ue II dtII/tII-drII/rII 

(40) 

According to the definition of strain instability, the limit strain is 
reached when section II begins to unload while section I continues to de-
form, i.e. the stress carried by section II reaches a maximum and its 
further plastic deformation stops, then; 

do°II = dtII = 0 
	

(4l-a) 

At the instant when strain instability is just reached, any additional 
deformation in the weak section (I), results in an increase of the radius 
of curvature of all sections. However, according to the membrane theory 
which holds for thin-walled sections, bending stresses that may cause 
changes in curvature are neglected. In addition, since the wall thiCkness 
variations are initially assumed to be infinitesimally small, thus, curva-
tures of all sections and their rates of change can be assumed to remain 
instantaneously the same. Hence, at the condition when strain instability 
is just reached it may be written: 

dr 	
= III 
	 (41-b) 

• It must be noted here that the strain instability condition is independent. 



FIRT .M.E. CONFERENCE 

29-31 !'ay 1984, Cairo 

ND-10 118 

r 

of that of Alaximum pressure and it may be reached after a period of uni-
form deformitdon under falling pressure. 

Substituting eqs.(41-a)and(41-A6)into eq. (40) results in: 

da
GI /aeI 	dtI / tI = 0 
	

(42) 

Eq. (42) indicates that the strain instability criterion gives the same 
expression which could be obtained according to maximum wall strength 
in hoop direction. 

Rearranging eq. (42) and employing the material behaviour law, eq. (10) 
yields: 

E
eI 
	- (d EeI  / dE

tI )n 
	

(43) 

At the riment, when instability just takes place, thickness variations 
are still infinitesimal and equation (43) can be written for any section 
by dropping the subscript I. Substituting the plastic stress - strain 
relations given by eq. (8) into eq. (43) produces: 

Ee / n = 2/1-a + c( 2 
 
/ (1+ ) 	(44) 

Eq. (44) gives a neasure of 
of the loading stress ratio 
n. 

the strain 
a and the 

instability condition as function 
material strain-hardening exponent 

. Combining eq. (44) with eq. 
strain instability criterion 

(8) , the 
are given. 

limit strains corresponding to the 
Ly 

(2 -a/ 1 +a) n 

	

(1) = 	(2(.1 - 1 / 1 -1-(1 ) n 	 (45) 

	

et == 	n 

L.. 
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