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ABSTRACT 

.Gomputer aided optimal design of helical compression springs 
Is urgently required to promote the establishment of a nati-
onal Egyptian standard specifications for such springs. The 
study covers the optimal assignment of spring variables for 

:maximum modulus of resilience and achieving some functional 
'constraints required for the satisfactory operation of the 
designed springs. Appropriate models and a fast optimization 

.technique are used in solving the constrained optimization 

.problem in hand. 

Springs having more resilience and less weight were obtained 
in comparison with the standard springs. The results are 

.presented for loads from 182.5 N to 2080 N and covers: resil- 
• ience, stress, volume, spring mass saving and spring stiffn- 
ess. 

1. INTRODUCTION 

The rapid growth of computers and their software resulted in 
a great development in the field of design and utilization of ' 
.available resources. The application of optimization techni-
ques in the field of mechanical design leads to raw material . 
saving and designed elements of high performance. 

;Helical compression springs have wide applications in the 
automotive, locomotive and manufacturing industries. The 
Egyptian production of such springs follows one of the well 
:known international standards such as DIN, ISO and BS. The 
'promotion of an Egyptian standard specifications for helical 
compression springs through the Egyptian Organization for 
:Standardization (EOS) has a vital importance for the local 
'springs industry. To establish such a standard using a high 
level scientific basis, an efficient optimization technique 
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will be used. 

The objective function, design variables and various functi-
onal constraints controlling the satisfactory operation of 
the spring are specified. The optimization problem is tran-
sformed from being constrained to an unconstrained one to 

:facilitate using the Powell-optimization method. 

The optimally designed springs are compared with the standard 
ones (according to DIN standards) and the difference in the 
design variables, modulus of resilience, shear stress and vo-
lume,  is illustrated and discussed. • 

2. MODELLING OF HELICAL COMPRESSION SPRINGS 

The optimal design of the helical springs requires comperhen-
sive modelling leading to thorough definition of all functio-
ns and criteria satisfying safe and economical operation of 
'the springs. On the other hand, spring-modelling leads to . 
the assignment of its critical design variables. 

• The main functions governing the operation of helical compr-
ession springs are as follows: 

• a) Spring Volume 

.: The volume of the spring is given by: 

V = 7(2  d2  D(n+Q)/4 
	

(1) 

where d is the wire diameter, D is the mean coil diameter, n 
is the active number of coils and Q is the number of inactive 
coils which depends on the type of the spring ends (Q = 2 for:  
• squared and ground ends [1] ). Fig.l illustrates the spring 
geometry. 

b)• Static Deflection 

The deflection of the spring 6 corresponding to a static load 
P is given by [2] : 

6 _ 8 D3 n P 	 (2) 
• • G d4 

where C  is the modulus of rigidity of the spring material. 

c) Spring Stiffness 

Spring stiffness plays an important role in the control of 
: mechanical vibrations. It is function of the spring dimens- . 	. 

ions, number of coils and modulus of rigidity as follows 
2] 

L.. 
	 S 	G d 

8 D3 n 

4 
(3) 
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6" 	,d) Modulus of Resilience 

The modulus of resilience of a spring is its strain energy 
(under the effect of certain load) per unit volume. The str-

• ain energy corresponding to a deflection 6 equals jP d6 . 
Therefore, for a spring of linear characteristics, the strain:  

energy ).1 is given by: 

4 P
2D3 n  

G d
4 

The modulus of resilience R is thus obtained by dividing p 
(eq.(4)) by V(eq.(1)). That is: 

R = 1.62 P
2 D2 n/G d

6 (n + Q) 	(5) 

e) Maximum Shear Stress 

The maximum shear stress in the spring wire occurs at its 
inner side and it is given by [3] : 

-  8PDK ( 1 + 	d  ) 	(6) 

d3 	;ZD 
where K is a factor known as "Wahl correction factor" [3] 
due to the wire curvature. It is related to the diameter 
ratio D/d through the equation [ 3]: • 

4(D/d) - 1 	0.615  
K - 	+ 	 (7) 

4(D/d) - 4 ' 	(D/d) 

f) Free Length 

With an allowance of 12% of the spring deflection to prevent 
metal to metal contact, the free length of the spring Hf  is 

given by [1]: 

Hf 
= (n+Q - 0.3) d + 1.126 	(8)a 

Combining eqs.(2) and (8)a gives Hf  as: 

8.96 D n P 

	

Hf 
= (n+Q - 0.3)d +. 

	(8)b 
G d

4 

g) Buckling Load 

The buckling load represents the upper limit of the load act-. 
ing on a helical compression spring to prevent its instabilij 
ty. .It, jA function of both the spring stiffness S and the 
free length Hf. It is given by (21 : 

Pb = .S Hf Kb 

where Kb  is a buckling factor function of the ratio Hf/D. In 
a form suitable to the computer aided design, Kb  is present-
ed as a third order polynomial using curve fitting techniq-
ues. That is: 

( 14) 

( 9 ) 

1 

L.. 
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Kb 
= 0.73i + 0.01(Hf/D) - 0.0054(Hf/D)

2- 0.001(H
f/D)

3
(10) 

h) Spring Material 

Helical springs are usually manufactured using any of the mat- 
erials: music wire, high carbon steel wire, oil tempered high. 

.carbon steel wire and/or alloy steel. The study presented in 
'this paper covers only helical springs manufactured from oil 
tempered Aigh carbon steel. It has a modulus of rigidity of 

:8.3 x 1010N/m2. 

i) Allowable Shear Stress 

The ultimate tensile strength of the spring material decreas-
es as the wire diameter increases [1] . It varies from 

:2698.0 to 1520.5 MN/m2for a wire diameter changing from 0.5 
to 10 mm respectively( 1]. 

The allowable (design) shear stress; is half the ultimate 
tensile strength of the spring material[ 1] . Therefore, the 
maximum design stress from the above analysis is 1050 MN/m2., 

3. DESIGN VARIABLES 

From the previous analysis we see that the main variables 
governing the operation of the spring are: 

a) Wire diameter, d 
b) Mean coil diameter, D 

and c) Number of active coils, n 
The variables are subjected to an inequality constraints in 
the form: 

g1  x1Z hi  

where xi  are the design variables and gi  and hi are the lower. and upper limits respectively. 

4. OBJECTIVE FUNCTION 

The objective function defines the main goal of the optimiza-
tion process. For helical springs, the objective function 
may be the weight(to be minimum) [ 4,5] and/or the modulus of 
resilience(to be maximum) [6] . 

Because springs can be considered as energy accumulators, 
the strain energy stored in a spring under certain load is 
important. On the other hand, from economical point of view 
it is desirable to reduce the volume of the spring. Therefo-
re, we adopt the modulus of resilience given by eq.(5) as an 
objective function for the optimal design problem in hand(to 
be maximum). 

L.. 
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5. FUNCTIONAL CONSTRAINTS 

The design problem of the helical spring is subjected to not 
only the variables constraints' given by eq.(11), but also an-
other functional constraints. The functional constraints rep-
resent extra conditions to be satisfied beside the objective 

!function described in the previous section. 

The functional constraints used in the computer aided design 
of the helical compression springs are as follows: 

a) Volume Constraint: 

•
To control the volume of the spring in order to reduce its 
cost, it is essential to define an upper limit for its volume:: 

b) Shear Stress Constraint: 

:Reducing the volume of the spring as in (a) above under the 
effect of the same load results in increasing the stress in 
the spring. Therefore, it is essential to constrain the str- • 

:ess so that for any applied load and optimally selected dim-
ensions, it is less than the allowable shear stress given in 
section 1. 

c) Stability Constraint: 

:The designed compression spring will buckle if its dimensions 
and number of coils result in a buckling load less than the 
applied load. Therefore, to achieve spring stability during 

.operation, a stability constraint should exist. That is: 

The applied load <the buckling load 

d) Length Constraint: 

:Thefree length of the spring is function of both the load 	• 
and the dimensions of the spring as indicated by eq.(8). This 
length is indirectly constrained by the stability constraint. 

:However, the springs manufactured according to the internati-i 
onal standards such as DIN and BS have definite lengths tl]. 
In order to compare the optimally designed springs and the 

:standard ones, the free length of the spring is constrained 
to have the values assigned by the German standard: DIN 2098 : 

[ 1] 

6. STEADY STATE OPTIMIZATION OF CONSTRAINED 
PROBLEMS 

: The Optimal design of helical springs is a steady state pro- 
blem where several optimization techniques may be used[71. 

: However, the available techniques are mainly for unconstrain-
' ed optimization problems such as direct search methods(e.g. 
Rosenbrock [8] and Powell[ 9] )and. gradient methods (e.g. 
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Fletcher and Reeves [10] ). The helical spring problem is a 
constrained one, where both the design variables and some ot-
ther functions are constrained. To use the available optimiz-; 
ation techniques, the constrained problem has to be transfor-
med to an apparently unconstrained one through using variabl-
es transformation [11] and modifying the objective function 
[ 12] as follows: 

a) Variables Transformation: 

The inequality constraints of the design variables xi  take 
the form given by eq.(11). Box [11] suggested using what is 
called variables transformation where the constrained design 
variables xi  are replaced with unconstrained ones yi  using 
the equation: 

xi  = gi  + (hi  - gi) sin2  yi 	(12) 

where gi  and hi  are the limits of x.. 

b) Modifying The Objective Function: 

The functional constraints presented in section 5 are subje-
cted to lower and upper limits so that: 

H. 

where 	G. are the functional constraints, lower limits 
and upp6r limits respectively. 

The functional constraints can be eliminated by using a rew 
modified objective function P(x) related to the original ob-
jective function F(x) through the equation [12] : 

 NT() 	F(R) +
=1 77  S1 [4, Cj(x) 2 

	
(13) 

where M is the number of functional constraints, K. are pen-
alty constants of small values and A C A  (X) are the difference 
between the functional constraints C,'(X) and the limits C. 
and H. as follows: 

LIC.(R) = G. - C.(X) 	if C.(X)< G. 
'` 

and /or AC.(x) = C.(x)-  - H. 	if C.(X)> H. 

The parameter S, is a unit step function of a value depends 
ofithevahleof— C".W.  That is: 

J .  

S1 1 
and/or 	S1 = 0 

if C• (x) > 0 
if 	(X) 	0 

The optimization technique used in the present work is 
• Powell's method [93 which is a direct search method that 

does not require any derivatives of the objective function. 
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It is suitable for linear or nonlinear, quadratic or nonquadratic optimiza-
ti ion problems. 

The optimization methodlthe variables transformation and the modification 
of the objective function have been programed in FORTRAN language. One 
master program and five subroutines have been used to optimize any constr- 
ained problem. 

The optimization technique and computer programs were tested using well 
known problems such as the post office parcel[ 11] . On the other hand, 
the technique was used successfully in the evaluation of the steady state 
optimal control variables of the plastics extrusion process[ 13] . 

7. OPTIMAL DESIGN VARIABLES OF HELICAL COMPRESSION SPRINGS 

The present study covers an operating static load range from 182.5 to 
2080 N. The objective function (section 4), functional constraints 
(section 5) and optimization technique (section 6) have been used to defi-
ne the optimal spring variables for each static load. 

The free length Hf  of the spring is constrained to have specific values 
depending on the load P (according to DIN 2098, 1968). For example: 

- At P = 623 N, Ht  = 120, 180, 275, 395, 585 mm. 
- At P = 2080 N, 	Hf  - 202 5 315, 315 475 5 690, 690 1015 nun. -  

The parameters of the optimally designed springs are presented in Tables 
1 and 2 for the loads 623 and 2080 N respectively. The parameters incl-
ude the wire dkmeter, the mean coil diameter, the number of active coils, 
the spring deflection, the modulus of resilience (objective function), 
the shear stress, buckling load, mass saving and the spring stiffness 
(useful in vibration isolation problems). 

8. COMPARISON BETWEEN OPTIMAL AND STANDARD SPRINGS 

To examine the effectiveness and usefulness of the optimally designed 

spOngs 	Lie results are compared with the DIN standard 2098 issued in 
1968 and titled: "Helical Spring Made of Round Wire". 

The comparison covers static loads from 182.5 to 2080 N and free length 
from 71.5 to 1015 mm(parameters of the optimal and standard springs are 
compared in Tables 1 and 2)• 

9. DISCUSSIONS 

The results presented in this paper is only a sample of the results of 
a complete program of .an M.Sc. research work carried out in the Mechani-
cal Design Department, Cairo University. It extends to cover springs 
havingufto17.5 active coils as indicated in Tables 1 and 2 and free len-
gth up to 1015 mm at 2080 N load. 

The difference between the optimal and standard wire diameter and mean 
coil diameter increases with increased load (Tables 1 and 2). It starts 
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from 0„2 and 2.2 mm at 182.5 N load to 0.67 and 6.1 nun at 2080 N load 
for the wire diameter and the mean coil diameter respectively. The num-
ber of active coils has almost a constant difference of 0.5 independent of 
the load. 

The objective function which is the modulus of resilience of the designed 
spring decreases as load increases (Tables 1 and 2). There is a remarkable 
difference between the optimal and standard modulus of resilience at small 
loads (typically, the increase is 36% at 182.5 N load). 

As the operating load increases, the volume of the spring increases (Tables 
1 and 2). The difference between optimal and standard spring volumes incr-
eases with increased load. It starts from 0.67 cm at 182.5 N load to 69.0 
cm3  at 2080 N load. The last difference repesents about 10.9% saving in 
volume. Money wise, this saving in volume represents raw material saving 
which is illustrated in Tables 1 and 2 . The significance of Tables 1 
and 2 appears from the following example: Suppose that a factory is int-
ended to produce 10000 spring a year from the size corresponding to 2080 N 
load. The material saving is therefore about 5.4 tons of spring material 
which may lead to reducing the cost of the spring for certain profits. 

The shear stress in the optimally designed springs is more than the corre-
sponding value in the standard springs (Tables 1 and 2). The maximum dif-
ference is about 20%. However, the shear stress in the optimally designed 
springs corresponding to any load is less than the allowable shear stress 
(section 2). 

All the optimally desiptd springs are safe from point of view of buckling 
(stability constraint). For example, the buckling load corresponding to 
an applied load of 2080 N is 2192 N (using eq.(9)). 

The range of springs presented in this paper covers a stiffness range from 
3.4 KN/m at 182.5 N load to 14.7 KN/m at 2080 N load as illustrated in 
Tables 1 and 2 . 
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11. NOMENCLATURE 

n = Number of active coils 
P = Static load 
P(x)=Modified objective func- 

tion 
P = Buckling load 
Qb= Number of unactive number 

of coils 
S = Spring stiffness 
S1  = Unit step function 
V1= Spring volume 
x. = Constrained design 
1 variables 

y.
1 
 = Unconstrained design 

variables 
6 = Spring deflection 
bC(x)= Difference between a 

functional constraint 
and its limit 

p = Strain energy 
= Shear stress 

All units belong to the "SI" system of units. 
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Table 1 Collipzu,isun between DIN 2098 Standa.t‘I and optimal 
tor a load 623 N 
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Helical Compression Springs 
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Table 1 Comparison between DIN 2018 Standax‘.1 and optimal ,apring 
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9.33 114.9 3.0 704 141. 3 1.1744 1361.4 2197 127910 

10.0 125 5.5 315 220 0.464 2,, 	414.4 -12.9 2., 2080 231314.9 20., 162.2  9.27 
9.45 119.7 5.0 115 224.8 1.2 614.6 2138 184140 

113.0 125 4.5 475 118 1.069 -16 	1  /17.d ,6  , 7080 623841.4 16.5 417.6 6.09 
4.58 119.2 8.0 475 741.4 1.742 401.59 2117.1 270310 

.10.0 ..12.s 12.5 690 497 1.174 -1., /17.6 	i 6  2080 ,2.471.1.13.:2.1 I. 	5  5,2.2 4.17 
9.64 1111.0 12.0 690 498.0 1.244 14).7 2107 362190 

.10.0 in 18.5 1015 736 1.192 6.21  /37.d „.5  2080 632271.5 10.9 636.4 2.82 
122.2 17.5 739 1.491 771.2 2083 563150 9.8 1015 

o DIN value 
• Optimal value U1N 	- Optimal  Dee% 	 x 100 

DIN 

0 

0 

0 

• 

0 

F;0. ) Configuration and Main Dimensions of 

Helical Compression Springs 
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