

MILITARY TECHNTCAL COLLEGR
CATRO - EGYPP

OWMTMUM DTMERSSORS FOW AN AXTAL
 TORBOAACHTNE STAGTH

ABSTRAC

 the rotor arnd statox or the machitme arad by assuming that

INTRODUCTION

 rotox and a

 4t tion
 nnct tre woiactwy trianglos bavo beors ostumatad analyticaliy Ho vave tho maximum kudzaulic ofiociency of the strage Tho dosien calculations gre asmmed fox woxo whixl volocity at salet and outlat at the stwe。

SUNDAMESNTAR RELUATIONS
For two dimonstoma flow, the momemtum egumthons for the

[^0] Kobry Ku xobor ocatro.

$C A-6$	60

fhere P to the fiuid mase density, $\overline{\text { w }}$ is the xelative velocityo c 1s the absolute veloctty, p is the pressure, \bar{S} is the flow area, and F tis the Thutd force. The volume flow rate Q is.

$$
Q=S c_{a}=\pi \cdot\left(\mathbb{R}_{0}^{2}-\mathbb{R}_{k}^{2}\right) c_{a}
$$

whese ca fe the axial flow wolactiy, and anmum tobeometant
 : wotor lulat ard outlot, while 3 is for the stator outlot. Tho hub and wuter dimetore are R_{h} arad $R_{0}{ }^{\circ}$
Asmuming thet tho whix componant $\mathbb{C}_{43}=0$, and by using the geomestricai malactozn givan in Fig. g. qquation (1) may be:

$$
\begin{align*}
& P_{2} \infty P_{1}=\rho c_{2}^{2} \tan \alpha_{2} \cdot \tan \left(\beta_{m}-E_{1}\right) \\
& P_{3}=P_{2}=P c_{2}^{2} \tan \alpha_{2} \cdot \tan \left(\beta_{m}-\varepsilon_{2}\right) \tag{2}
\end{align*}
$$

where EIs the flide angla, [4]. Tho relations botwoon the diricersm myies of the stage may be given a, Fig. 2,

$$
\begin{align*}
& \tan \beta_{5 n}=\left(\tan \beta_{1} \tan \beta_{2}\right) / 2 \\
& \tan \alpha_{\tan }=\left(\tan \alpha_{2}+\tan \alpha_{3}\right) / 2 \\
& \tan \beta_{1}=\tan \beta_{1}+\tan \beta_{2} \tag{3}
\end{align*}
$$

Fie. 1. Aximi Pump Stage

$C A-6$	6.

Fトに゙ゥ A．M．E．CONFERENCE 29－31 May 1984，Cairo

Fig．2．Volocity Trimnelios at Inlot and Qutlat of Rotox ard Stator

$C A-6$	62

Γ

$$
\begin{equation*}
H=\left(\mathrm{H}_{3} \times \mathrm{p}_{\mathrm{j}}\right) / f \mathrm{E} \tag{4}
\end{equation*}
$$

: Bad by waixu fer \% and 3.

MATM DTMERSITRES OF AN AXIAL FEOW PUMP
Sha nverage pumdre hoad H 1 ox man axtal pump etaga may bo

m the flow velocity cas constaritor all radil,
 pumpthe facd Ho and honce the gitide angie E,

Themp tha miszeme boad ki is.
 $\bar{\alpha}_{2}$, and by usgne Eq. (5). the wwerage head is,

$$
\begin{equation*}
M=\frac{c^{2}}{\omega_{5}} \tan \overline{\alpha_{6}} 2\left(t \sin \left(\bar{\beta}_{m} \operatorname{\varepsilon _{p}}\right)+\tan \left(\bar{\alpha} m-\varepsilon_{2}\right)\right) \tag{7}
\end{equation*}
$$

which can bow whituran g

$$
\begin{equation*}
\mathbb{H}=\text { 焽 } \cos ^{2} \tag{8}
\end{equation*}
$$

 mad as: [3]

$$
\begin{equation*}
\Omega \quad \frac{\omega) \sqrt{8}}{(8 X)^{3 / 4}} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\hat{n}=\frac{R(\mathrm{sH})^{1 / 4}}{\sqrt{Q}} \tag{10}
\end{equation*}
$$

Subetututhre tor the flow wate Q. sud for the arlat voloonty

$$
\begin{equation*}
c_{a}=\omega \bar{R} / \operatorname{mara}_{\beta} \bar{\beta} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
y=\left(\mathbb{H}^{3} \operatorname{as} \Omega^{2}\right) /\left(\operatorname{H}_{1}^{2}+\Omega^{-2}\right) \tag{12}
\end{equation*}
$$

Γ

$$
\begin{equation*}
K 1=4 \pi \tan ^{2} \beta_{1} / K^{1.5} \tag{13}
\end{equation*}
$$

Similarly the specific s:adlus ray be given an

$$
\begin{equation*}
n=K 2\left(\mathbb{K} 1+\Omega^{2}\right) / 2 \tag{14}
\end{equation*}
$$

where $K 2=K^{1 / 4} / K 1 \sqrt{\pi}$
Equation (12) gives the relation betwoen the diameter ratio T and the shape number Ω. The relativo volocity angle β_{1} can :be given ms. (cf. Fig. 2).

$$
\begin{equation*}
\tan \beta_{1}=\tan \beta_{m}+\tan \alpha_{m} \tag{16}
\end{equation*}
$$

CHOICE OF THE ANGLES $\alpha m, \beta m$
From the previous equations, it ie obvious that the dianeter ratio T as well as the outer xadious \mathbb{R}_{o} may be estime lated if the angles $\alpha \mathrm{m}$, and β_{m} are known. ${ }^{\text {OT The optimum }}$ value of β may be colind by amsuming a reasonable value of α_{m} (to have maximum hydraulic effeciency η_{n}), and by requting the propeller hydraulic effeciency to the vane angles.

The hydraulic offeciency ? da dofined as the xatio betwoon the actual pumplug head, and the theoretical. hoad of an ideal fluid,
$\eta_{\mathrm{h}}=\frac{\tan \left(\beta_{m}-\varepsilon_{1}\right)+\tan \left(\alpha_{\mathrm{m}}-\varepsilon_{2}\right)}{\tan \beta_{\mathrm{m}}+\tan \alpha_{\mathrm{m}}}$
By neglecting the effect of the drag, and hence the angles ε_{1} and ε_{2}, the condition for maximum effeciency is,
$\partial 7 / \partial \bar{\beta}_{m}=0$

$$
\begin{equation*}
=\tan ^{2} \beta_{m}-\tan ^{2} \alpha_{m}+2 \tan \alpha_{m} \cdot \tan \beta_{n}-2 \tag{17}
\end{equation*}
$$

and from which the choicn of amglea α and β m 1 meduced to the choice of α. The angle α is Waully monen in the :order of 45° to hisve the optimu hydreulio erectency.

DESIGN PROCEDURE

!
For an axial pump, of glver flow rate Q, hoad H and speed n, the main dimensions may be ostimed to have waximum hyd- ; :raulic offeciency 7_{h} : The following procedure is used,

1) Calculate the shape number $\Omega, \mathbb{E q},(9)$.
2) Choose the angle a to be in the order of 45°, : to obtain the bosthydxentic ofeciency.

```
r_ ................
3) Fox givisp \(x\) p tho spectite xadius - ~ wo
```



``` eqo \((12\) and 13\()\). Honce the radil \(R_{n}\) and \(R_{0}\) are
calculated.
4) The vane welo \(\beta_{\text {m }}\) is calculated by using eq. (17).
5) By using Eq. (2 and 3), whe angles, \(\beta_{1}, \beta_{2}\) mad \(\alpha_{2}\); can be calculatod.
6) Now, the valoctity trisugles can be drawn wnd the vanes shape can be chosen, [3].
```


CONCLUSTONS

The main dimenstons of axa wial pump stage, (rotor and stator)
 prapping head and the xadtus of the rotor, a function of the punp flow x'tw hoad and spoed. Only the statox mean vane angle α has to be assumed, on base of maxtmistug the hydraulic arfocremey the latger the tangent of the angle, the : best affachoncy is obtainod. Dy knowing the mein radil and the Felocity tringios, the dosign procedure le completed by the choice of the vanes ghapes and numberia.

FEMERENCES

1. Rey. Re Mathode Generale de Dotermixmetor dun Etage
 Untversite Piexcet Maxio. Paxim VI, (1981)。
2. Csandy. GoT. Theory of Turbomachines ", Me Graw Hill,
3. Barchkat. A. Nouralle Methode de Construction des Pomem pes Axialosm Etude des Debits Partiols et de la Cavitm attom ". These de Ph.D., E.N.S.A.Mo, Paris, (1981).
4. Steparofe, A.J. Cenmxfugal axd Axial Pumpe n Mc Graw H111. (1962).

[^0]:

