$C A-8$	73

"ON THE OSCTLLATIONS OF A BOUNDED LIQUID WIMH

a the dependeny disconttyuous boundaby.

by H.M. SAFWAT

ABSTRACT : The stability of the free surface of an inviscid liquid partially filling a rigid rectangular container with an outlet at its base is investigated. The container executes vertical vibrations in the direction of the gravitational field. The initial-boundary value problem has been formulated and solved. The wave height and pressure have been determined. By specializing the obtained results to special cases, it has been found that they agree favourably with previous investigations.

I. INTRODUCTION.

The importance of "Liquid Slosh" phenomenon in many engineering systems is well recognized and extensive investigations of this phenomenon have been conducted and reported. Much of the Iiterature deaIing with this phenomenon up to the Year 1966 has been summarized in Abramson's monograph (1) . For later studies Miles (2), Hunt et al (3) and Nash et al (4) © have studied the lateral slosh problem in cylindrical vessels.
: Assoc. Prof., Dept. of Engrg. Mathematics, Faculty of Engrg., Univeraity of Alexandria, EI-Hadhrah, Alexandria, Egypt .

CA-8	74

Further on for the longitudinal slosh in the same vessels, it has been tackied by Parlovskii (5) and Khandelwal et al (6).
: Despite these interesting studies, Iittle is known about the problem of the dynamic behaviour of a liquid in a container : wher the container has an outlet at its base and is subjected to velocity fluctuation at the outlet due to a purp pressure.
: To the writer"s knowledge, the only works on this problem are Buhta and Yeh (7) and Henrici et al (8). The first authors : hawe treated the case of axisymmetric slosh of an inviscid Iiquid in a stationary circular cylindrical container due to :
© the outlet velocity fluctuations at the base of the container. The second authors have studied the determination of the slosh:
: Frequencies of an ideal liquid contained in a half-space with a circular or strip-like aperture.

The present paper giwes an answer to the problem of the dynamic behaviour of a perfect liquid with a free surface contained in a. rectangular vessel with an outlet at its base. The vessel is: vibrating in a vertical direction while the outlet there exists velocity fluctuations. Wathematically, this problem reduces to an initial-boundary walue problem with a time dependent discontinuous boundary condition. Naturally, it is expected to be a generalized problem compared with the previous ones, and the object of the present paper is to provide step to: wards filling this gap of knowledge in this particular practical hydraulic systems.

2. FORMILATION.

Consider a finite domain D of a liquid bounded by a rigid rectangular container whose dimensions are $2 a$ and $2 b$. The : still Ievel of the Iiquid in the container is at a height h : from its base. There exists at the base a square outlet whose: sides is 2ε and is connected with a pump where it brings : velocity disturbance at the outlet.

If the container executes a vertical oscillation defined by $\xi=\xi_{0} \cos \omega t$, where ξ_{0} is its amplitude and ω is the frequexcy, then a motion in the Ifquid is generated. Assuming that the Iiguid is a perfect on and by adopting a frame of reference B fixed in the container as shown in the annexed figure, one can describe this gemerated motion of the iquid by following the eulerian representation - for a lagrangian
: description cf. Ilgomov (9) - Supposing that the capillary contact effects between the Ilquid and the container walls
: are negligible and che motion stants from rests then there exists a single-valued relatite velocity potential function

- grad ρ. At any instant t, the liquid motion must satisfy the continuity condition, ion., the velocity potential satislies LaPlace"s equation

$$
\begin{equation*}
\nabla^{2} \phi=\frac{\partial^{2} \rho}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}} \quad \forall P(x, y, z) \in D \tag{2.1}
\end{equation*}
$$

The boundary ∂D of the liquid is composed of

$$
\begin{equation*}
\partial D=\partial D_{S} U_{\partial D_{0}} U_{\partial D_{F}} \tag{2.2}
\end{equation*}
$$

where ∂D_{S} denotes the boundary of the liquid in contact with the rigid walls and base of the container, ∂D_{0} is the outlet boundary and ∂D_{F} is the free surface boundary.

Since the container solid boundaries are impermeable and if there is no separation occurs in ∂D_{S}, then the relative normal component of the liquid velocity vector vanishes on ∂D_{S}, which implies

$$
\begin{array}{ll}
\frac{\partial \phi}{\partial x}=0 & \forall P(\pm a, y, z) \\
\frac{\partial \phi}{\partial y}=0 & \forall P(x, \pm b, z) \\
\frac{\partial \phi}{\partial z}=0 & \forall P(x, y,-h) \\
\text { where } & \varepsilon \leqslant|x| \leqslant a
\end{array} \quad \text { б } \begin{array}{ll}
& \forall \leqslant|y| \leqslant b . \tag{2.3c}
\end{array}
$$

At the outlet boundary ∂D_{0},
: $\frac{\partial \phi}{\partial z}=W(x, y) \dot{\zeta}(t)$

$$
\begin{equation*}
\forall \quad P(x, y,-h) \tag{2.4}
\end{equation*}
$$

where
and $-W(x, y) \dot{\zeta}(t)$ is the distribution of the velocity fluetuation at the outlet relative to R.
It is assumed that the amplitude of $\dot{\zeta}$ is small such that the amount of liquid flowing in and out of the container can be: neglected as compared with the total liquid mass in the contanner.

For the free surface boundary ∂D_{F}, the dynamic boundary
: condition is based entirely on Bernoulli's law. Since, the container moves with a central vertical acceleration $-\xi_{0} \omega^{2}$
$\cos \omega t$, one can consider the liquid motion relative to R as if R is at rest and the gravitational acceleration

$\mathrm{CA}-8$	77

takes the value $\left(g-\xi_{0} \omega^{2} \cos \omega t\right)$. Thus, by denoting p as the constant pressure at ∂D_{F} and ρ is the density of the liqLid, Bernoulli's law takes the form [cf. Wehausen and Lactone: $:(10)]_{0}$

$$
\begin{equation*}
\frac{1}{2}|\operatorname{srad} \varphi|^{2}-\frac{\partial \phi}{\partial t}+\frac{p}{p}+\left(g-\xi_{0} \omega^{2} \cos \omega t\right) z=f(t) \tag{2.5a}
\end{equation*}
$$

: where f depends only on the time t and may be put equal to zero.
: If the equation of liquid free surface is $z=\eta(x, y ; t)$, then an element of liquid on ∂D_{F} must move so that its velocity component normal to $\partial D_{\text {F }}$ is the same as the normal velocity of ∂D_{F} itself. Hence, the liquid elevation η mast: satisfy the condition [cf. Stoker (II), Chap. 2]

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}=\frac{\partial p}{\partial x} \frac{\partial \eta}{\partial x}+\frac{\partial \phi}{\partial y} \frac{\partial \eta}{\partial y}-\frac{\partial \phi}{\partial z} \tag{2.5b}
\end{equation*}
$$

Eq. (2.5b) implies that no spraying or tumbling-over occurs
: from the liquid.

In order to obtain a tractable mathematical problem, the boundary conditions (2.5) have to be linearized. This cant be : achieved by expanding all dependent variables in a power series in terms of a fictitious parameter μ about the quiescent state [cf. Nayfeh (12), p.24]. Assuming that these expansions can be differentiated term by term, by virtue of smallness : of deviations and their derivatives, the lowest order of Eqs. (2.5) are
$\begin{aligned} \eta & =\frac{\frac{\partial t}{\partial t}}{g-\xi_{0} \omega^{2} \cos \omega t} & \quad & \forall P(x, y, 0) \\ \frac{\partial \eta}{\partial t} & =-\frac{\partial \phi}{\partial z} & \quad & \forall P(x, y, 0)\end{aligned}$
Thus , the posed problem is reduced to an initial-boundary
: value problem defined by Eqs. (2.1) , (2.3) , (2.4) \& (2.6) :

3. SOLUTION.

A solution of $\mathrm{Eq} .(2.1)$ that satisfies Eqs. (2.3) is given by
$\dot{p}(x, y, z ; t)=\dot{p}_{0} z+\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y x$
$\left(\dot{q}_{m n} \operatorname{Cosh} r_{m n} z+\dot{p}_{m n} \operatorname{Sinh} r_{m n} z\right)$

$\mathrm{CA}-8$	78

Here, $q_{m n} p_{m n}$ and p_{0} are generalized coordinates. They are functions of time and the dot denotes as usual time differentiation. The index $r_{m n}$ is

$$
\begin{equation*}
x_{\operatorname{man}}=\pi\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)^{1 / 2} \tag{3.2}
\end{equation*}
$$

To satisfy Eq. (2.4), the function $W(x, y)$ is expanded
is a double Fourier"s series in the form

$$
\begin{equation*}
W(x, y)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{b n} \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y \tag{3.3}
\end{equation*}
$$

where the spectrum coefficients $a_{\text {gan }}$ are evaluated by

$$
a_{m n}=\frac{\varepsilon_{m} \varepsilon_{n}}{\varepsilon^{2}} \int_{0}^{\varepsilon} \int_{0}^{\varepsilon} \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y W(x, y) d x d y \text { (3.4) }
$$

and

$$
\begin{align*}
\varepsilon_{m}=\varepsilon_{n} & =1 & & \text { for } n-1 m=0 \tag{3.5}\\
& =2 & & \text { for } n=m=1,2,3
\end{align*}
$$

Substituting Eq. (3.1) into Eq. (2.4) and making use of Sqs. $(3.3-5)$ lead to
and

$$
\begin{equation*}
\dot{p}_{0}(t)=a_{00} \dot{b}(t) \tag{3.6a}
\end{equation*}
$$

$$
\begin{align*}
& \dot{q}_{\operatorname{man}}(t) \operatorname{Sinh}\left(x_{\operatorname{man}} h\right)-\dot{p}_{\operatorname{mn}}(t) \operatorname{Cosh}\left(r_{\operatorname{mn}} h\right) \\
& =-\frac{a_{m n}}{r_{m n}} \dot{\varphi}_{h}(t) \tag{3.6b}
\end{align*}
$$

Integrating Eqs. (3. Gas b) with respect to time and taking the integration constants to be zero, yield

$$
\begin{aligned}
& p_{0}=a_{00} \zeta(t) \\
& p_{\operatorname{xan}}=\operatorname{Tanh}\left(x_{\operatorname{man}} h\right) \cdot q_{m n} t+\frac{a_{m n}}{r_{m n}} \operatorname{sech}\left(x_{\operatorname{mn}} h\right) \zeta(t)
\end{aligned}
$$

Also, substituting Eq. (3.I) into Eq. (2.6b), integrating, and also putting the integration constant equal to zero give
$\eta\left(x_{0} y ; t\right)=-p_{0}-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} r_{m n} \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y P_{m n}(t)$
Substituting Eqs. (3.I \& 8) into Eq. (2.6a) Leads to

$$
\begin{equation*}
\ddot{q}_{m n}+r_{m n}\left(g-\xi_{0} \omega^{2} \cos \omega t\right) p_{m n}=0 \tag{3.9}
\end{equation*}
$$

Eliminating $p_{m a}$ between Eqs. (3.7b and 3.2) y brings the differential equation that determines the generalized coondinates $q_{m m}$, namely.

CA-8	79

$$
\begin{align*}
& \ddot{q}_{m n}+r_{m n} \operatorname{Tanh}\left(r_{m n} h\right)\left(g-\xi_{0} \omega^{2} \cos \omega t\right) q_{m n} \\
& =-a_{m n}\left(g-\xi_{0} \omega^{2} \cos \omega t\right) \operatorname{Sech}\left(r_{m n} h\right) \zeta \tag{3.10}
\end{align*}
$$

Considering the special case $m=n=0, E q \cdot(3.10)$ reduce to

$$
\begin{equation*}
\ddot{q}_{00}=-\theta_{00}\left(g-\xi_{0} \omega^{2} \cos \omega t\right) \tau_{0}=\Theta_{0}(t) \tag{3.11}
\end{equation*}
$$

ny integrating Eiq.(3.11) twice, this gives

$$
\begin{equation*}
q_{00}(t)=A+U(t)+[B H \nabla(t)] t \tag{3.12}
\end{equation*}
$$

where A and B are constants of integration to be determined from the initial state of motion. The functions $U(t)$ and Pl) are given by
and

$$
\begin{align*}
& U y(t)=-\int t 0_{0}(t) d t \tag{3.13a}\\
& V(t)=\int U_{0}(t) d t \tag{3.13b}
\end{align*}
$$

For the general case $m_{,} n \neq 0$, by changing to the dimensionless time defined by $\tau=\omega / 2 t, E q .(3.10)$ can be written in the form

$$
\begin{align*}
q_{m n}^{\prime \prime}+ & (\alpha-2 \beta \cos 2 \tau) q_{m n}= \\
& 4 a_{m n} \operatorname{Sech}\left(r_{m n} n\right) \cdot\left(\xi_{0} \cos 2 \tau-\frac{g}{\omega^{2}}\right) \zeta \tag{3.14}
\end{align*}
$$

where

$$
\begin{align*}
& \alpha=\frac{4 g}{\omega^{2}} r_{m n} \operatorname{Tanh}\left(r_{m n} h\right) \tag{3.15a}\\
& \beta=2 r_{m n} \xi_{0} \operatorname{Tanh}\left(r_{m n} h\right)
\end{align*}
$$

and the prime denotes differentiation with respect to the dimensionless time.

Eq. (3.14) is a nonhomogeneous Mathieu's equation. The complate solution of this equation is constructed by first determining the solutions of the homogeneous part and added to it the particular solution due to the existence of the right hand side term. Solutions for Mathieu functions have been developed and an extensive literature has been concerned with these solutions [cf. Blanch (I3)].
Approximate solutions of the homogeneous Mathieu"s equation \vdots can be constructed in two cases. Firstly, for the parameter B takes a small value , an approximate solution ... can ... be ...
r
obtained by using a Poincare - type asymptotic expansion [ci. Atherton (14), pp. 13-17], ie..

$$
\begin{equation*}
q_{\operatorname{ran}}\left(\tau_{j \beta}\right)=\sum_{i=0}^{\infty} \beta^{\ell} q_{m \times l}(\tau) \tag{3.16}
\end{equation*}
$$

Substituting $E q_{0}(3.16)$ into the homogeneous part of $8 q$. (3.14); expanding and equating the coefficients of identical powers of β lead to

$$
\begin{equation*}
q_{\mathrm{mno}}^{\prime \prime}+\alpha q_{\mathrm{mno}}=0 \tag{3.17}
\end{equation*}
$$

The solution of $E q \cdot(3.17)$ is

$$
\begin{equation*}
q_{\operatorname{mn} 0}=N \cos \sqrt{\alpha} \tau+N \sin \sqrt{a} \tau \tag{3.18}
\end{equation*}
$$

where M and M are constants.
Also, the explicit first order terms in β suggest that $q_{m n}$: most satisfy the equation

$$
\begin{equation*}
q_{\operatorname{mn} 1}^{\prime \prime}+\alpha q_{\operatorname{mn} 2}=2 \beta \cos 2 \tau q_{\operatorname{mno}} \tag{3.19}
\end{equation*}
$$

Solving for $q_{\text {mn }}$ and combining with $q_{m o n}$, the final sol" : union is

$$
\begin{equation*}
q_{\operatorname{man}}(\tau, \beta)=\mathbb{M} e^{\star}(\tau ; \beta)+N \operatorname{se}^{*}(\tau ; \beta) \tag{3.20}
\end{equation*}
$$

where

$$
\begin{aligned}
& \operatorname{ce}^{\star}(\tau ; \beta)=\cos \sqrt{\alpha} \tau-\frac{\beta}{(2 \sqrt{\alpha}+1)} \cos (\sqrt{\alpha}+1) \tau+\frac{\beta}{(2 \sqrt{\alpha}-1)} \cos (\sqrt{\alpha}-1) \tau \quad(3.21 a) \\
& \text { and } \\
& \operatorname{se}^{\star}(\tau ; \beta)=\sin \sqrt{\alpha} \tau-\frac{\beta}{(2 \sqrt{\alpha}+1)} \sin (\sqrt{\alpha}+1) \tau+\frac{\beta}{(2 \sqrt{\alpha}-1)} \sin (\sqrt{\alpha}-1) \tau \quad(3.21 b)
\end{aligned}
$$

For the case where β is not small, an approximate solus : timon can be found by reducing to Riccati type [cf. McLachlan
(25), $\$ 4.81]$ - Making the substitution

$$
\begin{equation*}
q_{\operatorname{man}}=e^{\sqrt{\alpha} \int^{\tau} w d \tau} \tag{3.22}
\end{equation*}
$$

the homogeneous part of $\mathrm{Eq} \cdot(3.14)$ becomes

$$
\begin{equation*}
\frac{1}{\sqrt{a}} \frac{d w}{d \tau}+w^{2}+p^{2}=0 \tag{3.23}
\end{equation*}
$$

where $\rho^{2}=\left(1-\frac{2 \beta}{\alpha} \cos 2 \tau\right)$
Mclachlan ($15, p .95$) has derived the two solutions of Eq. 3.23 as follows

亡..

$$
\begin{equation*}
\operatorname{ce}^{*}(\tau ; \beta)=(\alpha-2 \beta \cos 2 \tau)^{-\frac{1}{4}} \cos \left[\sqrt{\alpha+2 \beta} E_{1}(\lambda, \tau)\right] \tag{3.25a}
\end{equation*}
$$

$C A-8$	81

and

$$
\begin{equation*}
\operatorname{se}^{*}(\tau, \beta)=(\alpha-2 \beta \cos 2 \tau)^{-\frac{1}{4}} \sin \left[\sqrt{\alpha+2 \beta} E_{1}(\lambda, \tau)\right] \tag{3.25b}
\end{equation*}
$$

The symbol $E_{I}(\lambda, \tau)$ stands for

$$
\begin{equation*}
E_{1}(\lambda, \tau)=E\left(\lambda, \frac{\pi}{2}\right)-E\left(\lambda ; \frac{\pi}{2}-\pi\right) \tag{3.26}
\end{equation*}
$$

where $E(\lambda, \tau)$ is an incomplete elliptic integral of the second kind defined by

$$
\begin{equation*}
E(\lambda, \tau)=\int_{0}^{\frac{T}{t}} \sqrt{1-\lambda^{2} \sin ^{2} \psi} d \psi \tag{3.27}
\end{equation*}
$$

Also, $E\left(\lambda, \frac{\pi}{2}\right)$ is given by

$$
\begin{equation*}
E\left(\lambda, \frac{\pi}{2}\right)=\frac{\pi}{2}\left(1-\frac{\lambda^{2}}{4}-\frac{3}{64} \lambda^{4}-\frac{5}{256} \lambda^{6}-\cdots\right) \tag{3.28}
\end{equation*}
$$

and the modulus λ is given by

$$
\begin{equation*}
\lambda=2\left(\frac{\beta}{\alpha+2 \beta}\right)^{1 / 2} \tag{3.29}
\end{equation*}
$$

For finding the particular solution of Eq. (3.14), the
Wonskian is clearly a constant term. It is given by

$$
\begin{equation*}
W=c e^{*}(0) \operatorname{se}^{\prime A}(0)-\operatorname{se}^{\star}(0) c^{2 \star}(0)=(\alpha-2 \beta)^{-1 / 2} \tag{3.30}
\end{equation*}
$$

Thus, the particular solution is

$$
S_{p}(T ; \beta)=\sqrt{\alpha-2 \beta} \int^{\tau}\left[c^{\star}(T ; \beta) \sec ^{\star}(\tau ; \beta)-c^{*}(\tau ; \beta) \operatorname{se}^{\star}\left(T_{0}, \beta\right)\right] \theta(T) d T(3.3 I)
$$

where

$$
\begin{equation*}
\Theta_{1}(\tau)=4 a_{m n} \operatorname{Sech}\left(r_{m n} h\right)\left(\zeta_{0} \cos 2 \tau-\frac{g}{\omega=}\right) \zeta(\tau) \tag{3.32}
\end{equation*}
$$

Hence, the complete solution of Eq. (3.14) is

$$
\begin{equation*}
q_{\tan }(\tau)=M c e^{\star}(\tau ; \beta)+N s e^{\star}(\tau ; \beta)+S p(\tau ; \beta) \tag{3.33}
\end{equation*}
$$

where M and \mathbb{N} are constants of integration to be determined from the initial conditions.

Having obtained the determination of the $q_{m n}$ coordinates, the substitution for a_{mn} from Eq. (3.33) into Eq. (3.7b) leads to the determination of $p_{m n}$ coordinates.

For the determination of the constants A, B, M and , con aideration is given to the initial state of motion of the liquid. Considering that the liquid motion starts so the it; has zero initial velocity and zero free surface wave height

$C A-8$	82

accompanied by a velocity fluctuation at the outlet of the
: type Git) $\overline{\text { F }}$ Cos $(\omega t+s)$, one can get

$$
\begin{aligned}
& u\left(x_{2 y}, z ; 0\right)=\frac{\pi}{a} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} m \sin \frac{m \pi}{a_{0}} x \cos \frac{n \pi}{b} y x
\end{aligned}
$$

$$
\begin{aligned}
& V(x, y, 2: 0)=\frac{\pi}{b} \sum_{n=0}^{\infty} \sum_{n=c}^{\infty} n \cos \frac{m \pi}{a} x \sin \frac{n \pi}{b} y x \\
& {\left[\begin{array}{l}
\left.q_{m=0}(0) \operatorname{Cosh}\left(r_{m n} z\right)+p_{m n}(0) \operatorname{Sinh}\left(r_{m n} z\right)\right]=0 \quad(3.35)
\end{array}\right.} \\
& w(x, y, z ; 0)-p_{0}(0)-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} r_{m n} \cos \frac{\sin \pi}{a} x \cos \frac{n / t}{b} y_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \eta(x, y ; 0)=-p(0)-\sum_{0}^{\infty} \sum_{m=0}^{\infty} r_{m m} \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y p(0)=0 \cdot(3.37)
\end{aligned}
$$

Thus, Eqs. (3.34m" 37) can be satisfied if and only if

$$
\begin{gather*}
\dot{q}_{\text {nan }}(0)=p_{0} \tag{3.38}\\
a_{00}=0
\end{gather*}
$$

: Hewer, from Eqs. $(3.6 a \& 3.7 a)$, one can get
$a_{00}=0$
Also, From Eq. (3.70)
$\vdots \quad q_{m n}(0)=-\frac{a_{m n}}{r_{m n}} \operatorname{CoSech}\left(r_{m n} h\right) \zeta(0)$
Hence for man $n=0$ from Eqs. $(3.38,39$ and 40) one can
gather that

$$
q_{00}(0)=q_{00}(0)=0
$$

Substituting Eqsa (3.41) into Eq. (3.12) yields that $A=B=0$.
Also, for ma to substituting Eqs. (3.38\&40) into Eq. (3.33) gives

$$
\begin{equation*}
M-\frac{a_{m n}}{r_{m n}} \operatorname{Cosech}\left(r_{m n} h\right) b_{0}(0)-S p(0 ; \beta) \tag{3.42a}
\end{equation*}
$$

(3.42b)
: Thus, the final forms for the generalized coordinates $q_{m n}$ and p_{m} are

$$
q_{m}(\tau)=S p(\tau ; \beta)-\left[\frac{a_{m m}}{r_{m n}} \operatorname{CoSech}\left(r_{m n} h\right) \zeta(0)+\operatorname{Sp}(0 ; \beta)\right] c e^{n}(\tau ; \beta) \quad(3.43)
$$

: and
$p_{\text {mn }}(\tau)=\operatorname{Tanh}\left(r_{m n} h\right) \operatorname{Sp}(\tau, \beta)-\left[\frac{a_{m n}}{r_{m n}} \operatorname{Sech}\left(r_{m, n} h\right) h(0)+\right.$
r

$$
\begin{equation*}
\left.+\operatorname{Tanh}\left(r_{m n} h\right) \operatorname{Sp}(0 ; \beta)\right] \operatorname{ce}(\tau ; \beta)+\frac{a_{m n}}{r_{m n}} \operatorname{Sech}\left(r_{m n} h\right) h_{1}(\tau) . \tag{3.44}
\end{equation*}
$$

4. WAVE CHARACTERISTICS.

From the previous section, it can be easily seen that a part-
: en of standing waves is occurring on the free surface of the liquid as an outcome of the generated motion. For the determination of this pattern, substituting for $p_{m n}$ coors dinates from Eq. (3.44) into Eq. (3.8) give the surface proffile of the liquid

$$
\begin{align*}
\eta(x, y ; t)= & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left\{\left[a_{m n} h_{0} \operatorname{Sech}\left(r_{m n} h\right) \cos \delta+\operatorname{Tanh}\left(r_{m n} h\right) \operatorname{Sp}(0 ; \beta)\right] \times\right. \\
& \operatorname{ce}^{* *}\left(\frac{\omega}{2} t ; \beta\right)-r_{m n} \operatorname{Tanh}\left(r_{m n} h\right) \operatorname{Sp}\left(\frac{\omega}{2} t ; \beta\right)-h_{0} a_{m n} \operatorname{Sech}\left(r_{m n} h\right) \\
& \cos (\omega t+\delta)\} \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y . \tag{4.1}
\end{align*}
$$

: For the determination of the pressure distribution in the liquid, Eq. (2.5a) reduce to

$$
\begin{equation*}
\frac{p}{\rho}=\frac{\partial \phi}{\partial t}-\left(g-\xi_{0} \omega^{2} \cos \omega t\right) z . \tag{4.2}
\end{equation*}
$$

Making use of Eqs. (3.1, 3.7a and 3.39) , $\frac{\partial \varphi}{\partial t}$ is given by

$$
\frac{\partial \phi}{\partial t}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left[\ddot{q}_{m n}(t) \operatorname{Cosh}\left(r_{m n} z\right)+\ddot{p}_{m n} \sinh \left(r_{m n} z\right)\right]_{x}
$$

$$
\cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y
$$

Substituting for q_{m} from. Eq.(3.43) into Eq. (3.14), one : can get
$\ddot{q}_{\operatorname{man}}(t)=\zeta_{0} a_{m n} \operatorname{Sech}\left(r_{m n} h\right)\left(\xi_{0} \omega^{2} \cos \omega t-g\right) \cos (\omega t+\delta)$

$$
\begin{align*}
& -r_{m n} \operatorname{Tanh}\left(r_{m n} h\right)\left(g-\xi_{0} \omega^{2} \cos \omega t\right)\left\{\operatorname{Sp}\left(\frac{\omega}{2} t ; \beta\right)-\left[\frac{a_{m n}}{r_{m n}} \operatorname{Cosech}\left(r_{m n}^{h}\right)\right.\right. \\
& \left.\left.\zeta_{0} \cos \delta+S p(0 ; \beta)\right] c e^{n}\left(\frac{\omega}{2} t ; \beta\right)\right\} \cdot(4.4)
\end{align*}
$$

Also, from Eq. (3.7b), one can obtain

$$
\ddot{p}_{m n}(t)=\operatorname{Tanh}\left(r_{m n} h\right) \cdot \ddot{q}_{m n}(t)-\frac{a_{m n}}{r_{m n}} \omega^{2} \mu_{10} \operatorname{Sech}\left(r_{m n} h\right) \cos (\omega t+\delta) . \quad \text { (4.5) }
$$

Substituting Eqs. $4.4 \& 5$) into Eq. (4.03) and further substitunion into Eq. (4.2) give the pressure distribution

$$
\frac{P}{\rho}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y\left\{\left[\operatorname{Cosh}\left(r_{m n} z\right)+\operatorname{Tanh}\left(r_{m n} h\right) \operatorname{Sinh}\left(r_{m n} z\right)\right] \times\right.
$$

$$
\left[\zeta_{0}^{m} a_{m n} \operatorname{Sech}\left(r_{m n} h\right)\left(\xi_{0} \omega^{2} \cos \omega t-g\right) \cos (\omega t+\delta)-r_{m n} \operatorname{Tanh}\left(r_{m n} h\right)(g-\right.
$$

$$
\left.\xi_{0} \omega^{2} \cos \omega t\right) S_{p}\left(\frac{\omega}{2} t ; \beta\right)-\left(\zeta_{0} \frac{a_{m n}}{r_{m n}} \operatorname{Cosech}\left(r_{m n} h\right) \cos \delta+S_{p}(0 ; \beta)\right)
$$

5. STABILITTY

As shown in the previous section, Eq. (4.1) determines the standing waves pattem of the free water surface due to the container vertical vibrating notion accompanied by the flow: disturbance at the outlet. What is meant here by stability in this contaxt, is that the wave elevation η form should be slways bounded for large values of t, otherwise, it will grow up until it is restrained by nonlinear effects or until the free surface disintegrates. By analyzing Eq. (4.I), it is readily seen that the boundness of η is dependent on the boundness of the two functions $c e^{*}(t ; \beta)$ and se $(t ; \beta)$, since it is obvious that the function $S p(t ; \beta)$ is a combination of them. The parameters governing the problem are α...W The first parameter is mainly defining the frequency of container vibrations while the second is defining the free mode of oscillation multiplied by the amplitude of the container vertical vibrations. In standard works on Mathieu's equation $[c f$. Mchachlan (15)], the parameter α : is determined so as to bring periodic solutions with periodicity of 2π or π in τ. The special values of α are called characteristic numbers. They are tabulated [cf. Blanch (13) , Chap. 20] according to the integral values $r=0, I, 2 \ldots$ For even functions $\left[e . g: c e^{*}(\tau)\right]$ they are labelled s_{r} and for odd functions [e.g: se (τ)] they are labelled \bar{s}_{r}. By : graphing these characteristics versus β; a chart is obtained (Ince Chart.) which shows the regions of stability boundness : and instability of the Functions. Thus,for a general point : (α, β) where $\beta \geqslant 0$ that lies in the region $s_{r}(\beta)$ and $\bar{s}_{r+1}{ }^{(\beta)}$
\vdots the solution is considered stable while if the point (α, β) : lies in the region $s_{p+1}(\beta)$ and $s_{r+1}(\beta)$ the solution is
\vdots unstable. Thus, to investigate the stability for a general smpitude ξ_{0} and frequency ω the parameters (α, β) are
computed from Eq (3.15) respectively; for each mode in turn and then locate it on the chart to determine the region on which it lies. Naturally, this is not a rational app ; ouch but it is a practical one.

To overcome partially this experimental sorting of testing for stability, a proposal is given here in the present paper which is suitable only for small and large values of the parameter β. For moderate values of β it cannot yet work Firstly, for smell values of β ie, β^{3} and higher quantities can be neglected, the characteristics are given by $[c i$. Meimer and Schatice (I6)].

$$
\begin{align*}
& S_{0}=-\frac{1}{2} \beta^{2} \\
& S_{1}=1+\beta-\frac{1}{8} \beta^{2} \quad 6 \quad \bar{S}_{1}=1-\beta-\frac{1}{8} \beta^{2} \tag{5.1}\\
& S_{2}=4+\frac{5}{12} \beta^{2} \quad 6 \quad \bar{S}_{2}=4-\frac{1}{12} \beta^{2} \\
& S_{r}=\bar{S}_{r}=r^{2}+\frac{\beta^{2}}{2\left(r^{2}-1\right)} \quad r \geqslant 3 .
\end{align*}
$$

Thus , the stability regions are given

$$
\begin{align*}
&-\frac{1}{2} \beta^{2}<\alpha \\
& 1+\beta-\frac{1}{8} \beta^{2}<\alpha+\beta-\frac{1}{8} \beta^{2} \tag{5.2}\\
& 4+\frac{5}{12} \beta^{2}<\alpha-\frac{1}{12} \beta^{2} \\
& r^{2}+\frac{\beta^{2}}{2\left(r^{2}-1\right)}<\alpha+\frac{\beta^{2}}{16} \\
& \hline(r+1)^{2}+\frac{\beta^{2}}{2 r(r+2)}
\end{align*}
$$

Secondly, if β is a large quantity which occurs naturally for higher modes of oscillation, the stability is given by the inequality $\quad \alpha<2^{4 r+5} \sqrt{\frac{2}{\pi}} \frac{\beta^{\frac{r}{2}+\frac{3}{4}}}{r!} e^{-4 \sqrt{\beta}}$

6. SPECIAL CASES.

Case Io $E=0$
The case of $\varepsilon=0$ means closing the outlet at the base
r
of the container Thus. Eqs. (3.3) indicate that the coeffi= : cients $a_{\text {m }}$ become zero and from Ens. (3.7) one can obtain

$$
\begin{equation*}
P_{0}(t)=0 \quad{ }^{(} P_{\text {min }}(t)=q_{\text {man }}(t) \operatorname{Tanh}\left(r_{\operatorname{mn}} h\right) \tag{6.1}
\end{equation*}
$$

Also, Eq. (3.10) reduces to

$$
\begin{equation*}
\ddot{q}_{m a n}+r_{m n} \operatorname{Tanh}\left(r_{m n} h\right)\left(g-\tilde{m}_{0} \omega^{2} \cos \omega t\right) q_{m n}=0 \tag{6.2}
\end{equation*}
$$

The solution of $\mathrm{Eq}_{0}(6,2)$ is

$$
\begin{equation*}
q_{\tan }=M \cos \left(\frac{\omega}{2} t ; \beta\right)+N \sec \left(\frac{\omega}{2} t ; \beta\right) \tag{6.3}
\end{equation*}
$$

For determining the constants and N, the liquid is assumed initially at rest and it possesses a certain initial: Free surface shape This last assumption is realistic, for real liquids have always a curvature due to surface tension e:
: From Eqs. $(3.34-36)$ one can get

$$
\begin{equation*}
\dot{q}_{\operatorname{man}}(0)=\dot{p}_{\operatorname{man}}(0)=0 \tag{6.4}
\end{equation*}
$$

and from Eq. (3.8)

$$
\begin{equation*}
\eta_{0}(x, y)=-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} r_{m n} p(0) \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y \tag{6.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{\operatorname{man}}(0)=-\frac{4}{a b r_{m n}} \int_{0}^{a} \int_{0}^{b} \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y q_{0}(x, y) d x d y \tag{6.6}
\end{equation*}
$$

Also from Eq. (6.1)

$$
q_{\min }(0)=-\frac{4 C_{0} T_{a n h}\left(r_{m n h}\right)}{a b_{m} r_{m n}} \int_{0}^{a} \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y z_{0}(x, y) d x d y(6.7)
$$

Substituting for $q_{m n}(0)$ and $0_{\text {mn }}^{0}(0)$ from Figs. $(6.7 \& 4)$ into Eq. (6.3) yields

$$
\begin{align*}
& M=(\alpha-2 \beta)^{\frac{1}{T}} q_{\text {min }}(0) \tag{6.8a}\\
& \mathbb{N}=0
\end{align*}
$$

Hence

and

$$
\begin{equation*}
q_{\operatorname{mnn}}(t)=q_{m n}(0)(\alpha-2 \beta)^{\frac{t}{4}} c e^{*}\left(\frac{\omega}{2} t ; \beta\right) \tag{6.9}
\end{equation*}
$$

$$
\begin{equation*}
p_{\operatorname{mn}}(t)=q_{\min }(0) \operatorname{Tanh}\left(r_{\operatorname{mn}} h\right)(\alpha-2 \beta)^{\frac{1}{4}} \operatorname{ce}\left(\frac{\omega}{2} t ; \beta\right) \tag{6.10}
\end{equation*}
$$

Thus, the free surface starting wave pattern is

$$
L(x, y ; t)=-\sum_{m=0}^{\sum_{n}} \sum_{n=0}^{\infty} r_{m n} \operatorname{ce}\left(\frac{n}{2} t ; \beta\right) \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y .
$$

CA-8	87

and the lIquid pressure distribution is

$$
\begin{aligned}
\frac{p}{p}=-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} & r_{m n} \frac{q(0) \operatorname{Tanh}\left(r_{m n} h\right)(\alpha-2 \beta)^{\frac{1}{4}}\left(g-r_{0} \omega^{2} \cos \omega t\right)}{}\left(\operatorname{Cosh}\left(r_{m n} z\right)+\operatorname{Tanh}\left(r_{m n} h\right) \operatorname{Sinh}\left(r_{m n} z\right)\right] \cos \frac{m \pi}{a} x \\
& \operatorname{Cos} \frac{n \pi}{b} y e^{e}\left(\frac{\omega t}{2} t, \beta\right)-\left(q-\xi_{0} \omega^{2} \cos \omega t\right) z . ~(6.12)
\end{aligned}
$$

The investigation of the stability of the free surface follows the sam route in the general problem.

The results of this section agree exactly with the results of Benjamin and Uriel (17) when neglecting the capillary effects. In this reference, the stability conditions have been discussed on the Ince chart basis.

Case II: Fo an 0
In this particular case, the container is considered stationary and hence the liquid motion is due to flow fluctuat ions at the outlet of the type $\zeta_{0} \cos \omega t$. Thus. Eq. (3.10) becomes

$$
\begin{align*}
& \ddot{q}_{\operatorname{man}}+r_{\operatorname{man}} g \operatorname{Tanh}\left(r_{\operatorname{mos}} h\right) q_{\operatorname{man}}=-8 \zeta_{0} a_{\operatorname{mn}} \operatorname{sech}\left(r_{\operatorname{man}} h\right) \\
& \cos \omega t_{0}
\end{align*}
$$

Writing $\Omega^{2}=g I_{\operatorname{mn}} \operatorname{Tanh}\left(r_{\operatorname{mn}} h\right)$, the solution of Eq. (6.13) Ia

$$
q_{\operatorname{man}}=1 \cos \Omega t+\mathbb{\operatorname { s i n }} \Omega t-\frac{g h_{0}}{\omega^{2}-\Omega^{2}} a_{\operatorname{man}}
$$

$$
\begin{equation*}
\operatorname{Sech}\left(I_{\max } h\right) \cos \omega t \tag{6.14}
\end{equation*}
$$

and for $\omega \neq \Omega$ the solution (6.14) is stable.
Taking the initial state of zero velocity and zero tee
: surface elevation the constants M enc \mathbb{N} are given by

$$
\begin{align*}
& M=\zeta_{0} \frac{a_{m n}}{r_{m n}}\left[\frac{g r_{\operatorname{mn}}}{\omega^{2}-2^{2}} \operatorname{Tanh}\left(r_{m n} h\right)-1\right] \operatorname{CoSech}\left(r_{m n} h\right) \cdot(6.15 a) \\
& (6.15 b) \tag{6.15b}
\end{align*}
$$

From Ens. ($3.7 a \& b$), one can get

$$
\begin{equation*}
p_{0}(t) \cdots 0 \tag{6.26}
\end{equation*}
$$

and
and

$$
\begin{align*}
p_{\operatorname{mn}}(t)= & M \operatorname{Tanh}\left(r_{m n} h\right) \cos \Omega t+\zeta_{0} \frac{a_{m n}}{r_{m n}} \operatorname{Sech}\left(r_{m n} h\right) \\
& {\left[1-\frac{g r_{m n}}{\omega^{2}-5_{2}^{2}} \operatorname{Tanh}\left(r_{m n} h\right)\right] \cos \omega t . \quad(6 .} \tag{6.17}
\end{align*}
$$

Thus, from Eq. 3.8), the wave patterm reduces to

$$
\begin{aligned}
\eta(x, y: t)= & -\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left\{M r_{m n} \operatorname{Tanh}\left(r_{m n} h\right) \cos \Omega t+h_{0} a_{m n} \operatorname{Sech}\left(r_{m n} h\right)\right. \\
& {\left.\left[1-\frac{y}{c^{2}-r_{m n}} \operatorname{Tanh}\left(r_{m n} h\right)\right] \cos w t\right\} \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y \cdot(6.18) }
\end{aligned}
$$

Also, substituting Eqs. ($6.15 \& 17$) into Eqs. ($4.3 \& 2$),
the pressure distribution is given by

$$
\begin{align*}
& \frac{p}{i}=\sum_{m=0}^{\infty} \sum_{m=0}^{\infty} \cos \frac{m \pi}{a} x \cos \frac{n \pi}{b} y\left\{\left[\frac{g h o \omega^{2}}{\omega^{2}-\Omega^{2}} a \operatorname{Sech}\left(r_{m n} h\right)\right.\right. \\
&\left.\quad \cos \omega t-M 2^{2} \cos s z t\right]\left[\cosh \left(r_{m n} z\right)+\operatorname{Tanh}\left(r_{m h} h \operatorname{Sinh}\left(r_{m n}\right)^{2}\right)\right] \\
&\left.-\omega^{2} b_{0} \frac{a_{m n}}{r_{m n}} \operatorname{Sech}\left(r_{m n} h\right) \operatorname{Sinh}\left(r_{m n} z\right) \cos \omega t\right\}-g z \tag{6.19}
\end{align*}
$$

7. CONCLUSIONS.

The slosh problem of a perfect liquid partially filling a vertically vibrating rectangular container with an outlet at its base is formulated and solved. The stability of the occurring wave pattern has been investigated by a rational proposed procedure. For the case where the container is deroid of outlets, the present analysis, is shown to agree with those of Benjamin and Ursell (17).

The present study is directly applicable to the design of many hydraulic moving and stationary systems aubjected to a pump fluctuating pressure. By properly assigning the velocity disturbance function and integrating the pressure on the container walls, the total force exerted on the system due to the Iiquid motion is known.

RKMFERENCGES

2. Abrameon. H.N. "The Dynamic Behaviour of Liquids in Mowing Containers", NASA, OFFICE of Scientific and Technical Information, Washington, D.C., Sp-106, (1966).
3. Miles, J. W. "Nonlinear Surface Waves in Closed Basins" J. of Fluid Meehanies, 75,3,419-448,(1976).
4. Hunt, B_{0} and Priestly, N_{0}, "Seismic Water Waves in a Storage Tank", Bulletin of The Seismological Society or America, 68, 2, 487-499, (I978).
wh, W.A., Shaaban,S.H., and Mouzakis, T., "Response of Liquid Storage Tanks To Seismic Motion", in: Theory of Shells (Eds. Koiter, W.T. and Mikhailov, Goko) , North Holland Publishing Compeny, 393-403, (I980) .
 drical Shell Filled with a Liquid under Condition of Nonlinear Resonances", Soviet Applied Mechanics, I5, 8,709-716. (1980).
5. Khandelwal,R.S., and Nigam,N.C., "Parametric Instabilities of a Liquid Free Surface in a Flexible Container under Vertical Periodic Motion", J. of Sound and Vibration, 74, 2, 243-249, (1981).
6. Buhta, PoGos and YehgGacok. "Liquid Sloshing due to a Time Dependent Discontinuous Boundary", Inter, J. of Mech. Scio, 1, 475-488, (1965).
7. Henrici, Po, Troesch, B.A. and Wuytack, Io, "SIoshing Frequencies For a Half-space with Circular or Stirip Iike Aperture", ZAMP, 21, 285-318,(1970).
8. IIgomov,M. "ON Conditions on The Contact Surface of an Elastic SheII and an Ideal Fluid in The Lagrangian Representation", PMM, 41.3.518-529, (1977).
9. Wehausen, ${ }^{\text {. }}$ W and Laitone, E. V. "Surface Waves" in: Handbuch dex Physik , (Ed. FIüge, S.) , 2 , Springer Verlag, Beriin, $446-778,(1960)$.
10. Stoker.J.J. Water Waves , Interscience Publishers, Ince. New York : (1957).
11. Nayfoh, A. Pexturbation Methods , John Wiley, New York, (1973).
12. Blanch G. "Mathieu Functions", in: Handbook of Mathetical Functions, (Eds. Abramowitz,M., and Stegun J.A.) Nat. Bureau of Stamards, Appl. Math. Series, 55 Washington D.C. $721-750,(1970)$.
13. AthertonsD.P. Stability of Nonlinear Systems, John Wiley New York, (198I).
14. Mclachlan, N.W. Theory and Applications of Mathieu Functions, Dover Publications, New York, (1964).
15. Meixmezi, Jo, and Schäfle, H. Mathieusche Funktionen und Spharaid Funktionen, Springer - Verlag, (1954).
16. Benjamin, To Bo, and UrseII, Fo, "The Stability of The Plane Free Surface of a Liquid in Vertical Periodic Motion", Proc. Roy. Soc. , A225, 505-515, (1954).

CA－8	91

！	NOMENCLATURE
$\therefore \quad A, B$	z integration constants
O	$=$ haix－containex width
b	$=$ halfocontainer length
8	＝domaiss of Iiquid motion
8	＝acceleration of the gravitational field
${ }^{1}$	＝Iiquid depth
易。 ${ }^{\text {N }}$	$\overline{\text { ］}}$ integration constants
酸， 6	$=$ mode numbers
p	a pressure，generalized coordinate
q	＝generalized coordinate
	＝container fixed frame of reference
\pm	－wave number
t	$=$ time
$\mathrm{u}_{8} \mathrm{~V}_{8} \mathrm{w}$	\％Iiquid velocity components
W	－spatial velocity fluctuation function
$: \alpha, \beta$	－parameters
ε	－halfooutlet side
h_{0}	＝amplitude of velocity fluctuation
η	＝wave elevation
：ξ_{0}	＝amplitude of container vibrations
－p	\＃Iiquid density
τ	－dimensionless time
ϕ	＝Iiquid velocity potential
ω	－frequency of container vibrations

$$
D_{2}
$$

$$
0
$$

2

