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WON THE OSCILLATIONS OF A BOUNDED LIQUID WITH 

A. TIME DEPENDENT DISCONTINUOUS BOUNDARY". 

by 	H.M. SAFIIAT 

ABSTRACT : The stability of the free surface of 

an inviscid liquid partially filling a rigid 

rectangular container with an outlet at its base 

is investigated. The container executes vertical 
vibrations in the direction of the gravitational 

field. The initial-bOundary value problem has 

been formulated and solved. The wave height 

and pressure have been determined. By specializ-
ing the obtained results to special cases,it has 

been found that they agree favourably with prev-

ious investigations. 

1. INTRODUCTION. 

The importance of "Liquid Slosh" phenomenon in many engineer-

ing systems is well recognized and extensive investigations 
of this phenomenon have been conducted and reported. Much of 

the literature dealing with this phenomenon up to the Year 

1966 has been summarized in Abramson's monograph (1) . For 

later studies Miles (2) 	Hunt et al (3) and Nash et al (4) 	• 

have studied the lateral slosh problem in cylindrical vessels. 
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Further on t  for the longitudinal slosh in the same vessels, 
it has been tackled by Pavlovskii (5) and Khandelwal et al 6) 

Despite these interesting studies 0  little is known about the 
problem of the dynamic behaviour of a liquid in a container 
wher, the container has an outlet at its base and is subjected 
to velocity fluctuation at the outlet due to a pump pressure. 

To the writers knowledge , the only works on this problem are 
Buhta and Yeh (7) and Heirici et al (8) . The first authors 
have treated the case of axisymmetric slosh of an inviscid 
liquid in a stationary circular cylindrical container due to 

the outlet velocity fluctuations at the base of the container. 
The second authors have studied the determination of the sloshi 
frequencies of an ideal liquid contained in a half-space with 
a circular or strip-like aperture. 

The present paper gives an answer to the problem of the dynamic 
behaviour of a perfect liquid with e free surface contained in 
a rectangular vessel with an outlet at its base. The vessel is 
vibrating in a vertical direction whileathe outlet there exists 
velocity fluctu tions. Mathematically s  this problem reduces 

• to an initial-boundary value problem with a time dependent 
discontinuous boundary condition. Naturally, it is expected 

to be a generalized problem compared with the previous ones s  
and e object of the present paper is to provide a step to- 
wards filling this gap of knowledge in this particular practi-
cal hydraulic systems. 

FORMULATION. 

Consider a finite domain D of a liquid bounded by a rigid 

rectangular container whose dimensions are 2a and 2b . The 
still level of the liquid in the container is at a height h 

from its base. There exists at the base a square outlet whose 
sides is 2E and is connected with a pump where it brings 
velocity disturbance at the outlet. 
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If the container executes a vertical oscillation defined 
'• Coiija& 9  where -4e)  is its amplitude :nd C4.) is the fre- 

quency, then a motion in'the liquid is generated. Assuming 
that the liquid is a peVfect 4one and by adopting a frame of 
reference R fixed inA tht container as shown in the annexed 
figute, one can describe this generated motion of the liquid 
by following the eulerian representation - for a lagrangian 
description cf. Ilgomov (9) - Supposing that the capillary 
contact effects between the 'liquid and the container walls 
are neg-Zigible and!-the otion starts from rest s, then there 
exists , a ▪ singleAralued re/sit-e velocity potential function 
5P(xa„z ,i9 In which the relattiVe- fluidl-velocity is equal to 

• * 	 6.6 



the distribution of the 
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At the outlet boundary 2)1/0  

W(x,Y) 
where 

and -4  (x 	(t) is 

(2.3a) 

(2.39 

(2.3c) 

(2.4) 

velocity flue- 

P (xty,-9 

P 

P (x vitkr  

LA-8 176 1 

- grad 9 . At any instant 
the continuity condition, 
flea LaF2ace*a equation 
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t , the liquid motion must satisfy 
i.e.o  the velocity potential satis- 

y p (x ia,z) e D 	(2.1) 

r 

The boundary 21) of the liquid is composed of 

(2.0 
where Ds  denotes the boundary of the liquid in contact 
with the rigid walls and base of the container, a D0  is the 
outlet boundary and Dr  is the free surface boundary. 

Since the container solid boundaries are impermeable and if 
there is no separation occurs in a  DS  , then the relative 
normal component of the liquid velocity vector vanishes on 

1)S , which implies 

= iaDs  U;Do thaDF  

• 
• 
• 

tuation at the outlet relative to R. 

It is assumed that the amplitude of 4.  is small such that the 
amount of liquid flowing in and out of the container can be : 
neglected as compared with the total liquid mass in the con-
tainer. 

0Dro, the dynamic boundary 

Bernoulli's law. Since,the 
vertical acceleration -401  
liquid motion relative to 

R as if R is at rest and the gravitational acceleration , 

For the free surface boundary 

condition is based entirely on 

container moves with a central 

cos cot one can consider the 
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r 
takes the value (g 40  cot cos wt) 
the constant pressure at 0DF  and 
uid, Bernoulli's law takes the form 

(101. a  
grad 1)1 	11_ 	2 c..4) cot) Z 	(t) 1 	 (2058) 

/t 
where f depends only on the time t and may be put equal 
to zero. 
If the equation of liquid free surface is 	z .-4 -17,(x,y;t) , 
then an element of liquid on. 9DF  must move so that its 
velocity component normal to '2 Dye is the same as the normal 

Thus oby denoting p as 
is the density of the lig-
[cf. Wehausen and Laitone 

itself. Hence, the liquid elevation 
satisfy the condition [cf. Stoker (11) , Chap. 2] 

_ 	ea"Z, t  co 9') 	9 
caX- ex 	ey ey 	dL 

Eq. (2.5b) implies that no spraying or tumbling-over 
from the liquid. 

velocity of Dr  ' must' 

(2.5b) 

occurs 

In order to obtain a tractable mathematical problem, the 
boundary conditiorfs (2.5) have to be linearized. This can 
achieved by expanding all dependent variables in a power series 
in terms of a fictitious parameter  /44- about the quiescent 
state tcf. Nayfeh (12), p.24] . Assuming that these expansions 
can be differentiated term by term by virtue of smallness 
of deviations and their derivatives , the lowest order of 
Eqs. (2.5) are 

cok cos 
	 P (x,y,O) 

	(2.6a) 

at 
	 P (x9Y10 

	(2.6b) 
Thus , the posed problem is reduced to an initial-boundary 
value problem defined by Eqs. (2.1) , (2.3) , (2.4) & (2.6) 0 

3. SOLUTION.  

A solution of Eq. (2.1) that satisfies Eqs.(2.3) 
79(%,414. a  z + 5! i co52,21x cos "`n x 

vt•=0 Kro 
Cosh r z 	 r 

PAN 	!al ki 

is given by 

( 3.1) 
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Here, q 	t  p 	pa  are generalized coordinates. They 
are functions of time and the dot denotes as usual time 
differentiation. The index rmn is 

(  il1 4  
( 3 2) 

To satisfy Eq.. (2.4) 	the function W (x,y) is expanded 
in a. double Fourier9s series in the form 

,r.>0 

4,e0v1,--0 
where the spectrum coefficients a 	evaluated by 

emn E cos-- cos 	lAr (x s1/4y) dx dy (3.4) vYt'it 	 TC 
a., 

1,19-4 7-  a 	cos 	x cos 
br■ (3.3) 

0 
and E E = 

= 2 
for nAm=0 
for n=m-,--../2„2 

.5) 

Substituting  Eq .(3.1) into Eq .(2.4) and making  use of 
5) lead to 
a 	 () co (3.6a) and 

qmn(t) SiSixth(rmn  h) 	pmn(t) Cosh ( rmn  h) 

 

Integrating  Eqs. (3.6 a, b) with, respect to time (3.6b) 
taking  the integration constants to be zero yield 

Po 	a00  Z70) 	 (3.7a) 
pmn 	Tanh(rmn  h) q  t + a row tan 	Se oh vt) mn 

(3.7b) 
Aisopsubstituting  1 q (3,1) into Eq .(2.6b) , integrating , 
and also putting the integration constant equal to zero 
give 

vnTt k;z34 3 -0= 	2: 	r coS 4-1-7-x, cos 	('t) 	(3.8) 0 m.oh=0 
Substituting  Eqs.(3.1 & 8) into Eq.(2.6a) leads to 

r 	c..0 2  cos 4 	= 0 	(3.9•  vtin 
Eliminating  p 	Eqs. (3.7b and 3.9) , brings the 
differential equation that determines the generalized coor-
dinates qmn  namely , 

L.. 
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+ r 	 --; wco.s-  w -t) 
me 	m6,1 	 kr, vi 

	

co2005 (0-0 Sec, ctiw1.} t; 	(3.10) 

Considering the special case m=nw0„Eq.(3.20) reduce 
to 	 1.4 

oo 	00 \-- 
( g.  — 	4.0

2 
q 	a 	 C05 (.4 	e /0 ( 3.31) 

integrating Eq.(3011)  twice „ this gives 

q00(t)  4 A UN 	[13 V(t)] t 	(3.12) 

where A and B are constante of integration to be determined 
from the initial state of motion. The functions U (t) and  
V (t) are given by 

U N  - ft tei dt 	 (3.13a) 
and  

v (t) 4  f 	t dt 	 (3.13b) 

For the general case mont  0 „ by changing to the dimension-' 
less time defined by 17 -= (.4)/2 t , Eq.(3.10) can be written in 
the form 

ciran  + (01, — 2/3 cos 0 

en 

ifetimo  Eccli(cd P)e(4 Ca5 27-1)4' 	(3.14) 
co' 

r 	( 	(3.15a) 
c.7,1 

/3  a 2 r "fp  Tanh 	3.15b 

and the prime denotes differentiation with respect to the 
dimensionless time. 

Eq. (3.14) is a nonhomogeneous Mathieu's equation. The comp- ' 
lets solution of this equation is constructed by first dete-
rmining rmining the solutions of the homogeneous part and added to • 

it the particular solution due to the existence of the right 
hand side term. Solutions for Mathieu functions have been 
developed and an extensive literature has been concerned 
with these solutions [cf. Blanch (13)]. 

Approximate solutions of the homogeneous Mathieu's equation 
can be constructed in two cases. Firstly, for the parameter 
/3 takes a small value , an approximate solution can be  

where 



and combining with 	qmno 	the final sol- 

ce (rip) + N se0, 
 Cr;f3, ( 3.20) 

073 r 	 4.4 
frc - I) 

(3.21a) 

/3  t 	si'*(11:7-!yr (3.21b) 
(147Z+i) (2.47-9 

Solving for q 
ution is 

qmn (c.)/3) 

where 

ce*Cr.;/3) 	Cssfor r 
and 
se ( 	(3) 	5:o V; r 
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Poincar - type asymptotic expansion 
[cf. Atherton (14) 	pp. 13 -27 .1 0 i.e., 

t7.L. 	tc)✓qmn 	/3) ri 

Substituting Eq.(3.16) into the homogeneous part of Eq.(3.14). 
expanding and equating the coefficients of identical powers 
of 73 lead to 

qmn0 1-  a<  qffin0 =0 	 (3.17) 
The solution of Eq. (3.17) is 

gran° 	M cost+ N sinZ V 	 (3.18) 
where M and N are constants. 

Also, the explicit first order terms in /3 suggest that q 
mn must satisfy the equation 

qmni 	c)( °Imn1 - 2 cos 2C cimno 

obtained by using a 

(3.16) 

(3.19) 

For the case where /3 is not small , an approximate solu- • 
tion can be found by reducing to Riccati type [cf. McLachlan 
(15) , §4.81J . Making the substitution 

qmn = eil;(1 14;  ''1 7:   (3.22) 
• the homogeneous part of Eq. (3.14) becomes 

2   -t1-1=0_71/4 	r  -1- ur t. ) 	(;) 	 ( 3.23) 
where 	‘, 	-247—C COS 2 r) 	 (3.24) 
McLachlan (15,p.95) has derived the two solutions of Eq. 3.13 
as follows 
ce*(r. /3) = 	CuS 2 9 eArs ovi7;71 A jTA 	( 3.25a) 

L . 	 ...j 
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se*( 	A) 7--  (24 .2/3 cid .2. r) 	, 

The symbol E1 	-7;) stands for 

• (ate () = 	r()i,72.1) 	E(x,.±. 7) 
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(3.26) 

r 

[F-7-71-3 E (A,T)) 	(3.25b) 

where E(Npr) is an incomplete elliptic integral of the 

second kind defined by r 
E Al 	 (3'27) 

o 
/ - 15;ei'y 

Also, E 	.E.1 is given by 
E (A) 2.1- ) 	(/ 	_ 	A't 	...) a 	2 	if- 	6,Li 	25-4 

and the modulus A is given by 

	(3.28) 

/ 	\ 2.  

	

= .2 ( 	 (3.29) 
For finding the particular solution of Eq. (3.14) , the 
Wronskian is clearly a constant term. It is given by 

 
= ceA(0) seftr(0) - se (0) ce (0) = 	

.., z - .2.(5) 	(3.30) 
Thus, the particulars  solution is 

( 	"•-• .2 119 fice*Cr; (3) sc(-1...., (9_ cetc„p)se*(7;+(T)dT(3.3l) 
where 
9(-0-_-_- otSecli(r 	II -1) n, r) ■11N 	

3.32) 
Hence, the complete solution of Eq.(3.21) is 

q (10 = 

	

M Ce*trj/i) 	se (t;/3) + Sp (r, 	 (3.33) 

where M and V are constants of integration to be determined 

from the initial conditions. 

Having obtained the determination of the qmn  coordinates P: 

the substitution for q from Eq.(3.33) into Eq.(3.7b)leade' 
to the determination of pmn  coordinates. 

For the determination of the constants A,B,M and N , con 

sideration is given to the initial state of motion of the 

liquid. Considering that the liquid motion starts so that it;  
has zero initial velocity and zero free surface wave height 

"j 
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accompanied by a velocity fluctuation at the outlet of the 
'type '(t) 4 c4°0  COS(COttS) 1, one can get 

0.!  0- 
u (x ,y 9 z ;0) = 	Z. Eni Sin 	coS -LEP' 	x  

	

( o) Cask 
vit 

2,) 	(0) 	(r z).] 	0 (3.34) 
• 

o cc 
nir ✓ ly „z ;0) = fr6  2:. 	n C05 	 X.  

[
eb

( ) CO .5 11 (r 21)-1. 	Eh! 1.1  (1;n4Z)] = 	(3.35) 
ien 

Fit tt 	 rh Ft 
Oc.t- 

W a  *Z ;10) a _ 10(0)  — 	r cos w' 	cos 	x 
": 	a. 

(o) 3:7111(r: t  No C.04, ( r...,,,z.)1= 0 	(3.36) 
 in 

(x ;0 ) = 	 r cos im-LT:2-..• casil l tok, O. (3.37)  
7/1 141:-.0 0:0 

Thus, Eqs.(3.34-37) can be satisfied if and only if 
• 0 	 • 
q  (0) 4 p0 (0)*. p(0) 4 prm  ( 0) 4 pmn(6) 	0 	(3.38) 

Hence, from Eqs.(3.6a & 3.7a) 9  one can get 
a 	-4 0 oo 

Also „from Eq. (3.7b) 

qnin(0) 	"•• 	
y„ „ 

CO SeC 	(o) 	(3.40) 
Hence, for m w n 	from Eqs.(3.38,39 and 40) one can 
gather that 

C100 (0) a ;00 (0) 
	

0 	 (3.41) 

a, Kizo 

(3.39) 

• 
• 
• 

and 

A :; B = 0. 
into Eq.(3.33) 

(3.42a) 

( 3 042/) 

forms for the generalized coordinates qinn  

an" CoSeA(iLk)C(OtSr(0.1M.] cg4(c_.,/3) (3.43) 

Substituting  Eqs. (3.1 into Eq .(3.12)yields that 
Also, for m,nt0 , substituting  Eqs. (3.38 & 40) 
g ives 

M a - ctwov's Cosech(Q)t:(0) - 5p ( .; ) 
N 14 0 

Thus, the final 
and p 	are 

cinin 	z: Sp(r.;13)- 

L 
	 ►  = 	(r„ Sp Cr, /3) - 	 Secti ( r,„,11) (0 
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42,  ni +Tet.ink 	Sp(0.;(3).] cc
w  (r-;/3) 	r S'aili(r.11)4'(,T). 	(3.44) 

4. WAVE CHARACTERISTICS. 

From the previous sectiont it can be easily seen that a patt-: 
ern of standing waves is occurring on the free surface of 
the liquid as an outcome of the generated motion. For the 
determination of this pattern s, substituting for pmn  coor-
dinates from Eq..(3.44) into Eq.(3.8) give the surface prof-' 
ile of the liquid 

(xty i t) = 	E Ett ma o s,Gii(r..9 cos b + Tan r,„ Sr ( 0_41 x 

ce781.2ti;./5) 	Ta*Iti (c') Sp (Li. tji3)- re, 0, seci3 O-„,.0 
vi 

Co5 (coat  S).} Co 5--rrl-c7r- X,  COS 	. 	(4.1) 
For the determination of the pressure distribution in the 
liquid, Eq.(2.5a) reduce to 

_212L 	cozcesc.4)9z. 	(4.2) e 	at 
Making use of Eqs.(3.1 3.7a and 3...3.0 , 7-1;1 is given by 

251.4' 

one 

r„„„ 

°I; tt) = T4,41 0.'04191 (t) _C27V2— / 	e j  SCC 11(L,111) COS tuftt 	(4.5) 
Substituting Eqs.(4.4 & 5) into Eq.(4.3) and further substitr-
ution into Eq.(4.2) give the pressure distribution 

..t_ 	4±.°  C 05 14-. X COS 2--- 	[ C941 froi‘41) Tavl 11 Crmbi9 841/ (i1:444'  olvzo n=o 

R amtiSech 	ti) (4; wace, ,of -1) cos(cott-,5)- r.:i.,T04 ,s11) 
go  40% cos coo sr( t., 	(401-t_toi Cose,ti ( c,„. crs S 1- Sr(cqi) 

iiAzto 
tt) Cosji 	i) 	s 

rn„ 	 ki 	I1111 
COS 2.11 1.--r  x CO .5 (4.3) a 	 1  

Substituting for qnin  from Eq.(3.43) into Eq.(3.14) 
can get 

•S. C-t) 'IT. 46' a, gecii ( r ai 	cd 201S 	1) Col (Lot 
0 /MI 	M 

r 	Cr 11)(y_ o ail.c,Jwt.).{Spoi_.).t.,-0)_{_c.e.21ncouchork) 
Mvs 

crs5-*SP'(0;().] 	 (4.4) 
Also,from Eq.(3.7b) , one can obtain 

at 
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A 	r 
S; 4 r) z wvi 	—o co2cos wt.) z. • 	(4.6) 

5. STABILITY 
As shown in the previous section • Eq.61....0 determines the 

standing waves pattern of the free water surface due to the 
container vertical vibrating motion accompanied by the flow; 

disturbance at the outlet. What is meant here by stability 

in this context , is that the wave elevation' form should 
be always bounded for large values of t • otherwise • it 

will grow up until it is restrained by nonlinear effects or 

until the free surface disintegrates. By analyzing Eq.(4.1), 
it is readily seen that the boundness ofl is dependent on ' 
the boundness of the two functions ce*(t;Mand 614* (tj) • 

since it is obvious that the function Sp Ct;40 is a comb-
ination of them. The parameters .governing the problem are 
c< 	. The first parameter is mainly defining the 
frequency of container vibrations while the second is defi-
ning the free mode of oscillation multiplied by the amplitude 

of the container vertical vibrations. In standard works on 
Mathieuls equation [cf. McLachlan (15)] • the parameter o< 
is determined so as to bring periodic solutions with perio-

dicity of 2T6 or 'IV in Z . The special values of o< are 
called characteristic numbers. They are tabulated [of. Blanch 
(13) • Chap. 20j according to the integral values r=0,1,2.. 

For even functions [e.g: ce*(t)jthey are labelled sr  and 
for odd functions [e.g: seojthey are labelled ir  , By 

graphing these characteristics versus /y ; a chart is obtained 
(Ince Chart) which shows the regions of stability boundness 
and instability of the Functions. Thus•for a general point ; 

(0(., (3) where /3 > 0 that lies in the region sr  ( (3) and 7314.1(p) 
the solution is considered stable while if the point (Ai  /3) 
lies in the region s.1  0) and  61,4.103j-the solution is 

unstable. Thus, to investigate the stability for a general 
amplitude go  and frequency Wthe parameters (0(5(3) are 

“j 



132.  < 04 4 I 	.1-  
- 38- /3 2  < a < -1 1; 

1 132  < 
< 

cx < 
< 

3+ 
02' 

a ( ) 
/3 arcr  1)  

r > 3 

- 	2  
/3 2  (5.2) 2  + 
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computed from Eq.(3.15) respectively ; for each mode in 
turn and then locate it on the chart to determine the region 
on which it lies. Naturally, this is not a rational appr-
oach but it is a practical one. 

To overcome partially this experimental sorting of testing 
for stability 0  a proposal is given here in the present 
paper which is suitable only for smell and large values of 
the parameter /3 .. For moderate values of /3 it cannot 
yet work. Firstly , for small values of 	i.e, 16 3  and 
higher quantities can be neglected , the characteristics 
are given by [cf. Me ixner and Schafke (10] 

= 	- 	/3  2 	6 	"5-71 = 	-1 	(5 1) 
S:4 = 	-t- 	6. 	2_ 

/32 	3 • Sr r' 	2 0-x-1)  
Thus , the stability regions are given 

r 

Secondly if /3 is a large quantity which occurs natura/13r 
for higher modes of oscillation , the stability is given by 

the inequality 	itr+5 	 4(4--  

	

o< < 2 	At e 	 (5.3) 

	

err 	rl 

At.SPECIAILgigas. 

Case I. E 0  

The case of 6 * 0 means closing the outlet at the base 
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of the container®  Thus Eqs.(3.3) indicate 
N dents amn become zero and from Eqs.(3.7) 

pc, (±-) 	0 ( p t-i-) 	 Tg.v/h 1,1 
Also Eq. (3.10) reduces to 

(5, 

- 	T;. (cal  1,1) 	2cas 	0 
The solution. of Eq.(6.2) is 

that the coeffi-
one can obtain 

(6.2) 

°Inn 	M C6 	 N se (•;-.12-3-t,(43,) 	64) 
* 	• 

or determining the constants M and N 
, 
the liquid is 

assumed initially at rest and it possesses a certain initial 
free surface shape. This last assumption is realistic p for 
real liquids have always a curvature due to surface tension. 
From Eqs. (3.34 — 36) 	one can get 

	

cimn  (0) 	kan  (0) 	0 	(6.4) 

and from Eq.(3.8) 
- 	

( 0) COS -31--"L 3C COS 21.--E 0  cx,4) -21 	 (6 .5) 

	

.4, 	 b cif  
where 	a b 

0 (0) 	, 	 cos_fr as2Y2..--te (2‘1. ) x 	(6 6) 4 Mil 	 '10 ' j--/ 
Also from Eq.(6.1) 	0 6 

Co Ttnii( rrtui )ficas2fIx  a b 6  3 revitl 	000  
Substituting for q . (0) and q (0) from Eqs.(6.7 & 4) into 
Eq.(6.3) yields 

M = 

N O 

qmn(t) =cl(o) (04- 44.  ce* t 	 (6.9) 

(0) Tatedi Cf. 	(Ck-2(3)4  Ce7*-04) t 3.) 	(6019 -7° vi 	Mv, 

Illus 0  thefree surface stariing wave pattern is 

? c t (,),_ ;L (.9v 
nA A  te1:4, 	A  

"T A: (LIS —411 '1 s 	(640.1) 

q,„, (0) = — 

Hence 0, 

and 

(6.8a) 

(6.8b) 
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and the liquid pressure distribution is 

=.- 	r 9. (0) Tarik(cji) (.4- .2.(3)- (y 	(A?""cos ‘419 00 00 

[ Cos  (rm.. 	Croi, j9 Si ti 	" z)1 cos ?77-:r.x. 
PP1 M =4 7. 0 	WWI 

c05 b ce (z co2ads ...at) . (6.12) 

The investigation of the stability of the free surface 
follows the same route in the general problem. 

The results of this section agree exactly with the results 
of Benjamin and Ursell (17) when neglecting the capillary 
effects. In this reference , the stability conditions have 
been discussed on the Ince chart basis. 

Case II t go 0.  
In this particular case, the container is considered stati-
onary and hence the liquid motion is due to flow fluctuat — 
ions at the outlet of the type 4' cos wt • 

0 

0. gran rnn  g Tanh (r 
ran 	

q
UM 

	gel; amn  Se ch (rte

cotp (6.13) 
I 

cos 

Writing 	g rmn  Tanh(rmn  h) , the solution of Eq.(6.13) 
is 

— M cosstt + N sinnt 	ann  
Ca.) 

OA) Sech (rte cos wt. 	 (6  

and for co t.st, the solution (6./4) is stable. 

Taking the initial state of zero velocity and zero free 
surface elevation the constants M and 1V are given by 

M 	[111----"" a, 	CaSecii(r,.„09. (6.15a) 

N = 0 
o 	")  

(6.151) .  

From Eqs. (3.7 a & 	one can get 

po (t) as 0 	 ( 6.16) 

and 

Thus, Eq.(3.10) becomes 

L.. 
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2221„, ji  
D  rma 

C oS wt. 	(6.17) 

r 

Thus t  from Eq.(3.8 
CW 

(xty;t) 	2:: 	M r 77a1411  (r) cos_rct +4 GI, S(r) n„. Mh 	 0  MA 
.1.2=i TA te; 9 1 c-  .2 	 ut 	x, 0L , (6.18) 

Also , substituting Eqs. (6.15 & 17) into Eqs. (4.3 &2) 
the pressure distribution is given by 

00 
Cc$ 	-Y1-11 	Y4; (4)2  a Sf.)..-ctly 

61 b d 	 mIA 7-1) 	 7-    
C 05 W t  

24' SecJi 	S v Cc c.  
rwel 	Md z 

(6.19) 

7. gcrcpsIoNs. 
The slosh problem of a perfect liquid partially filling 

a vertically vibrating rectangular container with an outlet 
at its base is formulated and solved. The stability of the 

occurring wave pattern has been investigated by a rational 
proposed procedure. For the. case where the container is 

devoid of outlets, the present analysis is shown to agree 
with those of Benjamin and Ursell (17) . 

The present study is directly applicable to the design of 

many hydraulic moving and stationary systems subjected to 
a pump fluctuating pressure. By properly assigning the 
velocity disturbance function and integrating the pressure 
on the container wallsxthe total force exerted on the system 
due to the liquid motion is known. 

the wave pattern reduces to 

L.. 
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IMENC/ATURE 

	

A,13 	• integration constants 

a 	 half -container width 

half-container length 

domain of liquid motion 

acceleration of the gravitational field 

- liquid depth 

	

M,N 	integration constants 

	

rya 	mode numbers 
4 pressure generalized coordinate 

q 	 generalized coordinate 
R(x,y,z) 	container fixed frame of reference 

wave number 

a time 

u21r,w 	liquid velocity components 

spatial velocity fluctuation function 

a( 	• parameters 

• half-outlet aide 

	

t■0 	amplitude of velocity fluctuation 

wave elevation 

• amplitude of container vibrations 

• liquid density 
a dimensionless time 

liquid velocity potential 

	

1.4) 	4 frequency of container vibrations 
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