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ABSTRACT ° fhe gtability of the free surface of
an inviscid liquid partially filling a rigid
rectangular container with an outlet at its base
is investigated. The container executes vertical
vibrations in the direction of the gravitational
field. The initial-boundary value problem has
been formulated and solved. The wave height .
and pressure have been determined. By specializ-
ing the obtained results to special cases,it has
been found that they agree favourably with prev-—
ious investigations. |

1. INTRODUCTION.

The importance of "Liquid Slosh" phenomenon in many engineer-

. ing systems is well recognized and extensive investigations
‘ of this phenomenon have been conducted and reported. Much of

the literature dealing with this phenomenon up to the Year

' 1966 has been summarized in Abramson’s monograph (1) . For

later studies Miles (2) , Hunt et al (3) and Nash et al (4)

‘have studied the lateral slosh problem in cylindrical vessels.
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 Further on , for the longitudinal slosh in the same vessels, @ .

; it hea been tackled by Pavlovskii (5) and Khandelwal et al (6).

: Despite these interesting studies , little is known about the
problem of the dynamic behaviour of a liquid in a container

; when the container has an outlet at its base and is subjected
to velocity fluctuation at the outlet due to a pump pressure. :

: To the writer’s knowledge , the only works on this problem are
Buhte and Yeh (7) and Henrici et al (8) . The first authors

‘ have treated the case of axisymmetrie slosh of an inviseid
liquid in a stationmary cireular cylindrical container due to

‘ the cutlet velocity fluctuations at the base of the container.
The second authors have studied the determination of the slosh:

! frequencies of an ideal liquid contained in a half-space with
a eircular or strip-like aperture.’

The present paper gives an answer to the problem of the dynamie

' behaviour of a perfeet liquid with a free surface contained in
& rectangular vessel with an outlet at its base. The vessel is;

: vibrating in a vertical direction while®Fhe outlet there exists
veloeity fluctuations. Mathematically s this problem reduces

' teo an initial-boundary value problem with a time dependent
discontinuous boundary condition. Naturally, it is expected

‘ to be a generalized problem coﬁpared with the previous ones ,
and *lhe object of the present paper is to provide & step to-

: wards filling this gap of krowledge in this partieular practi-:
ecal hydraulic systemse.

2+« FORMULATION.,

Consider a finite domain D of a liquid bounded by & rigid

: rectangular container whose dimensions are 2a and 2b . The :
still Ievel of the liquid in the container is at e height h

: from its base. There exiasts at the base a square outlet whose
aides is 2F and is connected with & pamp where it brings

: veloeity disturbance at the outlet.

=
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- If the contalner executes a vertlcal osc1llatlon def:med byk
f f coswt’ > “Where '«f is its amplltude and W is the fre-
_ quency, then a motion im’the’ 1iquid is generated. Assuming
”_rthat the 1iguid is @ perfect.one: and by adopting.a: frame: of!
T ‘,flxed in, thg container as. shown in: the annexed
cén}:descrlbe this generated motion of -the liquid
by follovn.ng the eulerlan representation ~ for a lagrangian:
‘' deseription ¢f. Ilgomov (9) - « Supposing that the caplllary
contact -effects -hetween the Tiquid end the container walls

Q,.

' 'are pegligible .and -the motion starts from rest; then ‘there

Py

~ exists a single-valued relative Velocity potentisl function
f(x,&,z»,t.) dn-which the: nm*tive ﬂuid vélocity 13 equa‘l t“of '

Tasniradrvats =i

: 2 ks 2
[ parfraralisnss Lad
. Tene e T
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— grad ¢ . At eny instgnt t , the liquid motion must satisfy
the continuity condition, i.é., the velocity potential satis-
fies ILaPlace’s equation

v 2 2 .
i 2f *F PP
Vg = 25 toge toa Y 2x,7,9 &0 (2.1)
The boundary 9D of the Iiquid is composed of
2D = 905 Usn,Uon, (2.2)

where ?Dg denotes the boundary of the liquid in contact
with the rigid walls and base of the container, 2Dy 1is the
outlet boundary and 2 Dp is the free surface boundary.

Since the container solid boundaries are impermeable and if
there is no separation occurs in ?Dg , then the relative
normal component of the liquid velocity vector vanishes on
?Dg , which implies '

2% 40 YV » (I_a,y,z) (2.3&) :

2
2% 20 V P (x,1, 2) - {2-31)

2Z =0 V P(X,y,—h) (2030) :

27 .
where £ L x| £a { E<lylgb

At the outlet boundary -3DO ’
2% = W(x,y) 5 (%) Y »r (X,¥,~h) (2+4)

D2
where

and =W (%,¥) 5(t) is the distribution of the velocity flue-
tuation at the outlet relative to R.

It is assumed that the amplitude of L’. is small such that the
amount of liquid flowing in and ouf of the container can be .
neglected as compared with the total liquid mess in the con-
tainer.

For the free surface boundary ?Dp, the dynamie boundary
condition is based entirely on Bernoulli’s law, Since the
container moves with a central vertical acceleration —ﬂow" ‘
cos wt , one can consider the liquid motion relative to

P R as ime iamat remz-zt anc'i” the %ravit’g'tiona't_l‘ azcct.enlerat_.i'on N



| O

IPIRSY ALM.E. CONFERENCE

CA-8| 77
29-~31 May 1984, Cairo

' takes the value (g - %o w® cos wt) . Thus,by denoting p as’

the constant pressure at 9D and € is the density of the lig-
uid, Bernoulli®*s law takes the form [cf Wehausen and Laitone:
(IOjb

1gradﬂ ._.‘f_ _'f_.,.(g wamﬁ)Z fle) (2 Sa)
where T depends only on the time t and may be put equal
to zero. l ‘
If the equation of liquid free surface is z =7 (x,y;t) ,
then an element of liquid on QDF must move so that its
velocity component normal to 9 Dy is the same as the normal
velocity of 9Dp itself. Hence, the liquid elevation 7 must’
satisfy the condition [cf. Stoker (11) , Chap. 2_'}

27 _ 22, _,2¥3% _2f

2t @x ox 94 2§ PZ , (Z.Sb)
Eq. (2.5b) implies that no spraying or tumbling-over occurs
from the liquid.

In order to obtain a tractable mathematical problem, the
boundary conditior® (2.5) have to be linearized. This cam: be
achieved by expanding all dependent varlables in a power series
in terms of a fictitious parameter A~ about the quiescent
state [cf. Nayfeh (12), p.24] o Assuming that these expans:.ons
can be differentiated term by term , by virtue of smallness
of deviations and their derivatives , the lowest order of
Egs. (2.5) are

7 = 7_5:»@_‘ s Y »p (%57 ,0) (2.68)

:;L = - 2z .Y P (x5,0) (2.6b)

Thus , the posed problem is reduced to an initial-boundary
value problem defined by Eqs. (2.1) , (2.3) , (2.4) & (2.6)

3, SOLUTION,
A solution of Eq. (2.1) that satisfies Eqs.(2.3) is given by
79("‘)7;7:") "Z + > 5 cas 2L . cos MT er‘ 4 x

™mz0 n=0 -

(1 Cosh g2 + P Siwhr z) (3.2)
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Here, 9 * Ppn and p, are generalized coordinates. They
are functions of time and the dot denotes as usual time

differentiation. The index i is
\,

mz “2 '3,
. ‘TU(M + bz) (3.2)
Te satisfy Eq. (2.4) , the function W (x,y) is expanded
in a double Fourier®s series in the form

20 o R o 14 ¥
.uw(x,y);ZIZ & o S il D46 o 7 (5.3)

Mm=g N=o i

where the spectrum coefficients a ., B&re evaluated by

£ ¢ |
. _ EL¢, T g N W fc,y) dx d (3‘4) E
m 2 gy | ] cosgXeosgmy Whiy) axay (5.4
e :

and E;m = £, = X1 :f‘o:_r num=0 <3.5)
= 2 for n:m-*&l,?,')' e ow

Substituting Eq.(3.1) inte Eq. (2.4) and making use of

Eqe. (33 ~ 5) lead to

By (t) = &g, ¥ () (5.62)

Qy (t) Sinh (Typ B) - Py, (t) Cosh (r_ h)
= Amu f(t) (306b>

Ymu
Integrating Eqs. (3.6 a & b) with respect to time and

taking the integration constants to be zero , yield

P, ® 8y, L(t) | (3.7a)
Pun ® TeEB(Ty h) o gyt o+ Sech(r, h)Z(t)
o (3-T0)
Also,substituting Eq.(3.1) into Eq.(2.6b) , integrating ,
and alse putting the integration constant equal to zero
give 0 oo
’z(x,“j;'t)-:-l;-zz Y c/os-z-lﬁaa cos.fl“gﬂ.y Phcnt) (5.8)

wmz0 hWsp Mn

Substituting Eqs.(3.1 & 8) into Eq..(Z -68) leads to §

ve 2 $

%M +r (3/- g, W cos u)t} }C',mm =0 '(309)
Eliminating Pyn between Egs. (3»..7"0 and '5.9) ¢ brings the
differential equation that determimnes the generalized coor-
dizates q , namely , '

and

o
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c} o+, ﬂu (Y‘ h)(j" 3wcwwt)fy
= a,m (? ‘g woosw't) Se«.h(r h)fg (3.10)

Considering the special case m = a = 0 , Eq.(3.10) reduce

e e (R T=60 ()

00
~y integrating Eq.(ﬁoll) twice , this gives
a0 (t) = & + U(t) + [3 + V()] (3.12)

where A and B are constanis of integration to be determined
from the initial state of motion. The funetions U(t) and
V(t) are given by o

= - [tB(t .
U(t) ,ft at) at (3.1%a)
v =[O0 at (3.13b)

For the general case myn$ O , by changing to the dimension-'
less time defined by T =w/2 t , Eq.(3.10) can be written in
the form ‘

q’l’m + (& = 2/8 cos 2T) %=
4 a,, Sech(r w.(&,cos 2“—3—)5 (3.14)
e

and

where
o = {SQL rm“ Tanh (rm“k) (3+158)
B = 2r, ¥ Tanh (n,, h) 3.15b

and the prime denotes differentiation with respect to the
dimensionless time.

Eq.(3.14) is a nonhomogeneous Mathieu’s equation. The comp- 5
lete solution of this equation is constructéd by first dete=
rmining the solutions of the homogeneous part and added to
it the particular solution due té the existence of the right
hand side term. Solutions for Mathieu functions have been
developed and an extensive literature has been concerned
with these solutions [cf. Blanch (13)].

Approximate solutions of the homogeneocus Mathieu’s equation
can be constructed in two cases. Firstly, for the parameter
/3 takes a small value , an approximate solution can be |
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obtained by using a Peinceré - type asymptotic expension
[cf‘. Atherton (14) s PP. 13 -17] p 1o,

mn (i) = g /7’ ‘f(.?’) (3.16)

Substituting Eq. (3016) into the homogeneous part of Bq. (3.1@
expanding and equating the coefficients of identical powers

of A lead to
y

Upg + X Gy = O (3.17)
The solution of Eq. (3.17) is
q 2 McosfaT+ N sin¥x T (3.18)

mno
where M and N are constants.

Also, the explicit first order terms in /3 suggest that q
mist satisfy the equaetion

mnI:

/ i
Oppy * Ky = 2fcos 2T q (3.19)
Sofving for Un and ecombining with - I the final sol- :
ution is
4 | . '
Qun(GA) = M ce (T;4) + N se (T5/3) (3.20}
where
ce (c’,ﬂ) Vi T o3 3L )T 4 Lo eg(fT-1)T (o 21a)
and (J.V'—"‘ﬂ"‘) ( l)
”w
e (T5h) = sinfX T - LB __sia(@e)T B si(fz-)t (3.211)
(2V +1) (a¥-1)

For the case where /A3 is not small , an approximete solu-
tion can be found by reducing to Riceati type ch. McLachlan

(15) , 54 .81] Making tl}e sibshtutlon
;/,;( wdT

Dy = (3.22)
the homogeneous part of Eqa(3.14> becomes
! ‘(w- _ -
where q‘ = (! - 9ﬂ Cus 2‘6) ‘ (3 24)

Mclachlan (15,p.95) has derived the two solutions of Eq. 3.13
as follows

ce (T34) = (a—-g/sc:nsncy'c,s [\/o-\ﬂ/j E'()\,T:)) (3.258)
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and - L
['_
(5, p)= (- 2fesaT) sin[{RaB E (VD) (3e250)
The symbol El(?\)"t) stands for
E,(00) = E(ALE) - E(WLE-T) (3.26)
where E (N, t‘) ia an incomplete elliptic integral of the
second kind deflned by

E (7\;0 / V!—ﬁ sinty Ay | (3-27)
Also, E}(A L) is given by
(e .-—xl ,‘f > 6
E(AE)= Z(1-2- 2 2 A - A - ees) (3.28)
and the modulus 9, is given by
A= 2 (@wa ) (3.29)

For finding the particular solution of Eq.(3.14) , the
Wronskian is clearly a constant term. It is given by

4 e /g 3 -
W = cd'(0) 8€'(0) - se(0) ce'Q) = (x-2/8) 2 (3.30)
Thus, the particular solution is
Sp (T58) = fu- 2/9/[0::(T13)5c<u/3)- Ce(t; ) S (T, B (MdT(3.31)

where

)= u1a  Sechln, h) (% s -2)7 ) (332)
Hence, the complete solution of Eq. (3.14) is
U = M ce'(T38) + NSE(T5) + Sp(T58) (3.33)

where M and N are conmstants of integration to be determined
from the initial conditiens.

Heving obtained the determination of the q coord:mates,
the substitution for A from Eq.( .33) into Eq.( .7b) leads
to the determinatien of Pon coordinates.

' For the determimation of the constants A,B,M and N , con -,
sideration is given to the initial state of motion of the
liquid. Considering that the liquid motion starts seo thetx it,
has zero initial velocity and zero free surface wave height .

e
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r--- .. . « “ee e e Y e e e e . . e e “r e ...4... e “ew .-‘b.u. __‘
' accompanied by a veloeity fluctuation at the outlet of the

type O (t) = T cos(wt'*i-ﬁ),, one can get
u(x,y,2;0) = T FEmsin f’gl-‘-.x cos = Y

Q. W=sg Wb

{‘[ (0) Ccsk(r“ z/; +F(o) Smk(r z)] =0 (3,34)

.  mn
MOO

(93’»20)“-—-‘ Z. 2 N Cos—= @ T x S.ﬂb'yx

b wed L)

F [f; (o) Cosh(r Z)+ ?)(a) San(P z)] 0 (3;35)

b

W (%,y,2;0) = ..F(o) 3 Z r c,os.;"l.rﬁx cos "”]x

w. ¢ n= 0 |
ﬁ (0) S ah(r 2) F(cz) Cooh(r ")J 0  (3.36)
FESTIN &
7 (xsy30) = —~}’f°) Z2 | Gos 0 miT g Cos_!ﬂ_yf(o) =0. (3.37)'
mz0 N=p
Thus, Eqs..( 5e34~3T) can be satisfied if and enly if
' Qpn(0) = p,(0)% B, (0) = p, (O) = P (8) =0 (3.38)
Henee, from Eqs,(3.6a & 3.7a), one can get
8, =0 (3+39)
Also,mm Eq»( ar-',b\} »
4pn(0) = -—C—L-i"—'-‘- CoSech v k) f(O) (3+40)

Hence, form s n = 0 y from Eqs. <5 +38,79 and 40) one can
gather that ‘
Qoo (@) = g, 10) =0 (3.41)
Substituting Eqs..('g’.@ into Eq. ()alZ)yleldS that A = B = Q.
Also, for m,n40Q , substituting Eqs.(’ﬁ.% & 40) into Eq. (3.33)
gives

M3 - f:‘: (.'oaech(r‘ L) 4 (0) - SF (0, /3) (3.428)
Na 0 (3.42v)

Thus, the final forms for the generalized coordinates U
and Py 8re

U (0) = OP(T5f3) - Bﬁ_ CoSech (e W Z()+ Spe 0;/3)] CE(GA) (3.43)

me

and
Pun (9= Tanh(r,, by Sp(E. ,s)[ S’..Jq( k>z(0)+
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+ Tanh(r, h) S’y(o,'p)J ce'(Tip) + :"‘" Sech (r, by (7). (3.44)

4., WAVE CHARACTERISTICS.

From the previeus section,it can be easily seen that a patt~
ern of standing waves is occurrimg on the free surface of
the liquid as an outcome of the generated motion. For the
determinatien of this pattern , substituting for Py, COOT-
dinates from Eq. (’5.44) into Eqe. ('5.8) give the aurface prof-'
ile of the quuld

7(0yit) = £ 2 i Gmalio Such(y,, b) cas +7hnucv:,,,h)5',,<o,'ﬁ)}

ce*(szt,'/s)-r‘ TM‘\(V L)Sp(“t'ﬁ)—'lfo a.m"Sech(rml.) a
cos (wr+$)} ¢os D '"7‘ X cos ";7_ . (4.1)

For the determination of the pressure dlstrlbutlon in the
liquid, Eq. (2.5&) reduce to

Jq’ =9t —~ (2~ gwwwﬂz. (4+2)
Making use of qu.(B.l s JeT7a and 3.39) ’ t

2¢_ - ;_0; [ G, 2) + P Sinh(r hz]
- cos '2"‘ X €OS _le_} (4.3)

Substituting for qp  from Eqe(3.43) into Eq.(3.14) y One :
can get '

ce 2
Cl,,.m (?) = K;am Sech (f“h) (&, W cos wt -—7) ‘c;»s'[wty_g)
- );m'ﬁu\h (o W(g- faw‘cr\x:uf) Sp(gtsp)- [i:: Cosech(x, 1

Gy e 5+ Sp(0s)] celet,p | (4.4)
Also,from Eq.(3.7b) , one can obtain
pmn‘,t) - TQ“‘\ (r“‘nl‘)a?“gt) - ‘:"IM: u)l_q) S‘CCh(c‘ﬂl“) Cos (u.‘;t-}-S)r (4 -5)
Substituting Eqs.(4.4 & 5) into Eqe.(4.3) and further substit-
ution into Eq (4+2) give the pressure distributien

';' Z Z C°~52£—-x Cas "rr [GJS‘\( ?)fT«nh(r ‘ngh(r 22};2

mzg N0

[ﬁa Sech (v, h)(ﬁwc«nu"t ?) cos(wt+s) - r Enl‘Lr M(§-
£ w cm.ut) Sf{@tjﬁ) (4 mn Caseuh(rmh)oss +S,>( p)

Q

is given by
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ce' (2 t;p)] - wy, Seh(r h) <o (wi+5)
Sinh(r,.z2) b - (g £ wcos wt)Z. (4.6)

5+ STABILITY

As shown in the previous section , Eq.(4 .1) determines the
standing waves pattern of the free water surface due to the
container vertical vibrating motion accompanied by the flow:
disturbance at the outlet. What is meant here by stability
in this context , is that the wave elevation 7 form should 5
be always bounded for large values of t , otherwise , it
will grow up uantil it is restrained by nonlinear effects or'
until the free surface disintegrates. By analyzing Eq.(4.1) 5
it is readily seem that the boundness of 9 is dependent om '
the boundness of the two functions ce (t;p)and se (t; A
since it is obvious that the function Sp (t;3) is a comb~
ination of them. The parameters.governing the problem are
K ..l /3 o The first parameter is mainly defining the
frequency of container vibrations while the second is defi-
ning the free mode of oscillation multiplied by the amplitude
of the container vertical vibrations. In standard works on
Mathieu®s equation !:cf. Melachlen (15)] , the parameter o<
is determined so as tec bring periodic solutions with perio-
dicity of 2W or W in T . The special values of o« are
called characteristic numbers. They are tabulated [cf. Blanch
(13) , Chap. 20_] according to the integral values r=0,1, 2..
For even functions [e.g: ce*(r)|they are labelled s, and
for odd functions [e.g: se “(9] they are labelled s, « By
graphing these characterietics versus /4 ; a chart is obtained
(Ince Chart) which shows the regions of stability boundness
and instability of the Functions. Thus,for a general point
(c5/3) where 450 that lies in the region s_(f3) and Erﬂ(ﬂ)
the solution is considered stable while if the point (A, A)
lies in the region &8 1(/3) and I‘1'_1(/:91:he solution is
unstadble. Thus, to investigate the stability for a general
amplitude Z 6 and frequency (v the parameters (o ,/3) are
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turn and then locate it on the chart to determine the region
on whieh it lies. Naturally, this is not a rational appr-
oach but it is a practical cne.

To overcome paertially this experimental sorting of testing :
for stability , & propesal is given here in the present _
paper whieh is suitable only for small and large values of
the parameter /3 . For moderate values of /3 it cannot
yet work. Firstly , for small values of 4 i.e, ﬂ3 and
higher quantities can be neglected , the characteristics
are given by [cf. Meixner and Schiifke (16)] .

s=-58"
= - ¢ 3‘—:: - _1z* .,'
S, = L +f-5p =1 B-Ly (5] |
- s R2 _ _ 4 a2
Sz—-‘{'-f‘ﬁﬁ’ 6/3252-‘# -5 /B
— 5 ‘
SY' - Sr — Y -+ m Y‘?/3
Thus , the stability regions are given
1P <« < 1 +B-LpA°
- LA* o L r2
| +8 -+p%< < 4 .,/32 (5.2)
& ot - 73
44+ SR < « < T+ o= |
2 ek ' 6 /32
Yo+ 2 (i) < &« < (r+1)" + ZrCred)
r >3

Secondly , if ﬁ is & large quantity which ocecurs naturally
for higher modes of oscillation , the stability is given by

the inequality kY +5 . ﬂ-g_-r% ..q,rﬁ_

X < 2 V;-—: = e (5;3)

6o SPECIAL CASES,

case I. £ = 0 | .
The case of £ = 0 means closing the outlet at the base

L
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of the container. Thus, Eqs.(3.3) indicate that the coeffi- °
cients a , become zero and from Eqa.»(%?) one can obtain

f;({;):_ O ¢ f-’:hgt);: C!,m[t) Tanh (y;wh) (6°1)
Also, Eq.(%.10) reduces to
uci i );nTamL (hh) (3-3, o’cos wt) ¥ = 0 (662
The solution of Eq.(6.2) is
R A e 3

For determining the constants M and N » the liquid is
assumed initially at rest and it possesses a certain initial:
free surface shape, This last assumption is realistiec s Tor
real liquids have always a curvature due to surface tension. :
From Eqs. (3,34 - 36) , one can get

() = f:mn(o) =0 (664)
and from qu(:;.a) '
22
= B C "“ﬂf Cos 1T 6e
'2(.1);) EV‘ZO nio) 05 8 5 cos (645)
where b
pmn(o) - E_:-iF_-. [j(,t)s.ﬂx va” 2’7{,1.,{) a(xnl] (606)
&lso , from Eq.(6,1) nmo./ b a
('O) ‘%CETZIM‘I( wi’l)fjcpb Mﬂ'}-au hn}?["’)dl‘lj (6.7)
Substituting for Un (Q) :md (0) from Fqs.(G.'T & 4) into

Eq.(6.3) yields

(o — 2/3)‘7 f}w&g) | (6 .82)

N=0 (6.8b)
Hence , ;
Uy, (&) = clé.‘(-O) (0(--2/3)7!; cc*c‘z%‘t;p) (6.9)
and " L
Pon () = 3, (0) Tank(r, W) (x-28)*ce(wt; @) (6.20)

Thus , the free surface star. ing wave puttern is

L (3(.)‘7 )t)= g i %::_ r:nn ,unnLl \) {m(“) L—‘i{)t
™Ml M2 {,\

( ‘A s T ws 2y (6.1)
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and the liquid pressure distribution is

(=¥ . |
= —E 5 v A Tanh(r k) (- 20)7(9 - 5, wcos wst)
m=d hzo ™ wmn ran ;

[ Cash (5,2 + Tash (5.} Sinh(r, 2)] cos 22
. Ao 2
cos 2L 4 ce (2tsA) .,,(?-zawwwt)z. (6.12)
The investigation of the stability of the free surface
follows the same route in the general problem.

The results of this section agree exactly with the results
¢f Benjemin and Ursell ( 17) when neglecting the capillary
effects, In this reference , the stability conditions have
been diseussed on the Ince chart basis.

Case IT ¢ Eo % O . .
In this particular case, the container is considered stati-
onary and hence the 1iquid motion is due to flow fluctuat -
ions at the outlet of the type % cos wt . |
Thus, Eq.(3.10) becomes ’

Hmn +ro 8 Tanh (v h) Qg = = g(o B Sec:h(r“m h)
cos wt, (6.13)
2 D
Writing <0 = g r Tenh(r . h) , the solution of Eq.(6.13)

is
5 M cosot + N sinat --ZJ—EQ-;am
W S :
Sech (r  h) cos wt. (6.14) °

and for w#a the solution (6.14) ie stable.

Y

Taking the initial state of zero veloecity and zero free
surface elevation the constants M and N are given by

Ma g, oy [ ?““",,_E"‘“(”mn@ N 1‘} -COScakerl,). (6;153):

Trn | WL <2 ;
¥=20 ( 6.150)
From Eqs. (3.‘{ a& b) , one can get
po(t) = O - (6016)
. :

L.
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and
P(t) = M Tamlzfr ) eos ot 4 4, ""‘ Sah(rmnh)
[1 - i Tanh(s,)] cos ot (e

(4)’2‘ 37 4

Thus, from Eq. (308), the wave pattern reduces to

7 (%py5t) = ~ 2.“ Z My“ T&Un!q(!’" la) c,osua:t-}-{a, Sech (%, h)

m=p n=p

[1- Zren Tk, @,wwt}w My e 2Ty (5.18)
Also , uubqtj.tutmg Eqs. (6.15 & 17) into Eqs. (4.3 &2)

the pressure distribution is given by

P 5 %usm”mm””;; ?("“‘ @ &J‘(rl)

) m._o W=D A we st mn

Cos wt - M.su mnfj [Q« b, D+ Tanh(y, “L).S’ml,(r z)]
- 4’ .ﬁ..wba)m h) Sin h(r 2 cc:sw‘bf

ot 'fvﬂA

(6. 19) |

7+ CONCLUSIOKS,

The slosh problem of & perfect liquid partially filling

& vertically vibrating :ectangular container with an outlet
at its base is formulated and solved. The stability of the:
occurring wave pattern has been investigated by a rational
proposed procedure. For the. case where the container is '
devoid of outlets, the present analysis . is shown to agree
with those of Benjamin and Ursell (17)

The present study is directly applicable to the design of
many hydraulic moving and stationary systems subjected to

8 pump fluctuating pressure, By properly assigning the .
velocity disturbance function and integrating the pressure '
on the container walls sthe total force exerted on the system
due to the liquid motion is known.
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TR O o o

E v d~o

NOMENCTLATURE

i

B

I

a

]

él

]

integration constants
helf-container width
half-container length

domain of Iiquid motien
acceleration of the gravitational field
liquid depth

integration constants

mode numbers .
pressure , generalized coordinate
generalized coordinate

container fixed frame of reference
wave number |

time

liguid wvelocity components

spatial velocity fluctuation fumction
parameters

half-outlet side

amplitude of wvelocity fluctuation
wave elevation

amplitude of container vibrations
ligquid density

dimensionless time

liquid velocity potentiel
frequency of container vibrations
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