

```
: AN ALGQRITHM FOR THE SOLUTION OF AVISCO PLASTIC MODEL
IN A STEADY STATE OF CREEP USING A NON CONFORM FINITE
ELEHENT
!
    By
    Mohamed Rafik ABDEL FATAH
```

;
;

Abstract
: A mon-conform fimite element proposed Eor viscous fluid flow satisfying zero divergent condition is adapted to our model. This needs some numerical aspects aspects which characterize our algorithm and precise the
: method of solution on digital computers.
The variational formulation of the model permits the use of optimization techniques. A descent technique, thqt of Elecher--Reeves with re-initaliza-
: tion and a proposed line search t-chnique are used. For our mo the vanishing divergence condition is not sufficient to sustain our problem as. an unconstrained optimization problem. A penalty method (exterior penalty
(function) is now necessary for the numerical solution.
Apractical example is solved using our algorithm and the corre ponding stress distributions are obtained.

Introduction:

Consider a two dimension problem consisting of a domain $\Omega e R^{2}$ occupied by the continuum medium. A suface traction $T(t)$ is applied on a part Γ_{1} of Γ. (T function of time t) On the complementary part Γ_{2} of Γ a strictly positive measure, a field of diplacement rates $\hat{i}(t)$ is applied. The variational formulation of the problem made in |1/will be considered here, in which the problem redices to
\vdots

$$
\begin{equation*}
\min G\left(\sigma_{0}+\sigma_{,} s\right)=\min \int_{\Omega} G_{1}\left(\sigma_{0}+\sigma_{1} s\right) d x \tag{P}
\end{equation*}
$$

!
where a_{0} is the stress feild satisfying the equilbruim conditions with the exterior load.
The product space $\sigma_{X} S=I_{\tilde{C}}\left(\left(D^{\prime}(\Omega)\right)^{4},\left(D^{\prime}(\Omega)\right)^{m}\right)$ is a Banach space
: spanned by the domain of $\&$ where (see [1] , III)

$$
\begin{align*}
& \tilde{G}(\sigma, s)=C o\left(\operatorname { m i n } \int \left(G_{1}\left(x, \sigma_{0}+\sigma, s\right) d x, \int G_{1}\left(x, \sigma \sigma_{0}^{-\sigma,-s) d x))}\right.\right.\right. \\
& I^{\prime 0}=\left\{\sigma \varepsilon \sigma: \sigma_{i j}, \tilde{D}^{n} \sigma=0 \text { in } \Omega, \sigma_{i j} n_{j}=0 \text { on } \Gamma_{1}\right\} \tag{1}
\end{align*}
$$

Dr.Eng, Department of Math.,M.T.C. , Cairo.

CA-10	104

r
: Which is a subspace of o
where $\vec{D}=-\left(\partial_{1} \sigma_{11}+\partial_{2} o_{12}, \partial_{1} \quad \sigma_{21}+\partial_{2} \sigma_{12} j\right)$
The numerical solution of (p) using of finite elements of faced with essential difficulty that of the null divergence conditions of (2).
: point can be achieved in two ways
(i) If we use a suitable lagensian formulation the problen recuces to the search for a saddle point. The most convenient firite element in
: (ii) Use scase will be that of mixed and hybride type (cf. [6], [12]).
(ii) Use finite elements of null divergence (introduced in [5] For fluid
flow). The problen will then reduces to an unconstiained
problem this technique will be used throughout this work

2. Finite Element Approximate Problem

Ω an open bounded polygon in $R^{2},\left(\tau_{n}\right)$ be a regular family of triangulation : on , i.e. a converage family $\tau_{h}=\left\{\mathcal{K}_{i}\right\}$ i K_{h}, $\mathrm{h}>\mathrm{o}$, by closed triancies
K_{i} satisfying:
(i) $K_{i} \wedge K_{j}, i \neq j$ is either empty or a side $K_{l i}$ or a vertex $a_{1 i}$
(ii) The maximum diameter of elenents of τ_{h} is less than or equal n.
! (iii) There existv>o such that for all $h>0$ and all $k \varepsilon \tau_{h}$
$\vdots \quad \frac{\operatorname{diam}\left(K^{\prime}\right)}{P_{k}} \leqslant \nu$
where ρ_{k} is the diameter of the circumscribed circle.
! (iv) The triangulation τ_{h} is compatible with the decomposition $\Gamma_{1}, \%_{2}$
 sides of some K.
Let P_{1} (A) be the space of two variable polynonials of degree less than or equal to one defined over $\ R^{2}, P_{1}$ is therefore of dimension three.
: let also $\mathrm{P}_{1}^{\mathrm{h}}$ be the space of functions defined on Ω such that

$$
\begin{equation*}
p_{1}^{\mathrm{h}}=\left\{v \varepsilon R^{\Omega}:\left.v\right|_{K} \varepsilon P_{1}(\mathrm{~K}), K \varepsilon \tau_{\mathrm{h}}\right\} \tag{2}
\end{equation*}
$$

\vdots We denote by $b_{i}(i=1,2,3)$ meridians of the triande k opposin!, the verte: a_{i}.
! We can easily verify that the
$\operatorname{set} \sum_{\mathrm{k}}=\left\{\mathrm{b}_{\mathrm{i}}\right\} \quad 1 \leqslant$ is 3 (CE. [4])
is P_{1} - unisolvant (Cf. [4]) while
$\vdots \sum_{h}={\underset{K}{K} \tau_{1} \text {. }}_{U} \sum_{K}$ is the set of nodes
(of number N_{h}) of τ_{h}.
We denote the finite element space adapted to our problen by $\mathrm{X}_{\mathrm{h}}^{0}$

$$
X_{1}^{o}=\left\{v_{h} \varepsilon p_{1}^{h}: v_{h} \text { continuous at } b_{i}, b_{i} \varepsilon \sum_{h}, v_{i 1}\left(b_{j}\right)=0 b_{j} \varepsilon \sum_{h} \Gamma\right\}(\omega)
$$ Let $r_{h}: \sigma \rightarrow\left(p_{1}^{h}\right)^{4}$ be a linear mapping defined by

$$
\int_{k^{\prime}}\left(r_{h} v\right)_{j} d \Gamma=\int_{k^{r}} v_{j} d \Gamma \quad j=1,2,3,4
$$

for all sides k^{q} of the triangles $k \varepsilon \tau_{h}$. Then we nave for every ve L^{l} () ,

$$
\begin{equation*}
\left.\int_{k} \operatorname{div}\left(r_{h} v\right)_{i},\left(r_{h} v\right)_{i+1}\right) d x=\int_{k} \operatorname{div}\left(v_{i}, v_{i+1}\right) d x \quad i=1,2,3 \tag{5}
\end{equation*}
$$

We denote $D \quad v=-\left(\operatorname{div}\left(v_{1}, v_{2}\right), \operatorname{div}\left(v_{3}, v_{4}\right)\right)$, and $\int_{k} j\left(r_{i 1} v\right) d x=\int_{i} d \quad u x$
A direct consequence of (4), (5) and (6) is the following lema rinici:
assure the convergence of the numerical solution (patch test).
Lemma:
For all common side K^{\prime} of any two adjacent triangle $\kappa_{i},{ }_{j}$, we have:
$\vdots \quad \int_{k^{,}}\left(v_{h, i}{ }_{n, j}{ }_{n, j}\right) d \Gamma=0 \quad \forall v_{h} \varepsilon X_{h}^{o}$
where $v_{h, 1} l=1,2$, is the trace of the restriction of v_{h} to n_{1}. Further more, if $K^{\prime} \in \Gamma$, we have

$$
\begin{equation*}
\int_{k^{\prime}} v_{h, i} d \Gamma=r \quad \forall v_{h} \varepsilon x_{h}^{0} \tag{8}
\end{equation*}
$$

We now in a position to construct the needed iinite element space

$$
\mathrm{z}_{\mathrm{h}}^{0}=\left\{\mathrm{v}_{\mathrm{h}} \varepsilon\left(\mathrm{X}_{\mathrm{h}}^{0}\right)^{4}: \int_{\mathrm{k}} \rho^{*} \mathrm{v}_{\mathrm{h}} \quad \mathrm{dx}=\mathrm{C}, \quad \text { ルह } \tau_{\mathrm{h}}\right\}
$$

which can be reduced to that introduced by. Crouzeix Xaviart [J] Mis space is characterized by the conditions of null divergence and trice
: in the following manner:
Let A, B be the linear mappings

$$
\begin{array}{ll}
\vdots & \sigma=\left[\sigma_{i j}\right] \xrightarrow{\vdots}\left((\Delta \sigma)_{1},\left(\Delta \sigma_{z}\right)_{2}\right)=\left(\left[\sigma_{i 1}\right],\left[\sigma_{i 2}\right]\right) \\
\vdots & (\vec{p}, \overrightarrow{\mathrm{q}}) \xrightarrow{B} \rightarrow(\operatorname{div} \overrightarrow{\mathrm{p}}, \text { div } \overrightarrow{\mathrm{i}}) \tag{11}
\end{array}
$$

consequently

$$
-\ddot{D}=\left(\begin{array}{lll}
B & 0 & A \tag{1..}
\end{array}\right) \sigma
$$

So the introduced finite element (in our work) is in fact a product 0 . the Crouziex-Raviart finite element of oand do. 'he functional spees adjoint to our problem takes the form:
\vdots Given $\mathrm{D}_{\mathrm{h}}^{*}$ be the mapping defined by:
\dot{L}.
Γ
$\left.\vdots \quad\left(D_{h}^{*} v\right)\right|_{k}=D^{*}\left(\left.v\right|_{k}\right) \quad \forall v \in\left(p_{1}^{h}\right)^{4}$
If $v \in\left(X_{h}^{0}\right)^{4}$ then $D{ }^{*} v$ is T_{h} - Stepped function.
Denote by $\tilde{\sigma}_{h}$ the stress field statisfies the equilbruin condition ($\begin{aligned} & \text { exterior forces) as follows: }\end{aligned}$

$$
\begin{equation*}
\text { Let } Y_{h}=\left\{v \varepsilon\left(p_{1}^{h}\right)^{2}: v\left(b_{i}\right)=0, \quad b_{i} \varepsilon \sum_{h} A \Gamma_{1}\right\} \tag{12}
\end{equation*}
$$

: then for every $\dot{u} \varepsilon Y_{h}$, we have
$: \quad \sum_{k \varepsilon \tau_{h}}^{0} \int_{k}\left(\left.\tilde{o}_{h}\right|_{k} / \dot{u}\right) d x+\int_{k}(p / \dot{u})_{2} d x+\Gamma_{1} \mu_{k} \int\left(\left(\tilde{o}_{h} \cdot n+1\right) / \dot{u}\right)_{2} d \Gamma=:$
Apply noh the stokes formula on each Einite element taking into consiver tion that the elements satisfy fthe patch test, we get

$$
\begin{equation*}
k \sum_{h} \tau_{h}\left(\tilde{o}_{h} / U^{\prime \prime}\left(\left.\dot{u}\right|_{k}\right)_{4} d x+\int_{k}\left(p /\left.\dot{u}\right|_{k}\right)_{2} d x+\Gamma_{1} \hat{\wedge} \int_{k}\left(1 /\left.\dot{u}\right|_{k}\right)_{2} d=c\right. \tag{15}
\end{equation*}
$$

We can now take for $\tilde{\sigma}$ one of the elements of the affine variaty

$$
\left\{\sigma_{h} \varepsilon\left(p_{1}^{h}\right): D_{h}^{\prime \prime} \sigma_{h}+\left.p\right|_{Y_{h}}=0 \text { and } \sigma_{h} \cdot n+\left.T\right|_{\text {Irace } Y_{h}}=0\right\}
$$

Finally we define the finite dimensional space S_{h} as a sulspace of S by $: \begin{aligned} & \text { a }\end{aligned}$

$$
\begin{equation*}
S_{h}=\left(X_{h}^{0}\right)^{m} \quad \text { (} \mathrm{m}: \text { No of internal parameters) } \tag{10}
\end{equation*}
$$

The problem (P) is now approximated as follors:
determine $\left(\underline{\sigma}_{h}, \underline{S}_{h}\right)$ that

$$
\text { minimize } G\left(\tilde{\sigma}_{h}+\sigma_{h}, S_{h}\right) \text { on } z_{h}^{0} \times S_{h} \quad\left(i_{h}\right)
$$

Let $\quad\left\{p_{i}\right\} 1 \leqslant i \leqslant 3$ be the canonical basis of $p_{1}(k)$, $k \in \tau_{h}$ with

$$
\begin{equation*}
p_{i}\left(x_{1}, x_{2}\right)=1-2 \lambda_{i}\left(x_{1}, x_{2}\right) \quad 1 \leqslant i \leqslant 3 \tag{17}
\end{equation*}
$$

where λ_{i} are the barycenteric coordinates v.r.t. the vertex \mathcal{I}_{i},
One can easily verinty One can easily verigly that

$$
\begin{align*}
& \int_{k} \lambda_{i}(x) d x=\frac{1}{12}\left(1+\delta_{i j}\right) \Delta k \\
& \int_{k} p_{i}(x) d x=\frac{1}{3} \delta_{i j} \Delta_{k}, \Delta_{k}=\text { area of }
\end{align*}
$$

The later results shows that the functions P_{i} are orntogonal in $\mathrm{R}^{2}(\ldots)$.
: So one can define on each $\mathbb{K}_{j} \in \tau_{\mathrm{h}}$ the functions $\mathrm{Fi}_{i j} .2$.
$\vdots \quad W_{i}^{1, j}=\frac{1}{\left|a_{i}{ }^{a}{ }_{i+1}\right|}{ }^{p}{ }_{i+2} \vec{n}_{i+2}+\frac{1}{\left|a_{i}{ }_{i+2}\right|}{ }^{P}{ }_{i+1} \vec{n}_{i+1}$
(relative to the node a_{i})
$\left.\sum_{i} \quad n_{i}^{2, j}=\frac{1}{a_{i+1}{ }^{a}{ }_{i+2}} \right\rvert\, P_{i} \overrightarrow{a_{i+1} a_{i+2}}$

CA-10	107

Γ \qquad
(relative to the meridians b_{i})

(a)

(b)

Fig. 2.

Using Gauss Formula we get
$\Delta_{j} \operatorname{div}\left(W_{i}^{l, j}\right)=\int_{k_{j}} \operatorname{div}\left(H_{i}^{1, j}\right) \operatorname{dx}=K_{j} i_{i}^{1, j} \cdot \vec{n} \quad \operatorname{di}=(i=1, \ldots, 3)$
So div $\left(W_{i}^{1, j}\right)=0 \quad$ over $k_{j} \quad 1 \leqslant i \leqslant 2$
Similarly div $\left(\mathrm{H}_{2}^{2}, j\right)=0$ over $k_{j} \quad 1 \leqslant i \leqslant 3$
: Numerical Aspects and Considerations

1. One can measly verify that the functions $\prod_{i}^{1, j}(1=1,2)$ are dependant, so it is possible to eliminate one of the unknowns $1, j, i \leqslant 3$ Practically, this elimination is done at each node common to a set of triangles which partitioning 2 as in $\mathrm{Fi}_{j} .3$. Consequently, for each \mathbb{K}_{j}
: a set of basis in (XO) $\left.{ }^{2}\right|_{k j}$ is defined and the set $\{w, i, j\}$ is now reduced: to only five elements.

At the computational level this reduction of the number of unknowns is of
\vdots great importance when Card τ_{h} is very lar de.
2. Another reduction throughout the problem is attained by taking S_{h} as
 table since the elements of S must satisfy only some integrability conditions.
3. The symmetry property of $\left(\sigma_{i j}=\sigma_{j i}\right)$ is not satisfied by the finite
$\vdots \quad$ element functions ($\left.W_{i}^{k}, j, W^{r}, i\right)$. This difficulty nay be over coned at the level of numerical solution using a suitable penalty method.

CA-10	108

\}
Fig. 3.
4. The boundary conditions are treated as follows:
(i) Determination of $\tilde{\sigma}_{11}$ (densoted here as σ) satisfying (Uiv ($\tilde{o}_{11}, \tilde{\sigma}_{12}$), div $\left.\left(\tilde{\sigma}_{21}, \tilde{\sigma}_{22}\right)\right)=0$ (for null body forces [3]) is realizeu at the computational level by constructing sealar functions Z_{1}, \ddot{z}_{2} such
that: $\operatorname{rot}\left(Z_{1} \vec{k}\right)=\left(\tilde{\sigma}_{11}, \tilde{\sigma}_{12}\right), \operatorname{rot}\left(z_{2} \vec{k}\right)=\left(\tilde{\sigma}_{21}, \tilde{\sigma}_{22}\right)$
Where \vec{k} is the unit normal to surface 2. The vector functions $\tilde{p}=\left(\tilde{\sigma}_{11}, \tilde{\sigma}_{12}\right), \tilde{q}=\left(\sigma_{21}, \sigma_{22}\right)$ can be taken as elements of $\left(1_{1}^{h}\right)^{2}$
(ii) Zero boundary conditions do not imply more elimimation oi the unknowns defined on $\vec{k} \wedge \Gamma$. To show this, let $\overrightarrow{\mathrm{a}}_{11}=\left(4_{11}, 4_{12}\right)$ be an approximation of $\overrightarrow{3} \vec{q}$ in z_{h}^{0}, then we have $\vec{q}_{i i}=\sum_{i=1}^{3} \alpha_{i} v_{i}^{1}+\sum_{i=1}^{3} \beta_{i} H_{i}^{2}$
and

$$
\begin{aligned}
\left.\overrightarrow{q_{h}}\right|_{\Gamma} & =\left.\alpha_{1} V_{1}^{1}\right|_{\Gamma}+\left.\alpha_{2} W_{2}^{1}\right|_{\Gamma}+\left.\beta_{3} v_{3}^{2}\right|_{\Gamma} \\
& =\left(\frac{\alpha_{1}-\alpha_{2}}{l_{3}}\right) \overrightarrow{\mathrm{n}}_{3}+\frac{B_{3}}{l_{3}} \vec{k}_{3}
\end{aligned}
$$

where $\frac{1}{\rightarrow} \mathrm{i}$ is the length of the side apposing the vertex a_{i}, i, \ldots,
hence $\left.4_{h}\right|_{\Gamma}=0$ implies that only $\beta_{3}=C$, where as $\alpha_{1}=x_{2}$.
5. The number of unknowns define the stress field is $2\left(i_{\mathrm{a}}+\mathrm{iv}_{\mathrm{b}}-\hat{N}_{\mathrm{e}}\right)+1$, then N_{a} is the number of interior vertices of the triangles $w \tau_{\mathrm{f}}, \mathrm{N}_{\mathrm{b}}$ is we:
\vdots number of interior nodes and ive is the numer of eliminated nodes according to the above rule.
\vdots. The number of unknown to each component of type pr an internat perameter is 3 Nb . This number may be reduced to m taking $S_{n}=H_{0}^{h}$
(piecerise continuous functions)
i.. (piecewise continuous functions).

CA-10	107

(relative to the meridians b_{i})
where \vec{n}_{i} is the normal to the side $\overline{a_{i+1}}{ }_{i+2}$ (modulo 3)

(a)

(b)

Fig. 2.

Using Gauss Formula we get
$\Delta_{j} \operatorname{div}\left(w_{i}^{1, j}\right)=k_{j} \operatorname{div}\left(H_{i}^{1, j}\right) d x=k_{j} \|_{i}^{l, j} \cdot \vec{n} \quad d \Gamma=(i=1, \ldots, 3)$
So div $\left(\mathrm{H}_{\mathrm{i}}^{1, j}\right)=0 \quad$ over $k_{j} 1 \leqslant i \leqslant 3$
Similarly div $\left(\mathrm{N}_{2}^{2, j}\right)=0$ over $\mathbb{K}_{j} \quad 1 \leqslant i \leqslant 3$
: Numerical Aspects and Considerations

1. One can easly verify that the functions $n^{1, j}(1=1,2)$ are dependent, so it is possible to eliminate one of the unknowns $\prod_{1}^{1}, j, i \leqslant 3$ Practically, this elimination is done at each node common to a set of triangles which partitioning Ω as in $\mathrm{Fi}_{\S} \cdot 3$. Consequently, for each \mathbb{K}_{j}
$\vdots \quad$ a set of basis in (XO) $\left.{ }^{2}\right|_{k j}$ is defined and the set $\left\{W_{i}, j\right\}$ is now reduced to only five elements.
At the computational level this reduction of the number of unknots is of: \vdots great importance when Card τ_{h} is very lar se.
2. Another reduction throughout the problem is attained by taking ς_{h} as a space of functions τ_{h}-stepped (ie of class \mathbb{P}_{0} on K). This is acceptable since the elements of S must satisfy only some integrability conditions.
3. The symmetry property of $\left(\sigma_{i j}=\sigma_{j i}\right)$ is not satisfied by the finite
$\vdots \quad$ element functions ($\left.\mathrm{W}_{\mathrm{i}}^{\mathrm{k}} \mathrm{j}, \mathrm{W}_{\mathrm{r}, i}^{\mathrm{r}}\right)$. This difficulty may be over coned at the level of numerical solution using a suitable penalty method.

$C A-10$	108

\}
Fig. 3.
4. The boundary conditions are treated as follows:
\vdots
\vdots

Where \vec{k} is the unit normal to surface 2 . The vector functions
$\tilde{p}=\left(\tilde{\sigma}_{11}, \tilde{\sigma}_{12}\right), \tilde{q}=\left(\sigma_{21}, \sigma_{22}\right)$ can be taken as elements of $\left(1_{1}^{\mathrm{h}}\right)^{2}$
(ii) Zero boundary conditions do not imply more elimination of the
$\vdots \quad \vec{q}_{i n}=\sum_{i=1}^{3} \alpha_{i} w_{i}^{1}+\sum_{i \equiv 1}^{3} \beta_{i} i_{i}^{2}$
and

$$
\begin{aligned}
\left.\overrightarrow{q_{h}}\right|_{\Gamma} & =\left.\alpha_{1} v_{1}^{1}\right|_{\Gamma}+\left.\alpha_{2} W_{2}^{1}\right|_{\Gamma}+\beta_{3} \|\left._{3}^{2}\right|_{\Gamma} \\
& =\left(\frac{\alpha_{1}-\alpha_{2}}{l_{3}}\right) \overrightarrow{\mathrm{a}}_{3}+\frac{B_{3}}{l_{3}} \overrightarrow{k_{3}}
\end{aligned}
$$

where $\frac{1}{d}$ is the length of the side apposing the vertex $a_{i}, i, 1$.
hence $\left.4_{h}\right|_{\Gamma}=0$ implies that only $\beta_{3}=0$, where as $\alpha_{1}=\alpha_{2}$.
5. The number of unknowns define the stress field is $2\left(i_{a}+v_{b}-v_{e}\right)+1$, wher N_{a} is the number of interior vertices of the trianbles het, in is We: number of interior nodes and ise is the number of eliminated nodes according to the above rule.
\vdots. The number of unknowns to each component of type p_{1}^{h} of an intemai perameter is $3 \mathrm{~N}_{\mathrm{b}}$. This number may be reduced to Na takin: $S_{h}={ }_{0}^{\text {h }}$
$\dot{\text { i.. (piecewise continuous functions). }}$

FIREな A.M.E. CONFERENCE
29-31. fay 1984, Cairo

Fig. 4
7. Our algorithm may be constructed as a descent algoritha takin; intu consideration the results mentioned above together with a line search technicue proposed by the author $2 \mid$. For the example solvec bere Fig.4. (in which $\left.G_{1}(\sigma S)=\sum_{i, j}^{2}\left(\sigma_{i j}-S_{i j}\right)^{2}, T=1\right)$ a Fletcher- eeves alcorithn with reinitialization, also an exterior penalty nethod is used.

$C A-10$	110

```
    \Gamma
```

 ReFerences:
 \vdots

1 ABD EL FATMAlt, :S. Rafik. "Sur un Oodel de Visco:rplasticiti, wistence : et approximation de l'etat de Pluage stationnaire" 'hese, 'loulouse,
2. ABDEL FATTAH, M. Rafik." Aline search technique for descent alzoriting
3.
creep" tht. A numerical analysis oi void crouth in tension
Olids structures, Vol. 15, No. 1 (1979).
Holland (1973) ine inte element method for elliptic proble, s" orn-
o V.GTRAUIT \& P.A. RAVIART "Finite element approximation of the wavier-
$\vdots 7$ Stokes Equations" Springer - Verlag (1979).
7 B.HAYROLLES."(uelques applications Variationnels de la theorie wes
$\vdots \quad 10$, No. 2, (1971).
3 A.R.S. PONTER "Convexity and associated contimumpres of censtitutive relationships", Jode mecanique, Vol properties oi a class
9 A.R.S. P NVTER, "General theorem, 15, ito (1976). for a state variable description of material benavion oi structures
lu R. T. ROCKAEELIAR "Interrals which are convex functions" Pac.... "atn.
Vol. 24. No. 3, (1963).
\vdots
11 F.SIDOROFF "Variables internes en viscoelasticite. nes scalaires et tensorielles", J. de macaniyue, Vol variables inter-
 hybrides et mixtes " These, Paris VI, (1977) 。

