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ABSTRACT 

• Due to the ecentricity of thrust force acting on propeller blades, • 
: marine shafts experience whirl while rotating. This directly affect& 
the reactions of the different' supports, and consequently causes 
wear of shaft bearings. This paper is concerned with simplifying the 
concept for the shafting system in order to estimate the frequencies 

• . of whirl and propeller tip deflections. The work is dealing with 
• both; three and four span systems with overhaged propeller. The 
problem is also studied for both mass and massless shafts. For mass-
less shafts systems of any number of spans, general formulae for 
calculating the frequency of whirl and the deflection of propeller 
• tip are proposed. For shaft systems of distributed mass, a procedure. 
• is suggested to calculate frequencies as well as deflections at 
different supports. 

INTRODUCTION 

A shafting system is a line-shaft joining the propelsive plant at 
one end, with the propeller at the other end. This shaft is support-: 
ed by a number of bearings of different flexibilities. Such a system 
• is subjected to the different forces coming from various sources of 

• excitation directly or through the structure. The external moment 
variations applied on the actuating propeller and the shafting 
system will induce a whirling phenomenon. These would also cause 
• stress variations on the system, whichwere illustrated mathematical-
: ly by Jasper and Rupp (13 . If the wirling frequencies are somewhat 
close in value to the frequencies of any of the excitation sources, - 
one should expect resonance. Hence extra vibrational stresses not 

: only on the propeller and tail shaft but also on the whole after 
• part of the ship's hull. The latter type of vibrations always been 
the source of trouble to the senstive equipment installed on board 
ship and inconvenience to the crew. 

Problems Arise As a Result of Whirling Phenomenon: 

The dynamic nature of this phenomenon would cause additional fatigue: 
stresses in the propeller shaft and the tail shaft, especially at 
the front end of the propeller key way. The bearing reactions would 
be also magnified causing the vibration of the after body of the 

: ship. The first bearing just forward of the stern tube would be 
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damaged in a wiped up and heated upper half, while the lower half is: 
seemed undamaged. In general the stern tube would suffer the most, 

. leading to any or many of undesirable behaveiours, such as: premat-
,:urely worn lignum vitae staves in the after bearings, fracture of 

some of the bushes, a rapid wear and/or the deterioration of tail- 
 seizing of the metallic bushes, heavy cavitation and galvanic 

corrosion in the central annual space of the stern-tube, cavitation 
erosion marks could be traced on the tail-shaft in way of the after 
vitae bearing bush, last but not least, damage of the stern-tube as 
a whole due to exceessive bearing reactions. These problems and many 
others could be experienced by marine engineers working on board 
ships or could be seen as illustrated in Solumsmoen C21 and Svenson[3] 

PROPELLER EXCITATIONS 

When a propeller is situated behind a ship's hull, it tends to be 
, irregularly fed due to the non-uniform wake pattern, and the turbul- 
• ent layer of the water streams affected by the after hull. In such 
case the torque caused by the propulsive plant when transmitted into. 
thrust at the propeller blades will induce variations of forces and ' 

!moments which consequently influence the behaviour of the shaft. 

A'study by Frivold C4) , on four and five bladed propellers showed 
: that not only there are variations of torque and moments, with res- 
▪ pect to the angles of rotation, but that there are also variations 
in the values of thrust creating horizontal and vertical forces 
together with eccentricties acting on the propeller shaft. These 
variations in thrust with eccentricities are the cause of the whirl- 
ing phenomenon or the so called "lateral vibrations". 

: The frequencies of these forces are equal to the propeller blade 
rate -i.e. the propeller blade frequency-and its multiples- e.g. for 
a four bladed propeller running at 180 rpm., the frequencies for the 
first harmonics will be: 120 Hz for the fundamental harmonic and 
240 Hz for the second harmonic. 

FREQUENCIES OF LATERAL VIBRATIONS 

The method used here is based on the known simple beam theory given 
by Timoshinko [5] . The calculations are considering the following 
assumptions throughout the calculations: 

The eccentric force acting on the blade is assumed of a max of 10 % 
of the mean thrust, and is applied at a mean distance of eccentricity. 

The. rotios between deflections and slopes at any point remain const- 
ant. 

The first support which is meant to be the long stern tube bearing 
is considered fixed relative to the overhanged propeller shaft. 

: The shaft is considered elastic and massless relative to the mass of:  

propeller. Hence the static bending moment of each span is neglected. 

The effect of axial thrust force is neglected. 

A SYSTEM OF THREE MASSLESS SPANS 

Consider the case of supported shaft as shown in Fig. (1-a) A thrust' 
moment M is applied statically•at the free end A, causing a deflec- 
tion as shown in Fig. (1-b). 

To study the system, one can separate the three spans and examins 
each span individually and then relate the effect of each span, on 

Lits adjacent. • • • 	• • • 
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(a) 

Fig. 1 Shalt systum uf three spans. 

L.. 

Span CD 

The bending moment, the slope and the deflection at any point x 
measured from support C are given by: 

g - x  

g 
2 

0 = 	x - 	) 
x EI 	2g 

+
1 

M x2  x3  
y x = 

EI 	2 	6g ) + C1 
x + C

2 

where ; 

E = Young's modulus, 
I = moment of inertia of shaft section. 
C
1 
& C

2 are constants of integration. 

Applying the boundary conditions for span CD, we get : 

C
2 
= 0 	and C

m 	
. 

1 	EI 	3 
Thus, the slope equation of span CD becomes; 

2 

0 = M , x 	
2g 	3 1 

) x k 	- 
EI  

The deflection equation for span CD becomes; 

2 3 
M x x 

y = 	( - - — - fix) 
EI 2 6g 3 

At support C i.e. at x = 0 , 

0  = 
c EI 3 

, y = 0 

Span BC 

Applying the general equations for bending moment, slope, and 
deflection at any point x from support B, we get the same relations as (1) , (2) & (3) 

Applying the boundary conditions at point C, we get the general 
slope and deflection equations, respectively; 

M = M 
x 

 



FIRST A.M.E. CONFERENCE 

29-31 May 1984, Cairo DYN -19 206 

1 
= 	x 0 

	

	- I ) 
BC EI 

M x2  _ LIE) 
Y = 
BC EI \2 	2 

At point B, we have 

0 = 	
M • 1 	( + Ve for convention ) 

B EI 
Positive in + Ve clock wise rotation 

From the above discussion, one can say that the total slope at point 
B is the sum of the slopes to the two spans to the right BC & CD. 

Thus from gq. (6) & (9), the total slope 

M 	1 

	

= 0 + 0 	= 	( - - 	) 	 (10) 

BB B C 	EI 2 3 

: Span AB 

If this span is assumed fixed at point B-Stern Tube Bearing the 
bending moment, slope, and deflection of any point x measure from 
support A would be : 

M = M 
x 

 

M.x 
0 = 
x 	EI 	1 

(7)  

(8)  

(9)  

Mx
2 

Y
x 2E1 

+ C
1 
 x + C

2 

L.. 

Applying the boundary conditions, the general equations for slope 
and deflection at any point along span AB, become; 

Ax MI 
= — (x-b) 	 (11) 

E 
2 	2 

M 	x 	b 1 	 (12) 
Y
x 

	b.x + 
EI 	2 	-2- I  

At point A 

bM ( 0 = - k + Ve for convention) 
A EI 

The Equation of Motion 

To lay down the equation of motion we assume that at all times the 
slope and moments are equal in value at both sides of each support. 

Now for the separated span AB, the moments acting to the left of 
point B are : 

Excitation periodic moment = Me
sin wt 

where : 

Me= F.r w = angular frequency. 

( 1 3) 

..J 
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Inertia moment of the propller mass caused by the angular accelera-
tion due to the slope 0

BB 
 alone, 

,  •• 	2 
= BBB. (I + m b ) 
BB d p 

where: 

I
d 

= mass moment of inertia of propeller about a diameter 
corrected for the effect of entrained water, calculated 
as given by Obrien [6]. 

m = the propeller mass corrected for the effect of the 
P 	entrained water, Obrien [6] ; 

b = length of the cantilever span , 
• 

0 = the part of the slope of the elastic line at point A 
BB contributed by the rest of the shaft. 

Inertia moment of the propeller mass caused by the acceleration due 
to the slope 0 alone, 

A 

= (Id•0 
A 
 +m

p
.y

A
. b) 

From Eq. (12), the deflection at point A is given by : 

2 

= Y 	. — 
A EI 2 

For small deflections we can assume that; 

YA 	M 	b 	0 A 

b b EI 2 2 

(15)  

(16)  

• or; 
b  

Y = 	. 
A 2 A 

(17) 

where: 

0 = the part of slope at point A contributed by the length 
b of span AB 

Thus: 	 2 
• • 	 .. 

Id. 0 +m.y.b=I. 0 +m . 0 . 
dApA dApA 2 

b
2
, ..

= (I + m • 	 ) 0 
d p 2 A 

: Elastic moment transmitted by the shaft at B 

E.I  
M = 0 	. 

BB 1 1 
( 2 - 3) 

'From equations (10) & (13) the ratios of slopes are: 

0 
A 

L.. 	 -8--  = 

b 

(18)  

(19)  
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r"• 
The equation of• motion is thep rewritten as: 

2 
b 2 	•• 

	

M. sin wt = (I + m 	). 0 + (Id  +m m b ) • 	+ 
d 	p 2 	A 	 BB 

E.I  

0BB ( 
2 	3 

Substituting for 0 , we get : 
BB 

	

M. Sin wt - °BB • b 	b2 	2 	.. 

e 	1 	g (Id + nip -2--)  + (Id 
+ m P b ). 0 BB + 

— — 
2 	3 

E.I 
0 	( 	) 
BB L.  .g.  

2 3 

To solve for 0 
BB

, we assume that ; 

0 	= A. sin w t + B. cos wt 
BB 

0 	= A.w. cos wt - B. w. sin wt 	(22) 
BB 

.. 	2 	2 
0 	= - A.w . sin wt - B. w . cos wt 
BB 

Substitute equations (22) into equation (21), and equate alike 
terms, we get : 

2 

M
e
= - A.w 2 (1 

 b 	b 	2 1 	E.I  
).(I +m 	) + (I

d 
+ m b ) + A 

1 1 g d 2 p 	P 	g 
— _  

- 2 3 

	

	 2 3 

2 
2 	b 	b, 	2, 	E.I 

0 = -B.w II( 	(I 
4mp 	2  JAI d +m 

 p  b 
	B 

I 	g _  

2 3 	 2 3 

At resonance, the amplitude of 0 	is infinite, hence ; 
BB 

2 
2[ 	 E.I 

- w . , 
	b 	

. (I
d 
+ m

p 	
)+ (I + m b2) + 

1 	g 
= 0 (23) 

— - — 
2 3 	 2 3 

Finally the natural frequency in cycles per min. is found to be : 

30 	E.I  
f = 	 (24) 

	

77- 1 K 	2 b I 
I 	( b + 	

2 

	

2 3 	2 3 - 	) +mb. (— + 	- 	1 

L_ 	
Jt 

(20) 
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6 
The total deflection of the propeller tip is: 

Ypr = yA 	BB 
+ 0 	. b 

Mb ,b 1 , 
= — • E.I 	2 + 2 - 3 3 

(25) 

A SYSTEM OF FOUR MASSLESS SPANS 

If a further span DE of length -g- is added to the previously studied.  
system, we get a four span shafting system. Fig. (2). 

M. 

Starting from the first span to the right -DE- and proceding back-
wards till we reach the overbanged span -AB-, we would end up with 
two similar formulae as (24) & (25). 

Thus the natural frequency in cycles per 	,min and a tip deflec- 
tion for a four massless span system would be: 

E.I 
30 

f = 
 

	

1 / f 	2b1gf, 

	

I
d
. (b+2 - 

2 	3 	2 	3 ) 
+ 	)+ m

p
b . ( - +  

= m 	b 1 	f 
Y 	. 10. (2 	+ 	) 
pr 	E.I 	2 	2 - 2 	3 

GENERAL FORMULA FOR ANY NUMBER OF MASSLESS SPANS 

From the similarity of the Eq. (24) & (26), a general formula could 
be introduced to calculate the natural frequency of a shafting 
system of any number of spans. 

• E.I 
• 30 

f. 
k 

. L. 
L  k 

. L. 
77- 1 (1, +El( -1) 1. -1( -1 \11 1 )1_ 	b  2 o 11::(.4

) 
1 4.t_on 

i • d o i=1 2 / 3 	5 ‘2 i=1 2 • • 

(28) 

(26)  

(27)  

L.. 
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The general 

'Y 
pr

=  
E.I. E.I 

Lo.  

equation 

• • 	 • 	. 	• 	• 	• 

for propeller deflection would: 
L 	k 	L, L 

(29) 

	

-1 	i 	n 	1  

	

-) 	(-1). 	+ 	(-1).  

	

 2 	i=1 	 3 

n= number of total spans studied, 
k= n-1 , 
1.1F length of overhang, 
L ..= length of the last span, (forward end) 
1 L = lengths of spans in between, keeping in mind that L should 

i be always taken equal to zero. 	1 
• 

E,I, and Id  are as given before. 

SHAFT SYSTEMS WITH CONSIDERED MASSES 

:The following is a method for calculating the natural frequency 
.taking into consideration the effect of the shaft mass. This method 
based on the assumption that at all times the elastic line of the 
shaft retains the same configuration, that obtained if the system is 
:considered stationary with a pure static moment applied at point A. 
This means that the ratios between deflections and slopes at any 
point of the shaft remain constant. The form of elastic line will 

.define by knowning the slope 0 at point B. 

Fig. (3) Equivalent support beam with effect 

of shaft mass taken into consideration 

From Fig. (3), let m represent in general the masses between points: 
1 

A and B including the distributed mass of the shaft, x1 
 the distance.  

of these masses from point B , m
2 
 and x

2 
the corresponding 

quantities to the right of point B. 

L.. 
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:.Supposing that the application of a static moment M at point A is 

causing a deformation of the shaft having slope 8B, , and the corres,. 

ponding slope 0 and the deflection at the masses e and m are A 	 1 	. 2 in general y
1 
and y . Also let R rei,resent the reaction force at 

2 

the support C. According to the original assumption the ratios 

Al 	R
c 

P I- 	
0 

and — remain constant at all times during a 
0 	0 	 _ 
B 	B 	B 

vibration cycle. 

Taking moments for the entire shaft about point B, the differential 

equation of motion with variable the angle 0 which is the instan-
eous value of the slope at point B. 

0 '

1 

	

X:: 

	
y 

•• 
Y
2 

 

M. sin wt . Id 	1m — x 0 \ 
- e 	d 0 	1 0 	1 	41.--m2 	x 0 	+ B 	B 

	
9 2 

R 1  . 	 B 
c e 

+ 0 

	

	 (30) 

B 
where: 

I = the moment of inertia of the propeller about a diameter. 

M
d 

sin wt= the excitation moment 
e 

• 1 = distance of bearing C from support B. 

Eq. (30) can be solved in a manner similar to that of massless 

: shaft, and the solution for the natural frequency in cycle per minute 

will be : 

R 1 

f =  

30  

 -- 
Tr 0 +1:M y x 	y x 

dA 	 2 2 2 

If more than one span between bearings is to be taken into consider-' 

ation? the same principle of assuming the configuration of the 

elastic line remaining proportionalety the same can be accepted? and 

after the elastic line is drawn for some value of M the quantities 
involved in the equation of the elastic line can be obtained the 

equation then takes the form: 

R1 I E.  
f 

= TT 	I
d  0A 4--  

+5—myx 

where : 

1 = distance of any bearing from support B, (Stern-tube bearing) 

• • R = the reactions at each support, 
m = mass of shaft element, 
y = corresponding deflection of shaft element, 

x = distance from each element to support B, 

(31) 

( 32) 
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For the following cases, the numerator and the denominator are 
analysed separately and then subtituted in Eq. (32) to get the 

: fundamental frequency of whirl. 

Case of Three Spane  

The propeller mass only causes deflection yam, Eq. (25) Hence, 

2 

(myx) = m . Mb 
	N 	 (33) . b

2  ( b 
— o 	

R 
) + 

1 
— - \  p p E.I 	2 3 

For mass of span AB 

The equation of deflection: 

Y=Y+0. x 
1 x BB 1 

Using Eq. (12) & Eq. (10) and substituting for x = b -, x
1 
 , we get; 

y x 	. b3 	+ 	- 	) 	 (34) 1 1 1 / 1E.I 	8 	6 	9 

' For mass span BC 

2 
x 	1.x 	g.x 

M , 2 	2 	2 
Y 	k i  + 

 
2 EI 	2 	3 ) 

M 3 
Y 2x2 7412 • E.I 1  ( 

7 
24 

1 - .a ) 
9 

(35) .  

• For mass of span CD 

Using Eq. (5) & having x = x3-1 , we get ; 

M 	7 4 1 	3 1 2 2 3 3 1 4 
Em 3 y 

 3 
x 
 3 

=14. 
 3 E.I (-360 	45 .g + 	. 1.g -1 .g + 

4 
1 g+ 

6 
— 1 ) (36): 

Having defined the terms Id ' & 0
A 
 we may conclude the denominator 

of Eq. (32) to be: 

M 	1 	ii. 	2 b 	1.  _ A, 	13,b 	1 	g 	3,71 1, = 	((b+ — - ),I +m b (— - 
EI 	

) +/A 0 (-8-  + .z-  - 
2 	3 	d p 	2 	2 	3 	9 - +1  24 -9)/1+  

4 	3 	2 2 4 
7  g  2.1 	1 	g 	31

3
g 	1 

+)-t ( 	+ 	... 	+ 	+ 6--  360 45 20 	4 - )) 

where : 

)(41,/Ate3  = mass per unit length of different spans  
= mass per unit length of all spans where b,l,g, are 
the equivalent lengths. 

The structure is then salved to calculate the reactions at the 
different supports. 
Hence: 

= R
c
.1 + R . (l+g) (38) 

(37) 

L.. 
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Substituting back in Eq. (38) we can calculate the first frequency 
of vibration. 

!Case of Four Spans 

The same procedure is applied and the different corresponding 
!elements of Eq. (3i) would be : 

MbblEf 
(myx) = m • 	(- + 	+ 	) 

p EI 2 2 2 3 

Em 
3blRf 

xl 741 EI 	
b ( + 	

6 
+ 

 

M 	3 	1 	g 	f Em  y x = 
2 2 2 )142 	E.I. 	 24 - 6 	9. 	

(41) 

M 	
3 	

25 13 ...21g 	+ 	
(42) 

	

flg 	
2 

Em3Y3x3 	E.I g"" 24 12 	6 9 J  

---  

=  

M —2 —2 	r Gf -  G13  G13  3 - —2 —2 
/A4 E I 	

,21 (Gf - G1 ) -6f 	
5 

L 	
2 	

4 Gl(Gf -G1 )+f.G1 j+ Em4Y4x4 	.  

—2 —2 —2 	2 —1 
Gf - G1 	G1 	f.G1 	f 	f.G1 
8 	4 	3 	9 	6 

: where ; Gl = g + 1 
57 = g + 1 + f 

• 1 	f 
The equation for 0

A 	E 
= 	(b + — - 

E 
 + 

3 
 ) 

.

M

I 	2 2  

Then the whole structure is solved to get the values of the nominator; 
• ER.L = RC.  1 + R

D 
 ( l+g) + R

E 
 ( 1 + g + f) 

.Finally the frequency equation is found. 

; 
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