DYN-19 203

MILITARY TECHNICAL COLLEGE

CAIRO - EGYPT

WHIRLING EFFECT ON BEARINGS OF MARINE LINE-SHAFTS UNDER EXTERNAL EXCITATIONS

H.M.METWALLY , O.Y. SHOULA

ABSTRACT

Due to the ecentricity of thrust force acting on propeller blades, : marine shafts experience whirl while rotating. This directly affects the reactions of the different supports, and consequently causes wear of shaft bearings. This paper is concerned with simplifying the concept for the shafting system in order to estimate the frequencies of whirl and propeller tip deflections. The work is dealing with both; three and four span systems with overhaged propeller. The problem is also studied for both mass and massless shafts. For massless shafts systems of any number of spans, general formulae for calculating the frequency of whirl and the deflection of propeller . tip are proposed. For shaft systems of distributed mass, a procedure is suggested to calculate frequencies as well as deflections at different supports.

INTRODUCTION

A shafting system is a line-shaft joining the propelsive plant at one end, with the propeller at the other end. This shaft is supported by a number of bearings of different flexibilities. Such a system is subjected to the different forces coming from various sources of excitation directly or through the structure. The external moment variations applied on the actuating propeller and the shafting system will induce a whirling phenomenon. These would also cause stress variations on the system, whichwere illustrated mathematicalily by Jasper and Rupp [1]. If the wirling frequencies are somewhat close in value to the frequencies of any of the excitation sources, one should expect resonance. Hence extra vibrational stresses not only on the propeller and tail shaft but also on the whole after part of the ship's hull. The latter type of vibrations always been the source of trouble to the senstive equipment installed on board ship and inconvenience to the crew.

Problems Arise As a Result of Whirling Phenomenon:

The dynamic nature of this phenomenon would cause additional fatigue: stresses in the propeller shaft and the tail shaft, especially at the front end of the propeller key way. The bearing reactions would be also magnified causing the vibration of the after body of the ship. The first bearing just forward of the stern tube would be

* Associate Professor, University of Alexandria, Faculty of Engineering, Mechanical Engineering Dept.

** Naval Architect & Member of Royal Institution of Naval Architects.

FIRST A.M.E. CONFERENCE

DYN-19 204

29-31 May 1984, Cairo

damaged in a wiped up and heated upper half, while the lower half is seemed undamaged. In general the stern tube would suffer the most, leading to any or many of undesirable behaveiours, such as: prematurely worn lignum vitae staves in the after bearings, fracture of some of the bushes, a rapid wear and/or the deterioration of tailshaft, seizing of the metallic bushes, heavy cavitation and galvanic corrosion in the central annual space of the stern-tube, cavitation erosion marks could be traced on the tail-shaft in way of the after vitae bearing bush, last but not least, damage of the stern-tube as a whole due to exceessive bearing reactions. These problems and many cothers could be seen as illustrated in Solumsmoen [2] and Svenson[3]

PROPELLER EXCITATIONS

When a propeller is situated behind a ship's hull, it tends to be irregularly fed due to the non-uniform wake pattern, and the turbulent layer of the water streams affected by the after hull. In such case the torque caused by the propulsive plant when transmitted into. thrust at the propeller blades will induce variations of forces and imments which consequently influence the behaviour of the shaft.

A study by Frivold [4], on four and five bladed propellers showed : that not only there are variations of torque and moments, with respect to the angles of rotation, but that there are also variations in the values of thrust creating horizontal and vertical forces together with eccentricities acting on the propeller shaft. These variations in thrust with eccentricities are the cause of the whirling phenomenon or the so called "lateral vibrations".

: The frequencies of these forces are equal to the propeller blade rate -i.e. the propeller blade frequency-and its multiples- e.g. for a four bladed propeller running at 180 rpm., the frequencies for the first harmonics will be: 120 Hz for the fundamental harmonic and : 240 Hz for the second harmonic.

FREQUENCIES OF LATERAL VIBRATIONS

The method used here is based on the known simple beam theory given by Timoshinko [5]. The calculations are considering the following assumptions throughout the calculations:

The eccentric force acting on the blade is assumed of a max of 10 % of the mean thrust, and is applied at a mean distance of eccentricity.

- The rotios between deflections and slopes at any point remain constant.
- The first support which is meant to be the long stern tube bearing is considered fixed relative to the overhanged propeller shaft.
- : The shaft is considered elastic and massless relative to the mass of: propeller. Hence the static bending moment of each span is neglected.

. The effect of axial thrust force is neglected.

A SYSTEM OF THREE MASSLESS SPANS

- : Consider the case of supported shaft as shown in Fig. (1-a) A thrust[:] moment M is applied statically at the free end A, causing a deflection as shown in Fig. (1-b).
- To study the system, one can separate the three spans and examins each span individually and then relate the effect of each span, on its adjacent.

DYN-19 205

FIRST A.M.E. CONFERENCE

29-31 May 1984, Cairo

:

;

:

••••

Span CD :

*

.

-

. . .

.

•

The bending moment, the slope and the deflection at any point x measured from support C are given by:

$$M_{x} = M \frac{g - x}{g}$$
(1)

$$\Theta_{x} = \frac{M}{EI} \left(x - \frac{x}{2g} \right) + C_{1}$$
(2)

$$y_{x} = \frac{M}{EI} \left(\frac{x^{2}}{2} - \frac{x^{3}}{6g} \right) + C_{1} x + C_{2}$$
(3)

where ;

 $\begin{array}{rcl} {\bf E} &=& {\bf Young's modulus,} \\ {\bf I} &=& {\bf moment of inertia of shaft section.} \\ {\bf C} & & {\bf C} \\ {\bf are constants of integration.} \end{array}$

Applying the boundary conditions for span CD, we get : .

$$C_2 = 0$$
 and $C_1 = -\frac{M}{EI} \cdot \frac{g}{3}$

: Thus, the slope equation of span CD becomes;

$$\Theta = \frac{M}{EI} \left(x - \frac{x^2}{2g} - \frac{g}{3} \right)$$
(4)

The deflection equation for span CD becomes;

$$y = \frac{M}{EI} \left(\frac{x^2}{2} - \frac{x^3}{6g} - \frac{g \cdot x}{3} \right)$$
 (5)

At support C i.e. at x = 0, •

. . .

...

$$\Theta_{c} = \frac{-M}{EI} \frac{g}{3} , y_{c} = 0$$
(6)

Span BC

....

Applying the general equations for bending moment, slope, and ÷ deflection at any point x from support B, we get the same relations as (1) , (2) & (3)

....

. . .

...

Applying the boundary conditions at point C, we get the general slope and deflection equations, respectively; L ...

DYN-19 207 tion due to the slope Θ alone, BB $= \overset{\circ}{\Theta}_{BB} \cdot (I_{d} + m_{p}b^{2})$ FIRST A.M.E. CONFERENCE

29-31 May 1984, Cairo

(19)

Inertia moment of the propller mass caused by the angular accelera-÷ (14). where: I = mass moment of inertia of propeller about a diameter d corrected for the effect of entrained water, calculated as given by Obrien [6]. m = the propeller mass corrected for the effect of the p entrained water, Obrien [6]; : b = length of the cantilever span ,) = the part of the slope of the elastic line at point A BB contributed by the rest of the shaft. ÷ Inertia moment of the propeller mass caused by the acceleration due : : to the slope Θ_A alone, = $(I_d \cdot \overset{\bullet}{\theta} + m_b \cdot \overset{\bullet}{y} \cdot b)$ (15). . . From Eq. (12), the deflection at point A is given by : $y_A = \frac{M}{ET} \cdot \frac{b^2}{2}$ (16)For small deflections we can assume that; $\theta'_{\rm b} = \frac{M}{h} = \frac{M}{ET} \cdot \frac{b}{2} = \frac{A}{2}$ or: $y_{A} = \frac{b}{2} \cdot \theta_{A}$ (17)where: $\theta_{\rm b}$ = the part of slope at point A contributed by the length of span AB Thus: $I_{d} \cdot \overset{\bullet}{\overset{\bullet}{a}} + m_{p} \cdot \overset{\bullet}{\overset{\bullet}{y}} \cdot b = I_{d} \cdot \overset{\bullet}{\overset{\bullet}{a}} + m_{p} \cdot \overset{\bullet}{\overset{\bullet}{a}} \cdot \frac{b}{2}$ $= (\mathbf{I}_{d} + \mathbf{m}_{p} \cdot \frac{\mathbf{b}^{T}}{2}) \cdot \mathbf{\theta}_{A}$ • (18): Elastic moment transmitted by the shaft at B : $M = \Theta_{BB} \cdot \frac{E \cdot I}{(\frac{1}{2} - \frac{g}{3})}$; From equations (10) & (13) the ratios of slopes are: $\frac{\theta}{\theta_{\text{DB}}} = \frac{b}{\left(\frac{1}{2} - \frac{g}{3}\right)}$

DYN-19 208

FIRST A.M.E. CONFERENCE

29-31 May 1984, Cairo

٢

:

:

:

2

•

•

:

.

29-31 May 1984, Cairo

÷

:

The total deflection of the propeller tip is:

$$Y_{pr} = y_{A} + \theta_{BB} \cdot b$$
$$= \frac{Mb}{E \cdot I} \cdot \left(\frac{b}{2} + \frac{1}{2} - \frac{g}{3}\right)$$
(25)

A SYSTEM OF FOUR MASSLESS SPANS

If a further span DE of length -g- is added to the previously studied : system, we get a four span shafting system. Fig. (2).

Starting from the first span to the right -DE- and proceeding backwards till we reach the overhanged span -AB-, we would end up with two similar formulae as (24) & (25).

Thus the natural frequency in sycles per min and a tip deflection for a four massless span system would be:

$$f = \frac{30}{\pi} \sqrt{I_{d} \cdot (b + \frac{1}{2} - \frac{g}{2} + \frac{f}{3}) + m_{p}b^{2} \cdot (\frac{b}{2} + \frac{1}{2} - \frac{g}{2} + \frac{f}{3})}$$
(26)

$$Y_{pr} = \frac{M}{E.I} \cdot b \cdot \left(\frac{b}{2} + \frac{1}{2} - \frac{g}{2} + \frac{f}{3}\right)$$
 (27)

GENERAL FORMULA FOR ANY NUMBER OF MASSLESS SPANS

From the similarity of the Eq. (24) & (26), a general formula could be introduced to calculate the natural frequency of a shafting system of any number of spans.

$$f = \frac{30}{TT} \sqrt{I_{d} \left(L_{o} + \sum_{i=1}^{k} (-1)^{i} \cdot \frac{L_{i}}{2} (-1)^{n} \frac{L_{1}}{3}\right) + mb^{2} \left(\frac{L_{o}}{2} + \sum_{i=1}^{k} (-1)^{i} \frac{L_{i}}{2} + (-1)^{n} \frac{L_{1}}{3}\right)}$$
(28)

DYN-19 210

:

:

FIRST A.M.E. CONFERENCE

29-31 May 1984, Cairo

The general equation for propeller deflection would: $Y_{pr} = \frac{M}{E \cdot I} \cdot L_{o} \cdot \left[\frac{L}{2} + \sum_{i=1}^{k} (-1)^{i} \cdot \frac{L}{2} + (-1)^{n} \cdot \frac{L}{3} \right] \quad (29)$ where: n = number of total spans studied, $<math display="block">k = n-1, \quad 1 = length of overhang,$ L = length of the last span, (forward end) $L_{i} = lengths of spans in between, keeping in mind that L_{i} should$ $L_{i} = lengths of spans in between, keeping in mind that L_{i} should$ $E,I, and I_{d} are as given before.$ SHAFT SYSTEMS WITH CONSIDERED MASSESThe following is a method for calculating the natural frequency taking into consideration the effect of the shaft mass. This method

based on the assumption that at all times the elastic line of the shaft retains the same configuration, that obtained if the system is considered stationary with a pure static moment applied at point A. This means that the ratios between deflections and slopes at any point of the shaft remain constant. The form of elastic line will define by knowning the slope Θ at point B.

Fig. (3) Equivalent support beam with effect of shaft mass taken into consideration

From Fig. (3), let m represent in general the masses between points: A and B including the distributed mass of the shaft, x the distance iof these masses from point B, m and x the corresponding quantities to the right of point B.

FIRST A.M.E. CONFERENCE DYN-19 211 29-31 May 1984, Cairo Supposing that the application of a static moment M at point A is causing a deformation of the shaft having slope θ , and the corres-: ponding slope θ_A and the deflection at the masses m and m are and y_2 . Also let R represent the reaction force at in general y the support C. According to the original assumption the ratios 1 1 C remain constant at all times during a and vibration cycle. Taking moments for the entire shaft about point B, the differential : equation of motion with variable the angle θ which is the instan-eous value of the slope at point B. y sin wt = R 1 $+\frac{\mathbf{c}}{\mathbf{\theta}}\Theta$: (30)where: = the moment of inertia of the propeller about a diameter. : 1 M sin wt= the excitation moment e = distance of bearing C from support B. 1 Eq. (30) can be solved in a manner similar to that of massless : shaft, and the solution for the natural frequency in cycle per minute will be : $\frac{\mathbf{R}_{c}^{1}}{\mathbf{\theta}_{a}^{1} + \sum_{i=1}^{m} \mathbf{y}_{1}^{i} \mathbf{x}_{1}^{i} + \sum_{i=1}^{m} \mathbf{y}_{2}^{i} \mathbf{x}_{2}^{i}}$ (31)If more than one span between bearings is to be taken into consider-ation, the same principle of assuming the configuration of the elastic line remaining proportionalety the same can be accepted, and after the elastic line is drawn for some value of M the quantities involved in the equation of the elastic line can be obtained the equation then takes the form: $\mathbf{f} = \frac{30}{\Pi} \int \frac{\sum \mathbf{R} \mathbf{1}}{\mathbf{I} \cdot \mathbf{\theta}} + \sum \mathbf{myx}$ (32)

where :

L ...

Ó

1 = distance of any bearing from support B, (Stern-tube bearing)
R = the reactions at each support,
m = mass of shaft element,
y = corresponding deflection of shaft element,

 \mathbf{x} = distance from each element to support B,

	FIRST A.M.E. CONFERENCE
DYN-19 212	29-31 May 1984, Cairo
	· · · · · · · · · · · · · · · · · · ·
For the following cases, the numerator and analysed separately and then subtituted in	the denominator are Eq. (32) to get the
: fundamental frequency of whirl.	
Case of Three Spane	:
[:] The propeller mass only causes deflection	y,, Eq. (25) Hence,
2	AA
$(myx) = m \cdot \frac{Mb}{2} \cdot b^2 \left(\frac{b}{2} + \frac{1}{2} - \frac{g}{2}\right)$. (33)
$\begin{array}{c} p p E \cdot I 2 2 3 7 \\ \end{array}$	
For mass of span AB	
The equation of deflection:	:
$y_1 = y_x + \theta_{BB} \cdot x_1$	
Using Eq. (12) & Eq. (10) and substituting	for $x = b - x_1$, we get;
$\sum_{m=1}^{b} \mathbf{x} \mathbf{x} = \mathbf{\mu} \frac{\mathbf{M}}{\mathbf{m}} + \mathbf{b}^{3} \left(\frac{\mathbf{b}}{\mathbf{b}} + \frac{1}{\mathbf{a}} - \frac{\mathbf{g}}{\mathbf{a}} \right)$	1 (34)
2^{-1} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
For mass span BC	
2 x l.x g.x	1
$y_{-} = \frac{M}{M} \left(\frac{2}{2} + \frac{1 \cdot 2}{2} - \frac{3 \cdot 2}{2} \right)$	
2 EI 2 2 3	:
$\frac{M}{2}$ = $\frac{M}{2}$ = $\frac{3}{7}$ = $\frac{g}{2}$	(35)
$\frac{1}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{7}{2}$ E.I $\frac{24}{24}$ $\frac{9}{9}$	()))
For mass of span CD	
Using Eq. (5) & having $x = x - 1$, we get ;	
	0 0 7 7 1 4
$\sum_{m_3} y_3 x_3 = \mu_3 \frac{\mu_3}{E_{\star} I} \left(-\frac{1}{360} \cdot g^4 + \frac{1}{45} \cdot 1 \cdot g^2 - \frac{1}{22} \right)$	$\frac{1}{20} \left[\frac{1}{2} \cdot \frac{g^2}{g^2} + \frac{g^2}{4} \right] \left[\frac{1}{g^2} + \frac{1}{6} \right] \left[\frac{1}{2} + \frac{1}{6} \right] (36)$
Having defined the terms I & Θ we may co	onclude the denominator .
01 Eq. ()2) to be:	:
$=\frac{M}{m}$ $((b_{+}\frac{1}{2}-\frac{g}{2})\cdot I_{+}+m b^{2}(\frac{b}{2}-\frac{1}{2}-\frac{g}{2})+\mu$	$b^{3}(\frac{b}{a} + \frac{1}{c} - \frac{g}{a}) + 1^{3}(\frac{71}{a} - \frac{g}{a})\mu_{+}$
$EI \sim 23' d p \sim 223' / 23' d p \sim 223' / 23' d p \sim 23' d p \sim 23' / 23' d p \sim 23' d p \sim$	`8 6 9´ `24 9´´ :
$+\mu(\frac{7 g}{2} + \frac{1g}{2} - \frac{1 g}{2} + \frac{31 g}{2} + \frac{1}{2}))$	(37)
: 7 360 45 20 4 6 77	
where :	
$: \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3 = \text{mass per unit length of differentiation}$	rent spans :
= mass per unit length of all sp the equivalent lengths	pans where b,l,g, are
: The structure is then solved to calculate	the reactions at the
different supports. Hence:	
$E = \sum_{n=1}^{\infty} R \cdot L = R_{-1} + R_{-1} \cdot (1+g)$	(38) :
C Do C	
	لس

L ...

FIRST A.M.E. CONFERENCE

29-31 May 1984, Cairo

Substituting back in Eq. (38) we can calculate the first frequency of vibration. : Case of Four Spans The same procedure is applied and the different corresponding : elements of Eq. (32) would be : $(myx)_{p} = m_{p} \cdot \frac{Mb}{EI} \left(\frac{b}{2} + \frac{1}{2} - \frac{g}{2} + \frac{f}{3}\right)$ (39) : . $\sum_{n=1}^{m} y_{1} \quad x_{1} = \mathcal{M}_{1} \quad \frac{M}{EI} \quad b^{3} \quad (\frac{b}{8} + \frac{1}{6} - \frac{g}{6} + \frac{f}{9})$ (40) $\sum_{n=2}^{\infty} y_2 x_2 = \mu_2 \frac{M}{E_{1}} \cdot 1^{3} (-\frac{1}{24} - \frac{g}{6} + \frac{f}{9})$ (41) $\sum_{m_3} y_{3} x_{3} = \mu_{3} \cdot \frac{M}{E \cdot 1} g \cdot \left(-\frac{g^{3}}{24} - \frac{25}{12} 1^{3} - 21g^{2} + \frac{f_{1}g}{6} + \frac{f_{g}}{9}\right)$ (42) : $\sum_{i} \sum_{j} \sum_{k} \sum_{j} \sum_{k} \sum_{k} \sum_{j} \sum_{k} \sum_{j$ $\frac{\overline{\mathrm{Gf}}^2 - \overline{\mathrm{GI}}^2}{\frac{\alpha}{2}} + \frac{\overline{\mathrm{GI}}^2}{\frac{\mu}{2}} - \frac{\mathbf{f} \cdot \overline{\mathrm{GI}}}{\frac{\alpha}{2}} - \frac{\mathbf{f}^2}{\frac{\alpha}{2}} - \frac{\mathbf{f} \cdot \overline{\mathrm{GI}}}{\frac{\alpha}{2}} \right\}$ where; $\overline{Gl} = g + 1$ $\overline{\mathbf{Gf}} = \mathbf{g} + \mathbf{l} + \mathbf{f}$ The equation for $\theta_A = \frac{M}{E \cdot I} \left(b + \frac{1}{2} - \frac{g}{2} + \frac{f}{3} \right)$ Then the whole structure is solved to get the values of the nominator; $\sum_{R} R \cdot L = R_{C} \cdot 1 + R_{D} (1+g) + R_{D} (1+g+f)$ Finally the frequency equation is found. REFERENCES :1. Jasper, N.H., and Rupp, L.A. "An Experimental and Theoretical Investigation of Propeller Shaft Failure". Published SNAME(1952). 2. Solumsmoen, O.H., "Survey of Vibration Problems". Technical Bulletin of Det Norsk Veritas, (1977). 3. Svenson, G., "Shaft Vibration Calculations". Technical Bulletin of Det Norsk Vertas, (1977). : 4. Frivold, H., "Vibration Excitation Forces". Technical Bulletin of Det Norsk Veritas, (1977). Timoshinko, S., "Strength of Materials" (Part 1), p. 198-209, Published By: Affiliated East-West PVT. LTD., (1955). 5. O'brien, T.P., "The Design of Marine Screws Propellers" Publish-6. ed By: The Hutchinson Library of Ships and Shipping, (1962).