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ABSTRACT 

.This paper presented the systematic procedures for finding the 	• •critical speed and the bending moment in each segement of the vibrat-. 
'ory variable cross-section shaft carrying multi discs. Lateral vibra-
tions result from transversal dynamic excitations. The influence 
coefficients are obtained by using "Castigliano- Theorem". Samples of 
.data for the obtained results are presented for a shaft carrying 
'three discs with an eccentricity on the second disc for both cases 
of end supported and over hanged shafts on rigid support ipcluding 
the variation of disc position. The results of shaft amplitudes and 
natural frequencies are obtained by computer analysis. 

INTRODUCTION 

For about hundered years the problems of rotating shafts was consider-
'ed scientific workers with a variety of aims and procedures. The 
:problem of critical speed of rotating shaft was studied by Stodola[1], 
Timoshenko[2] and Den HartogMusing the simple theory of statics. 
The case of variable cross-section when the shaft has a disc or many • 
dism and is supported in ideal rigid bearings are obtained by MetwallY. 
:and Parszewski(4) by the extantion of the Myklested(5,6) method for 
'a variable cross-section shaft. In this paper it is another method to 
obtain the bending stress and the critical speed of a variable cross-: 
section shaft carrying three discs, due to lateral vibrations, result, 
ing from a dynamic excitation. In this method can be applied for any 
number of excitations. The critical speeds and the natural frequencies 
Ore obtained by the solution of the series of the corresponding modes.  of the rotor in ideal rigid bearings can be applied for the case of 
ainsotropic flexible bearings or supporting structure. The model for ' •the machine which has-a variable cross-section shaft and carries 
:many discsin two cases i) Case of end-supported rotor. 
ii) Case of over-hanged rotor. 

THE CHARACTERISTIC EQUATIONS OF THE SYSTEM 

The laterial vibration of the variable cross-section stiaft carries 
three discs each has an excitation as shown in Fig. (1). 

Each of the two shafts is carrying three discs, these discs are 
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Fig. (1) End Supported and Over-Hanged Rotor 

!concentrated at positions (1), (2) and (3) as shown in Fig. (2). 

Fig. (2) Simulated Shaft 

The variable cross-section shaft is simulated by a shaft having the 
same number of stations of the original shaft with concentratedmasses 
iconected with each other by a weightless shafts. The mass distributimi 
is carried out so that the simulated shaft has the same total mass, 

•and the center of gravity of each section is the same as the 
"J 



Case of End-supported shaft 
P1  

X4 

it  
Fig. 3 End Supported Simulated Shaft 
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;equivalent section of the original shaft. The concentrated masses 
can be calculated as follows: 

	

m1 
	+im + m 

	

1 	s1 	s2 	dl 

m 	+im +m 
2 	s2 	s3 	d2 (1) 

— m
3 

— 2 m
s3 
+ m

s4 
+ m

d3 

where, m
sl 
 , m

s2 
, m

s3 
 are the masses of the segments of the shaft 

for diameters d
1 
 ,d
2 
 and d

3 
 and m dl 

	d2 
, m 	and m

d3 
 are the masses of 

.the discs at stations (1), (2) and (3). These method can be applied 
for any shaft lengthes and many discs. 
The system undergo forced vibration due to the eccentricity of one 
of the discs. Let us assume the eccentricity at position (2), the 

:dynamic force is P 

20 
 

Po  =m
2 
 ew 	 (2) 

where m
2 
 : is the mass of the second disc 

e : is the eccentricity of the second disc 
w : is the angular velocity of the rotating shaft. 

the deflection at the three positions due to lateral vibrations will 
be y , y and y respectively. These deflections can be obtained, 

1 2 3 
using the infliience coefficients method, Jacobsen and Ayre'7. For 
the case of (n) degrees of freedom system we have: 

n(n+1)  
The numbers of influence coefficients = 

2 

For the case of three concentrated masses the number of coefficients 
is equal to six, and these coefficient can be obtained according to 
the following steps • • 

(3) 



For a 
P
1 
 due 
 

the discs 

• 

can apply 
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cross-section shaft Fig.3 consider the exciting force 
has a bending moment effect relatively large than 

and shaft. 

the supports A and B are: 
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(1), 	caused by the force P 

states that 	, 

( 5 

= P  

Castigliano's 

-= 

11 + 1
2 
 + 1

3 
 + 1

4 	
1 

deflection at position 

theorem, which 
112 

x dx ji
l 

?IP 	2E1 

i✓here :A = the deflection under the load P. 
p 

M = the bending moment, at distance x . 
x 
E = Modulus of elasticity 

I = Moment of inertia of shaft cross-section. 

For the variable cross-section shaft considered the deflection& 
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The calculated bending moment for each of the four segments due to 
the acting force P only will produce a deflection & 	at position(1). 
According to the c4finition of the influence coefficilnt, we can get 
CK 	by putting P is unity in the deflection expression. 
11 	1 
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The calculation of the other influence coefficients c< and cx 

	

22 	33 
applying the above procedure, considering the unit force acting at 
the position (2) for «22and the unit force acting at the position 

(3) forcoc . 
3 The calculation of the influence coefficientp4

r21 
for the variable 

cross-section shaft loaded with the two forces P
1 
 acting at position: 

(1) and force F
2 

at position (2), is carried out by calculating the 

bending moment due to the forces effect then find the deflection 
by using the Castigliano's theorem. Differentiating the moments with' 
respect to F

2 
partially and then put F

2 
equal to zero and P

1 
 is 

unity after integrating each shaft segment. The deflection at 
position (2) caused by the force P

1 
 which is acting at position(1) 

' is
21 

. By putting P
1 

	unity then A
21 
 is equal the influence 

CK 
1 
 , can be expressed as: 
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Applying the above procedure for finding the influence coefficients  (31  anacK32  , knowing that 0‹12 = 21 
	1 c<- 3 =a(

31 
andc< =0( 

	

23 	32 

according to Maxwell's reciprocal theorem. 

The values of the influence coefficients for the over-hanged shaft 
were found by the procedure. 

Deflections equations 
• 

Consider the variable cross-section shafts carrying the concentrated 
. masses as shown in Fig. (5) and loaded with the dynamic force 

1 +1 +1 

(8) 
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1"43  sin wt at position (2) . 

The deflections at position (1), (2) and (3) respectively refering 
:to Fig. (2) and the dynamic force are: 

1 	11 1 	Cf2 m y - 2 	13 
m 
 Y3 	12 o 

y = Ot m 	 P sin wt 

y
2
= - 	m 	m 	- 04  m 	00( P sin wt 

21 1 1 22 2 2 23 3 3 22 o 

Y
3
= - cl<  m1  Y1 	32 m2  Y2 

 - c"(33 
m3 3 + C"(32 P0 

 sin wt 
31  

Let yi  = Y
i 
 sin wt 

iThe characteristic equations are; 

2 	2 2 
1 -°< m w -0( m w 	- a' m w 

11 1 	12 2 	31 3 
2 	2 	2 

- CNC m  w 	1-CK m w 	_cX m  w 	(10) • 
12 1 	22 2 	32 3 

w2  - 	w2  i'.:>< m  w - 0( m w 	1- c< m w

2. 
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The three amplitude will be : 
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'Samples of Design Data 

• Samples of design data are given for three degrees of freedom 
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6 
' system to illustrate the previous procedure for both cases of end 
supported and over hanged rotors. The input parameters are: 

length : 1
1 
 = 254 , 1

2 	
127 , 1

3 
 = 309 , 1

4 
 = 200 mm 

diameter:d
1 
 = 82.27,d

2 	
82,58,d

3 
 =83.66, d

4 
 = 83.72 mm 

for simple supports 

• weight of discs : W
1 
 = W

2 
= W

3 
 = 1.5 K.N 

!eccentricity of the second disc
2 
e = 2.5 mm 

Young's modulus E = 200 G.N./m 

: rotating speed 	w = 100 rad/s. 

For Over-hanging lengths: 1 
1 
. 76.2, 12  = 254, 1 =200, 1 =359.8 

• • 

• ” 

	" 	diameter: d = 48.19,d
2 
.48.43d3=.50.16, =50.16 

1 	2 	3 	4 

Results Obtained 

The results are drawn between the frequency w of the rotating shaft 
and the amplitude of deflection as shown in Fig. (4) 	and (6) foi 

,Y and Y for simple supported rotor. The deflection curves for 
oter2hangini rotor as shown in Fig. (7), (8) and (9) for Y

1
, Y

2
and 

Y
3 
 are drawn against the frequency of the rotating shaft w. 

Conclusions 

The above method is an another method for determine the natural 
frequencies of any rotor has a variable cross-sections and carrying 

: many unbalanced discs, also the deflections at discs. 
• 
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