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AMALYSIS OF STEADY STRESSES
IN ROTATING ANISQTROPIC DISCS

R.A.COOKSON* and S.K.SATHIANATHAN**

ABSTRACT

‘A full closed-form analysis, based upon the Filonenko-Borodich small dis- :
placement technique, for the stress distribution within rotating, constant-

thickness, annular, anisotropic discs, is given. The solutions obtained
are much more general than those arising from the use of the very specific
-orthotropic condition, which is misleadingly described as anisotropic by
many authors. However, in order to test the validity of this technique

v v
stress distributions for the orthotropic case Q?ﬁ = El» have been computed

. o Ep :
‘With its aid. These results are compared favourably with those obtained

by previous authors, and highlight the influence of the radius ratio, ani-
sotropic constant, and Poisson's ratio upon the stress distribution.

INTRODUCTION

Thin elastic annular discs are a design feature of many industrial systems ;
:such as gas-turbines, steam-turbines, compressors, flywheels and computer
‘stores. When such discs are designed to rotate at high speed the possibil-
ity that they will burst or distort must be considered. Hence, it is often:
necessary to determine their deformations and the stress distributions
Within them,

A considerable body of literature exists for the case where isotropic mat- :
erials are used for the fabrication of discs. However, much interest has
been shown in recent years in the possibility of constructing discs (and
other machine components) from composite materials which are arranged in
such a manner that the direction of their greatest strength corresponds to
:the direction of the principal load acting upon the device. In this way it

'should be possible to construct lightweight components of optimum load
carrying capability.

The problem of determining the stress distribution within anisotropic discs
rotating at steady speed is a complex one and one which has not yet
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‘received much attention in the literature. However, Tang (1) investigated
the stresses produced in orthotropic discs rotating at speed, while Genta
and Gola (2) studied the special case where the disc was constructed of
‘materials which gave a stiffness matrix of a particular form. Ari-Gur and
Stavsky (3) considered an annular disc rotating at constant velocity and
symmetrically laminated from polar-orthotropic composite layers.

In the present paper, the stress distributions existing within annular
rotating discs of narrow section, and constructed from any anisotropic
‘material, have been determined. The effect of the variable parameters,
radius rat1o, anisotropic constant, and Poisson's ratio, has been analysed
.for the case of the orthotropic annular disc.

ANALYSIS

The analysis for the present investigation is based upon the infinitesimal:
:theory of elasticity as prouosed by Filonenko-Borodich (4) for application
"to an anisotropic body, and is expressed in polar co-ordinates.

:The following further assumptions are made:-

(1) The material is macroscopically homogeneous and
cylindrically anisotropic

:(2) The stress-strain relat1onsh1ps for the material
obey a generalised Hooke's Law.

(3) A condition of plane stress exists.

N]th the above assumptions, the stress-strain relationships in polar co-
ordinates can be expressed as follows:

a
gr =_£__2£ B
EI' EG :
. (1)
_ 0 r0
se--———-—u
EG Er'

‘As for all rotating disc problems, because of rotational symmetry, the
strain-displacement relationships reduce to,

ande, =2 .. (2)
r
and the equilibrium equation can be written as
9 rg)- 0, + pwir = o (3):
PR 5 ool 3)

Equat1ons (1) and (2) can be solved for o, and Og in u and substituted into.
:equation (3). This yields the following d1fferent1a1 equation,

2
p2, 8% 4 g B L oo (8):

dr? dr
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o EB/EP
N = (Vre’or - 1)»pw’
E
r
iThe general solution of this equation is given as follows
u=4 o +B P2 g N ' «e.(5)
(6 + 30 - L) .
: - v, E /v, E -v . EN E }
where 0= % (1"9 ® B 1”) + (e” .. e) R
L E E o
r r -
; Eg = V [/Vv, E_ =~V . E.\2 E, 9}
andoz=-1-("ee or Ep _(Brr ”99)+4_9_,
~ 2 . E E,
r r |
from equations (1) and (2) the stress components are given by
:
- _l -1
g = —9—- 4 + BorD2 P . ]
* _" (6 + 3J - L)
] -l -l
Lo Aoa P v P rz]
Eg L (6 + 37 - L)
> -l _ -
0p = _.li Dy AT 1" + D, B per-vr W e
E e (6+3J-L) o
.yt Dy-1 N ]
—-—- AOPI + BOPZ +——————-1”z
i (6 +3/-1) :
..(6)

: The integration constants 4, and B, are determined from the boundary con- :

For the simple constant thickness, annular, model employed here
the disc is free from external forces, hence the boundary conditions at
and inner radii are:-

0Oatr

0atr

a

b

eea(7):
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{ Substituting equation (7) in equations (6) gives
N (3+vg) (a?b” - b2aP")
A = - -
¢ (6 + 37 - L) (vg,, + D1) (aDabD“ - bD3aD‘°),
: W (3 +vy) (b2 - a%)
and B = -
e (6 + 37 - L) (v, + D2) (aDabD“ - bD’aD“)
1] [Vrefe = (2 * Vg,)E, Vorf~ Veefo\ . Fo :
: where Dy = = [vr '+( ) +4'—']
2 Er Er Er
]
(2 + v, )E. =V _.E VorEn = VpoFe\ E
and D..=-}-[ Br'"r ro-0 +(6rr r9)+4_@_]
2 E‘p Er Er-
Hence, the general solution, for the radial and tangential stresses in
i any anisotropic annular d1sc is as follows:-
+ D V) + Dj
g =-.-1- (—@.—.....)APDS +(_...e.{,...____)3 pD"
r o o
M E’e
\) +3
(6 + 37 - L)
3 (Dwr + ) (ng ) Dy
Og = = = r
M Er
3V Nr?
(6 + 3J - L)

...(8):

"Note that when Eg/E, = 1and v g = v, = v equation (8) reduces to the
isotropic material solution.

"For orthotropic homogeneous annular discs, that is where v, /Ep = Vg /E
the stress distribution reduces to the following non- d1mens1ona1 fo

o, [ cl[i:]“"’wz[i]"“” -(29__*_3_)3]2' b

e ;‘Cl[i_](x—l) -xcz[b] -(A+1) 3\) o x’) ] a2?

0

[-Y
=
Q.
Q
u

o

=131,
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where (1 = (“er '[.F ] ‘
* (0 -2 @™ -1 ]

A= A+3)
cy = (Vg5 +8) [G)7- 2 ][(%)(. ]

* (-2 [@™ - 1]
and A =+JE/E,

:This orthotropic homogeneous solution is similar to that obtained by a
number of other authors, for example (1-3), usually as a result of the use:
: of the stress-function technique.

RESULTS

Non-dimensional radial and tangential stress distributions were computed
. from equation (9), that is, for the very specific orthotropic case, for
" annular discs with radius ratio (a/b) of 0.1, 0.2, 0.3 and 0.4, For each
of these geometries, computations were made for values of the anisotropic .
: constant A (vER/E,) = 1.2, 1.5, 2.0, 2.6, and 3.1. The value of Poisson's’

: :0¢ W b : ; .
ratio v which characteristises comoression in the radial direction,

produced by tension in the tangential direction, was kept constant at 0.3..
: The computations are illustrated graphically on Figs. 1 to 4. :

Fig. 5 illustrates the non-dimensional radial and tangential stress dis-

: tributions within a disc of fixed geometry (radius ratio a/b = 0.2), and
fixed anisotropic constant (A = 2.5) but with varying Poisson's ratio
(vgr = 0.2, 0.23, 0.25, 0.27, and 0.3).

" Finally, Fig. 6 shows the effect of disc geometry (a/b = 0.1, 0.2, 0.3,
0.4 and 0.5) on the non-dimensional radial and tangential stress distri-

: butions within discs constructed of a material which has a Poisson's ratio:
Vg = 0.3 and an anisotropic constant X = 3.6.

DISCUSSION

. Stress components o, and gy have finite values for all radius ratios

" (a/b) between zero and unity, and for all values of the anisotropic con-
stant except A = 3.0. However, at A = 3.0 L'Hospital's rule can be
: employed to yield finite values for 9, and Og-

In real discs the shear stresses arising from acceleration or deceleration,
: or from (say) turbomachine blades carried on the rim, would influence the :
magnitude and direction of the principal stresses arising in the disc.

ks - e - - s . i . s e
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i However, for the present analysis such shear stresses can be ignored and
the principal stresses will be oy and on, the stress in the axial direc- ;

. tion being zero for the plane stress case. Hence, from Figs. 1 to 4, it

" is possible to see that for each disc geometry, the maximum stress arising

in the disc is the hoop stress o, at the disc bore corresponding to the i

lowest value of the anisotropic constant (A = 1.2). In fact the hoop

‘ stresses for an homogeneous isotropic material () = 1.0) would be greater
still. Similarly, it can be seen that some sort of optimum condition '

. arises in each case for an intermediate value of XA, usually for values of

A between 1.5 and 2.0. :

i For the computed results portrayed by Figs. 1 to 4, although the value of

vor is kept constant at 0.3, since the material properties related to the,

. hoop and radial directions are linked through the condition vg, /Eg =
' pg/Ey there will be considerable variation in vpg.

_ From Fig. 5 it can be seen that a variation from 0.2 to 0.3 for the

! Poisson's ratio of the disc material related to the tangential direction
vgp, and a corresponding variation in the Poisson's ratio related to the
) radial direction vpg, produces almost no variation in the non-dimensional
! radial and circumferential stress distributions.

Fig., 6 indicates that the ratio of the inner disc radius to the outer

' disc radius can appreciably affect the stress distribution within the
disc. However, a closer scrutiny reveals a fairly constant maximum (hoop)
_ stress at a non-dimensional radius of about 0.8, and that it would only :i
: be in discs where the inner radius is more than about 0.4 times the outer
radius, that the point of maximum stress shifts to the disc bore. Of
course, Fig. 6 is for the specific case where X = 3.6, but for other .
¢ values of A a similar situation exists but with different values for the
critical ratio of a/b.

CONCLUSIONS

A closed form solution based upon the Filonenko-Borodich small displace- :
‘ ment technique, for the stress distribution within rotating, constant
thickness, annular, anisotropic discs, has been derived. Results obtained
. with the aid of this solution, for the very specific orthotropic condi-

* tion, are shown to correspond to solutions obtained by previous authors
usually with the aid of the stress function technique. In proposed future
. work the above full solution will be used for the analysis of a range of .
: anisotropic conditions. ‘

The computed results included in this report indicate that the effect of

: anisotropy, on the stress distribution within a disc, is considerable.
Similarly, there appears to be an optimum value of the anisotropic con-
stant A, for the minimum value of the principal direct stress acting

: within a disc.

The effect of varying the value of Poisson's ratio vg, over the reasonmably
: realistic range of 0.2 to 0.3, has been shown to be s?ight. g

o
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i The influence of the ratio of the inner disc radius to
on the stress distribution within an orthotropic disc,

_ be significant.

‘ based upon the

However, the choice of
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NOMENCLATURE

inner radius of disc

outer radius of disc

radius ratio

elastic modulus in radial direction

elastic modulus in tangential direction

polar co-ordinates

radial displacements

mass per unit volume of the disc
angular velocity of the disc
strain
JEEE; = anisoptropic constant

Poisson's ratio which characterises compression
in r - direction for tension in 8 direction

stress

(m)

(m)
(NON-DIM)
(GN/m")

(GN/m*)

(m, RAD)
(m)
(kg/m®)
(RAD/S)
(m/m)
(GN/m?)
(NON-DIM)

(N/m?)

L-



g o
Q N
= -~
6] o]
x o
=
[« -
= T
O
O o
~
=3 >
. i}
s =
=4
—
=™
0 i
= o
L] o
<
[¢9)
()]
—
[0}
—
1
M
o}
=

jue3suod d1doijostue
2yl JO San[eBA SNOTIBA 10J 7°0Q =
OT3BI SNIPEI Y3itm 2s1p 21doijoyliio

3u13e3l0l1 B UT SUOTINQIIISIP S$S913S 7 '81J

SNIOVY  TVNOISN3WIC -NON

-

-
-
- -
Il TS

0 LE=XS

€0="10 =\ -

: 9:7 =Y 'y

£:0=Gi0 0Z=Y ¢

SSLS SNIaVY —--—-- 51 =Y 2
SSRILS dOOH —— zL=Y L

7
SNIOvY TYNOISNIWIA - NON

001 08- 09- 0%- 0Z- 0
. T T T 00
.
o
NS | e LA Ay R
S e, B gl B 101
S N el
e AL
~, -
e 102:

jue3lsuod otdoijostue

2yl 3O sanieA SNOTIBA 10F 1°0 =
oT3jel snipel yiim 2s1ip ordoajoysio
3uT3ie3lO0l B UT SUOIINQIIISIP SS313§

SNIavY TYNOISN3WIJ-NON

1 *811

0

c0= 9¢ LE=X g |
-0 = q/D 9Z =Y 9
0-Z= €

SSRILS ViAWY ———-- m.FuM 7 4
SS34LS d00H ——— =Y 1

&0

70

S0

SSIULS TYNOISNIWIC - NON

60

0-L

O |



[ B
QO N
Z A
g 3
s3]
<3 -
z2
o o
o o
-~
[ I
s+
= =
<
—t
= o
2] [}
= o
-~ N
=5
o))
(o)}
[
@
~
i
m

see vee ven voe .o

jue3jsuo2 d>rdoijosTue
ay3j jo senjea snolieA 10F %°Q =
oTjel sSnIpeI Yitm OSIP o1doajoyjao

Sutje3ol B UT SUOTINQIIISIP SS3IIS ¥ ‘314

SNIAVY TYNOISNIWIC -NON

00+L 08 09 0% 0Z- 0
/ T L . L]
llﬂ:nulnhuﬂlh:ltﬂ(llt\nn\ 5
ST,
S— f
Z
F 9
Z J
m E
9 ' L'E=NY S |
€0="0 9=\ ¥
0= q/o S 0-:Z=VY €
SSRULS MAVY ————~ k=Y T
SSIMIS dOOH ——— (A A !

oe-

0%

0s-

09-

SSIYLS TVNOISNIWIC - NON

0L

0g-

06°

00-L

jue3suod d>tdoijosiue
3yl JO S3N[BA SNOTIBA 103 €°Q =
OTI3el SNIPBI Y3itm I2sIp 21doxjoyixo

3uriejox B UT SUOTIINQIIISIP $S313§ ¢ 31y
SNIQYY TYNOISNIWIO-NON
08- 09+ 0% 0z 0
N 5 o . 4\“me «
e
S
~nee——
€0 = 18q I'E=Y §
€0 = q/D PT=X Y
0Z=Y E
SSRULS VIQVY ~————- Sl=yY T -
SSRULS dOOH —— z1=X 1

4 OP.

0z
0e

0y

4 om-

109-

10L°

06°

00-1

sesn

-

SSIYLS TVNOISNIWIA -NON



FIRST A.M.E. CONFERENCE

29-31 HMay 1984, Cairo

MDB-1§200

.o .o coo e .ee see

OTI3jel sSnipel 3yl Jjo
ssnfea SNOTIIBA PUB Q°¢f = JUBJISUOD
otdoajostu® Yiltm ds1p 21doijoyzao

3urje3jox ® UI SUOTINQIIISIP $S313§ 9 °*S1g
SNIGYY TYNOISNIWIQ - NON
i 0 0
0+l §-0 _ oua N .\vo § L .
~—_ ) S, 1.7 m\\\ \N\V\\\\\_v
\\\\ \\\\\\.\ = F
/ﬂ"llll'““ﬂﬂ"““ﬂh“\\ {10
1Z:0
1€0
170
150
490
S 11-0
. '8 §0= Qo §
frg= 0 y0= qmo 4 180
FESX €0= 90 €
mmwm._rm J{-g —— Noo = D\U 2z 160
SSRLS dOCH —— 1-0= q/o 1
0+

oo ese seo e Yy see

SSILS TVNOISNIWIC - NON

ot3ex

S,U0SST0J JO San]BA SNOTIIRA pUB
‘6*Z = 3ue3lsuod dtdorjostue ‘z°Q =
OT3BI snipel Y3iM IsTp 91doijoyizio

3uT3lElox B UT SUOTINQIIISIP $S3I3S ¢ ‘Big
SNIQVY TVYNOISNWIQ -NON
oL 8-0 30 %0 0 oo
//I/I \\\
S~e -~
- - ‘l\\l\ -To
m-,\u
AN.O
1€-0
S 170
150
L
19-0
140
om.cu.uwp 5
sz= X L2-0=""0 v Jjgqg
Z:0=49/D 5Z-0 R
SSIYLS MavY———- €200 7 Jog
SSRULS dOOH —— 0z:0="%a 1
0t

oo wee vse eos e o cc e

ses

SSIULS WNOISNIWIA - NON

I



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

