
MILITARY TECHNICAL COLLEGE 

CAIRO - EGYPT 
MDB -18 191 

ANALYSIS OF STEADY STRESSES 

IN ROTATING ANISOTROPIC DISCS 

R.A.COOKSON* and S.K.SATHIANATHAN** 

ABSTRACT 

•A full closed-form analysis, based upon the Filonenko-Borodich small dis-
placement technique, for the stress distribution within rotating, constant 
thickness, annular, anisotropic discs, is given. The solutions obtained 
are much more general than those arising from the use of the very specific 
:orthotropic condition, which is misleadingly described as anisotropic by : 
many authors. However, in order to test the validity of this technique 	' 

v 	v, 
stress distributions for the orthotropic case (--0- 	have been computed E0  Er 	• 
• 

•with its aid. These results are compared favourably with those obtained • 
by previous authors, and highlight the influence of the radius ratio, ani-
sotropic constant, and Poisson's ratio upon the stress distribution. 

INTRODUCTION 

Thin elastic annular discs are a design feature of many industrial systems: 
:such as gas-turbines, steam-turbines, compressors, flywheels and computer 
'stores. When such discs are designed to rotate at high speed the possibil-
ity that they will burst or distort must be considered. Hence, it is often 
necessary to determine their deformations and the stress distributions 
.within them. 

A considerable body of literature exists for the case where isotropic mat-: 
erials are used for the fabrication of discs. However, much interest has 
been shown in recent years in the possibility of constructing discs (and 
other machine components) from composite materials which are arranged in 
such a manner that the direction of their greatest strength corresponds to ' 
:the direction of the principal load acting upon the device. In this way it 
'should be possible to construct lightweight components of optimum load 
carrying capability. 

The problem of determining the stress distribution within anisotropic discs 
rotating at steady speed is a complex one and one which has not yet 
• 
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!received much attention in the literature. However, Tang (1) investigated 
the stresses produced in orthotropic discs rotating at speed, while Genta 
and Gola (2) studied the special case where the disc was constructed of 
'materials which gave a stiffness matrix of a particular form. Ari-Gur and 
Staysky (3) considered an annular disc rotating at constant velocity and 
symmetrically laminated from polar-orthotropic composite layers. 

In the present paper, the stress distributions existing within annular 
.rotating discs of narrow section, and constructed from anv anisotropic 
'material, have been determined. The effect of the variable parameters, 
radius ratio, anisotropic constant, and Poisson's ratio, has been analysed: 
:for the case of the orthotropic annular disc. 

ANALYSIS 

The analysis for the present investigation is based upon the infinitesimal: 
:theory of elasticity as proposed by Filonenko-Borodich (4) for application 
to an anisotropic body, and is expressed in polar co-ordinates. 

:The following further assumptions are made:- 
(1) The material is macroscopically homogeneous and 

cylindrically anisotropic 
:(2) The stress-strain relationships for the material 

obey a generalised Hooke's Law. 
(3) A condition of plane stress exists. 

With the above assumptions, the stress-strain relationships in polar co-
ordinates can be expressed as follows: 

r V
Or 

a6 
er 	

- 
E
r 

E 

CY 	V 
re 6 

e = soar. 
6 

E Er 
 

*Ps for all rotating disc problems, because of rotational symmetry, the 
strain-displacement relationships reduce to, 

e du 	u 

	

r = — and e
6  = — 	... (2) 

dr 	r 

and the equilibrium equation can be written as 

_d (r..a
r  ) - a  + 02 r2 = o 	 ...(3): 

dr 

Equations (1) and (2) can be solved for ar  and ao  in u and substituted into:  
:equation (3). This yields the following differential equation. 

2 d2u 	du r . 	+ J. r.— 	Lu = Nr 3 
dr2 dr 



6 

mDB -181193 
FIRST A.M.E. CONFERENCE 

29-31 May 1984, Cairo 

!where J = 
(1 4.  vedEr 7 vree  

Er 

L = 
E6/Er 
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V  Or - 1) 

E r 

!The general solution of this equation i.s given as follows 

DI 	D2 	N  u = Ao r +Bo r 	r3 	...(5) 
(6 + 3J - L) 

Kv E - 	2  EA  i  

where Di  = .1  
2 
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from equations (1) and (2) the stress components are given by 

ar = /
f -ver 

M 	Ee 

[A rD 
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D2-1 + 	3N 	r 
(6 + 3J - L) r2 

 

M Er  

	

 o 	
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 r 
D2-1 + 	N 	r2 

Er (6 + 3J - L) 
—(6)i  

i  where M = 
(re v -1) Or  

Er E
0 

The integration constants Ao  and Boo  are determined from the boundary con- 

ditions. For the simple constant thickness, annular, model employed here 
the disc is free from external forces, hence the boundary conditions at 

:the outer and inner radii are:- 

L.. 

	
or = 0 at r = a 

a
r 

= 0 at r = b 
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(6 + 3J - L) (

vex, 	
DI) (2304 03aD4), 

• N (3 + vox) (b223  - a2O3 ) 
and B

o 
= 	  

(6 + 3J - L) (ver  + D2) (a D304  03aDit)  

!Substituting equation (7) in equations (6) gives 

N (3 + ver) (a2  04  - b224 ) 
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Hence, the general solution, for the radial and tangential stresses in 
any anisotropic annular disc, is as follows:- 
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Note that when E6/Er  = 1 and vre = vOr = v equation (8) reduces to the  
isotropic material solution. 

For orthotropic homogeneous annular discs, that is where vre/Er  = vor/Ee  
the stress distribution reduces to the following non-dimensional form 

_(A-1.1) 	/ever  .1. 3 

	

1.2 	2 r 
(Yr = [ ci [ -b]
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(ver 3)[(E  
a)(X+3) 	1] 

where CI = 
(9 	x2)  [(1)2A 	1  

C2 = 
(yew 4- 3)  [($.)X-3- 

 1 [(i) (x+3 )1 

(9 	x2) [(i)2X 	1 ] 

and A = E/77-  
6 r 

• This orthotropic homogeneous solution is similar to that obtained by a 
number of other authors, for example (1-3), usually as a result of the usei 

i of the stress-function technique. 

RESULTS 

Non-dimensional radial and tangential stress distributions were computed 
from equation (9), that is, for the very specific orthotropic case, for 

'annular discs with radius ratio (alb) of 0.1, 0.2, 0.3 and 0.4. For each 
of these geometries, computations were made for values of the anisotropic . 

:constant A PE7E2-7,) = 1.2, 1.5, 2.0, 2.6, and 3.1. The value of Poisson's' 
ratio vOr which characteristises compression in the radial direction, 

, 
produced by tension in the tangential direction, was kept constant at 0.3.. 
The computations are illustrated graphically on Figs. 1 to 4. 

Fig. 5 illustrates the non-dimensional radial and tangential stress dis-

tributions 

 

 within a disc of fixed geometry (radius ratio alb = 0.2), and 

fixed anisotropic constant (A = 2.5) but with varying Poisson's ratio 

(vex, = 0.2, 0.23, 0.25, 0.27, and 0.3). 

• Finally, Fig. 6 shows the effect of disc geometry (a/b = 0.1, 0.2, 0.3, 
0.4 and 0.5) on the non-dimensional radial and tangential stress distri-
butions within discs constructed of a material which has a Poisson's ratio: 

vox, = 0.3 and an anisotropic constant A = 3.6. 

DISCUSSION 

: Stress components or  and a()  have finite values for all radius ratios 

• (alb) between zero and unity, and for all values of the anisotropic con-
stant except A = 3.0. However, at A = 3.0 L'Hospital's rule can be 

employed to yield finite values for or  and ae. 

In real discs the shear stresses arising from acceleration or deceleration, 
or from (say) turbomachine blades carried on the rim, would influence the 
magnitude and direction of the principal stresses arising in the disc. 
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However, for the present analysis such shear stresses can be ignored and 

the principal stresses will be ae  and or, the stress in the axial direc- 

: tion being zero for the plane stress case. Hence, from Figs. 1 to 4, it 

• is possible to see that for each disc geometry, the maximum stress arising 
in the disc is the hoop stress ae  at the disc bore corresponding to the i 

lowest value of the anisotropic constant (A = 1.2). In fact the hoop 
stresses for an homogeneous isotropic material (x = 1.0) would be greater. 
still. Similarly, it can be seen that some sort of optimum condition 
arises in each case for an intermediate value of A, usually for values of 
A between 1.5 and 2.0. 

For the computed results portrayed by Figs. 1 to 4, although the value of 
ver  is kept constant at 0.3, since the material properties related to the. 

hoop and radial directions are linked through the condition vex, 	= 

vradErj  there will be cobsideable variation in vre. 

From Fig. 5 it can be seen that a variation from 0.2 to 0.3 for the 
: Poisson's ratio of the disc material related to the tangential direction 
ver  and a corresponding variation in the Poisson's ratio related to the 
radial direction vre,produces almost no variation in the non-dimensional ' 

Fig. 6 indicates that the ratio of the inner disc radius to the outer 
• disc radius can appreciably affect the stress distribution within the 
disc. However, a closer scrutiny reveals a fairly constant maximum (hoop) 
stress at a non-dimensional radius of about 0.8, and that it would only 
be in discs where the inner radius is more than about 0.4 times the outer 
radius, that the point of maximum stress shifts to the disc bore. Of 
course, Fig. 6 is for the specific case where A = 3.6, but for other 

! values of A a similar situation exists but with different values for the 
critical ratio of alb. 

CONCLUSIONS 

A closed form solution based upon the Filonenko-Borodich small displace-
ment 

 
 technique, for the stress distribution within rotating, constant 

thickness, annular, anisotropic discs, has been derived. Results obtained 
with the aid of this solution, for the very specific orthotropic condi-
tion, are shown to correspond to solutions obtained by previous authors 
usually with the aid of the stress function technique. In proposed future 
work the above full solution will be used for the analysis of a range of . 
anisotropic conditions. 

The computed results included in this report indicate that the effect of 
anisotropy, on the stress distribution within a disc, is considerable. 
Similarly, there appears to be an optimum value of the anisotropic con-
stant A, for the minimum value of the principal direct stress acting 
within a disc. 

The effect of varying the value of Poisson's ratio ver  over the reasonably 
realistic range of 0.2 to 0.3, has been shown to be sight. 

radial and circumferential stress distributions. 

L.. 
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The influence of the ratio of the inner disc radius to its outer radius, 
on the stress distribution within an orthotropic disc, has been shown to ; 

be significant. However, the choice of radius ratio (a/b) 
is usually 

• based upon the function of the disc and not upon its stress distribution. 
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' NOMENCLATURE 

a 	= inner radius of disc 	 (m) 

b 	= outer radius of disc 	 (m) 

a/b = radius ratio 	
(NON—DIM) 

E 	= elastic modulus in radial direction 	(GN/M2) 
r 

 

E
6 	

= elastic modulus in tangential direction 	(GN/m2) 

r,0 = polar co-ordinates 	
(m, RAD) 

u 	= radial displacements 	 (m) 

p 	= mass per unit volume of the disc 	(kg/M3) 

w 	= angular velocity of the disc 	(RAD/S) 

e = strain 	
(Wm) 

A 	=/ff7K-  = anisoptropic constant 	
(GN/m2) 

0 r 
v
0 	

= Poisson's ratio which characterises compression (NON—DIM) 
in r - direction for tension in 0 direction 

a = stress 	
(N/m2) 

L.. 



• 

00 0 
0 • ri 

CD  co 	 14 .0 4.) 
O u) 
• 4-1 

• el 0 

rd 
O $.4 (1) 

O •rl  
r-4  co 4-1 

, 	> 
• r4 
4-) (.1 
O CA 0 

• r4 • r4 
• r4 ti }4 1.4 
4-1 CJ > to • r4 	• r4 
• r-I P. 1-4  LL 
• 0 0 0 

4-1 
• 4.) 
ro 0 (■1 0 

o 	a) .0 • 0 
* C 	 1-1 	14 

4-1 )4 
Cl) 0 II CSI 

CNI 

DI
ME

NS
I O

N)
 

co
n

s  
ta

n
t  

O 
CD 	CD 

CP 
se/ 

• 

tfA 

co
n

st
an

t  
//1/4 64/ 
/ 
/ I 

// / I 

4/ / 

	

// 	
/ 
I 

	

/ / 	/ 
/ 	/ 

S  / I I  1 

/I 	/ 1 / 

	

/ 	1 
g 	1 	1 
I 	I 	I 

1 	I  
1 I 

/ 	44 IV% 
I 	t 	11 

I 	1 t 
I 	I t 
t 

NO
N

- 

I I 	t 	11 

	

I 	11 

t/1 
LtJ 
LY 

tal 
CL 

cv  
• rst (NI m 

11 o o II U 

✓ c~i ni4 uri 

OZ o •,-, 
al 03 O 	al )4 0 

O 0) 
14 0 LH 

• r-1 0 
rd 
I 1

of
4 a) 

c• • o1 
0 • ) P 
0  

• I-1 	U) 
c.) 

O w 0 
..-1 • r-1 

• r-1 'V )4 
• 

 
I-I 	CO 

1-1 
U1 • I-I 	• 1-4 
• r1 tL ••4 fa. 

	

1-1

• 	

0  4-9 HC)  
O 1J 	4-1 
CO 0 r-•• 0 
al 	• ro 0 •rl  
rJ 14 	0 
CD 0 II al 

FIRST A.M.E. CONFERENCE 

29-31 May 1984, Cairo 
MDB-18 198 

sniava 1VNOISN3W10 - NON 

r P LP 
C) 0 0 C) 

L.. 
	 SS3dIS 1VNOISN3W10 -NON 



b0 0 0 • 1'1 • 1.4 41 4.3 M 1:11 M L.1 
O cn 

• e4 0 • ,c) u) 
G 1a al • r-1 4  r-4 s9 	M 4.4 al •-• 
0 ••4 	0 
o al u) 3.3 

c.) 	u) 
O to 0 0 ,o 	• .-1 0 

1-1 o 	▪ 1-4 	CO 
1-3 c) u3 
.14 Ca. 14 O. 
'V 0 00 

H 4-I 3.4 1./1 4-1 	1•1 
u) 	N.1 0 
al .0 • ul 
14 41 0 • r4 C•4 	4-) 1-1 

• V) 0 II al 

• 00 

NI
 

(N1 Ul a'4' 
N A• e- n 0 0 H 11 
e‹. 

C 	 C D 

• c m 
a O • 

••• 

MDB-18 199 
FIRST A.M.E. CONFERENCE 

29-31 May 1984, Cairo 

   

0 a 0 0 0 0 rr 	 LP 	 'I' (•:' 

	 0 

SS32:11S 1VNOISN3W10 -NON 

I/ 	00 0 
eo

•
o -,-+ 

• ri .1-1 /PO 	 4) al I/ I/1 	_ cc:13 	03 I-■ .0 

	

//// 	 4J 	•-• 
in, Vl 0 u: 
II i • 	 14 0 W 

	

// / I I 	...4 0 i i i 	 Cli '0 /
' 

I i Imer"r/ I i I 	0 14 aD 
al u: 

	

1 I I 1  { 	o 

	

I - I I 	-i• - •.0 
	

.0 •--I 
0 

 i 	 .. 	 u: 4-1 al .:•.: 
•■-i > 0 

I , 1 	,.........• 

	

1  1 ri l 	 0 0 	co 

	

it ■ 1  1 	• re 	M 4-1 
I   % I 1‘  t I  0 g \ 	\ I 	,m "• 

M 
ri •ri 0 1 ■ %, ‘t% 

	

c) 	•r4 'V 3-1 (.3 
H at 

:%■\t‘ 
".:  

• r4U1  

▪ -

0"1. lk .0%4  
V 0 0 0 

O 14 4.• 0 •.-1 
CN1 4-4  I-I 0 • (1) 0 	II (Ci 

00 

)I 

1r- 	 14 4.4 1-1 
NU 4-I 	4-1 

en 	 u) 0 ell 0 
a) .0 • u) 

- 

L.. 	 SS3UIS 1VNOISN3W10 -NON 



m 
H 

I 

o 

aD O • 

MDB  —11200 I 

FIRSP A.M.E. CUNtEXI.hCL 

29-31 Hay 1984, Cairo 

Ln 
Co 0 0 0 0  
H H 11 11 H 

O 0 0 0 0 

c%i fli 

II   00 
O u (A 	 i 

..4 •.1 01 
44 g. Ii 	01 0 1-4 

li 

 
P • 0 

0I 	 (4) u)  
O ./-1 I 	 0 0 

It111 
 ..o 	

0 03•H 
% 	 ..1 	 4 

It \ 	6 	.0 60 
W 4.4 1% \ An 	0.,4 	0 

Ilk '4. 	o 	'0 • ri 
110  \ 	

• A 	g 44 
\ 	 4.4 U cd al 

it ‘...3. 
.0 • ri ■D 

\ \ 
\ 0) T1 

	

\ Nt 

	
• o-I n:1 • co 

•I-1 0. 	0 
44 U 	..1 
1-4 	in 
In •rl 11 1:1 

i
‘
c 	

1-1 0 
4.1 al al ‘s1 U3 

1 
% 	

0 0 4.14 
<0 	

0
(/) 4.I 

1-, 4.)  

	

e•ri 	44 F4 0 4-i 

	

0 	V) 000 
.-- % 

%.0 

00 
•H 

c0 	 -It 	ill 	(; ,4  • 0 0 6 6 00 

SS381S 1VNOISN3W10 - NON 

0 cc) if) r. 
CN N 111 

O 6 6 6 6 
Ii 	61 	11 	11 	11 L. L. cD cD cD 4S cD 
pPP? 

n 

Q ix 

00 
0 •.-1 

4.1 
co 44 
0 
1-1 
Ca 

-  0 
r4 
co 
0 0 

• .-1 

0 	•• 
•,-4 	in 11 	• 
WN W $.1 	— 

H 	0 u) 	0 
0 44 	u) 
.-1 	g 	u) 
°V 	01 •H 
of 4-I 	0 
14 	u) 

0 
44 U 0 
.4 0 4-1 
,4 U W 

• r-I 	4) 
0 co 0 Hi 

.0 •••1 I-I 01 

k 
•$.1 
.I r0 

0 
44 

4.1 U cn ca 41 
• 
• A • ri 0 

• r-I a g 0 '0 0 0 - H 
F4 $4 \ 

03 
0 ‘ 	 M 0 1 > 

\ 	

(A 4..J C•

. 

0  
W 0 0 M $4 

141 

6 o 

SS381S 1VNOISN31-110 - NON 

00 

O 114 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

