EFFECT OF NITROGEN FERTILIZATION AND SOME FOLIAR APPLIED MICRONUTRIENTS ON POTATO YIELD AND NITROGEN USE EFFICIENCY.

Khafagy, E. E. E.

Soils, Water and Environment Res. Inst., Agric. Res. Center, Giza, Egypt.

ABSTRACT

Two field experiments were carried out at Batra village, Talkha district, in Dakahlia Governorate, Egypt, during the winter growing seasons of 2012/2013 and 2013/2014. The experimental design was split plot with three replications. The aim of this research was to evaluate the effect of nitrogen fertilization level, foliar spraying of mixed (Fe, Zn & Mn) and their interactions on potato crop, quality; NPK uptake and N use efficiency. The main plots were assigned for nitrogen levels (0, 150, 175, 200 and 225 kg N fed.⁻¹), but the sub plots were devoid for foliar mixed Fe, Zn and Mn sulfates at the ratio 2:1:1 (at the rate: 0, 1.25 & 2.5 g L^{-1}). Application of N-levels significantly increased average weight of tuber, total tuber yield and shoot dry yield while foliar application of Fe, Zn and Mn mixture treatments induced significant increases in both tuber and shoot yield only. The interaction effect of N level and macronutrients on the above mentioned parameters was not significant except the average weight of tuber which showed significant effect in the first season only and application of 200 kg N fed.¹ combined with T_3 recorded the heaviest tubers (219.0 and 229.2g) for the first and the second seasons, respectively. Dry matter, protein and starch % in tubers were significantly affected by N levels and foliar applied micronutrients, while the interaction showed no significant effect. The uptake of N, P and K was significantly increased with increasing N-levels and micronutrient concentration while the interaction effect was not significant. The values of N utilization efficiency and N uptake efficiency were decreased with increasing of N-levels. whereas N-level of 200 kg N fed.¹ recorded the highest percentage of N apparent recovery fraction in both seasons. The interactions between N-levels and foliar Fe, Zn and Mn treatments affected N utilization efficiency, N uptake efficiency and N apparent recovery fraction% and the highest percentage of N apparent recovery fraction were 37.13 and 40.55 % in 1st and 2nd season, respectively with the interaction of N level (175 and 200 kg N fed.¹, respectively) and foliar Fe, Zn and Mn treatment at 1.25g L¹

Keywords: iron, zinc, manganese, nitrogen, potato, yield, NPK, uptake, efficiency.

INTRODUCTION

Potato (Solanum tuberisum, L.) as a member of the family solanaceae, is one of the most important food crops all over the world including Egypt. It ranks the first export and the second vegetable crop in acreage. Potato has a high N requirement, but its recovery of fertilizer N is often quite low. Nitrogen is an indispensable elementary constituent of numerous organic compounds of general importance (amino acids, protein, and nucleic acids) and the formation of protoplasm and new cells. Meanwhile nitrogen deficiency can substantially reduce yield. Moreover, the potato is well known to have a relatively low nitrogen use efficiency ranging between 50 and 60% (Tyler *et al.*, 1983). This is due to its naturally shallow and poorly developed root system compared to other main crops such as wheat, maize or sugar beet. The soil N application gave higher yield than the zero N and lower than the fertigated treatments (Mohammad *et al.*, 1999). On the other hand, Nitrogen is a crucial element in the process of plant growth and development and it is also the main yield-forming element. However, numerous papers point to low effectiveness of applied nitrogen doses. In the case of potato plants, the coefficient of nitrogen utilization is on the level of 50% and is lower than in other plants (Vos, 2009). Effectiveness of fertilization diminishes with the use of growing nitrogen doses but increases when the dose is divided into pre-sowing and top decreasing (Westermann, 2005 and Ruza *et al.*, 2013).

Most potato growers in Egypt tend to use a large amounts of phosphorous fertilizers more than the recommended (Nour, 1992) which affected the micronutrients availability and created a disturbance in the soil nutrient status under such conditions. Foliar application of micronutrients has been one of the approaches to achieve an improvement of the nutritional status, yield of potato end to optimize use of chemical fertilizers (Sakr, *et al.*, 1989, Nofal, *et al.*, 1998 and Khalifa, *et al.*, 2003).

Iron (Fe) is an essential nutrient for plant growth and development. In plant tissues, approximately 80% of Fe is found in photosynthetic cells (Adamski, *et al.*, 2011). It is directly involved in photosynthesis, respiration, nitrogen fixation, hormone synthesis, and chloroplast maintenance (Hänsch, and Mendel, 2009). Trace elements are adsorbed by inorganic constituents such as iron (Fe) oxides and form complexes with organic matter (Omil, 2007). Applications of Fe at low and excess rate than those recommended are considered as inefficient because it is believed that they lead to growth inhibition, a reduced chlorophyll content (Goos, *et al.*, 2004) and an inhibition of photosynthesis in plants (Nikolic, and Kastori, 2000). In spite of chlorophyll decrease, carbon assimilation is significantly affected due to poor photosynthesis efficiency under Fe stress (Li *et al.*, 2002).

Zinc (Zn) is playing a main metabolically role in plants. This element partially interferes in most of the enzymes structure like, dehydrogenises, aldolase and isomerases. In production of energy and crebs cycle Zn also is effective (Alloway, 2004).

Manganese is one of the main components in structure of enzymes. These enzymes are effective in photosynthesis and other reactions and shortage of Mn cause efficiency of photosynthesis to be decreased extremely (Heckman, 2000).

Mousavi *et al.* (2007) showed that Zn and Mn application increased all plant characteristics relating to yield and quality of potato crop. These were tuber yield per plant, dry matter percentage, specific weight, protein and starch contents of the tuber. Application of Zn at 8 ppt increased yield up to 34170 kg ha⁻¹ which, was 25% higher compare with control, meanwhile application of Mn at 4 ppt level increased yield to 33866 kg ha⁻¹ which was only 15% higher than control. However application of Mn at 8 ppt decreased both quality and yield of potato tuber compare with 2 and 4 ppt. Maximum

yield (38950 kg ha⁻¹) was obtained at 8 ppt of Zn with 4 ppt of Mn foliar application. Fertilizers were significantly affected element percentages in tuber. Zinc increased Zn percentage and decrease phosphorus percentage in tuber. Manganese increased Mn percentage of tuber, but no significant effected on Zn, P and K in tuber. Zinc and manganese fertilizers together increased Zn and Mn percentages and decreased P percentage in tubers. Utilization of Zn and Mn in potato production caused, increases in number of potato, tubers, mean tubers weight and finally high performance and by applying ascorbic acid, Zn, Mn and other micronutrients, quality of potato tubers is increasing (Iqbal, 1995 and Mohamadi, 2000). Studies have shown that utilization of Zn and Mn in other agriculture crops such as, wheat, barley, maize and rapeseed, caused quality and quantity of these crops to be increased (Bybordy, and Malakoty, 2003). Nofal, et al. (2010) indicated that there was a disorder in nutrient balance. Micronutrients foliar application resulted in higher leaf content of K, Mg, Fe, Mn and Zn compared with the control. The most favorable rates of micronutrients compound were 400g fed.¹ and 800g fed.¹ respectively. Also, they found that as a general trend the foliar application increased macronutrients in potato tubers.

Therefore, the main objective of the present study is to evaluate the effect of nitrogen levels, foliar application of combination Fe + Zn + Mn and their interactions on potato yield, quality, NPK uptake and N fertilization efficiencies.

MATERIALS AND METHODS

Two field experiments were conducted in a spilt plot design in Batra village, Talkha district, Dakahlia Governorate, Egypt, during the two successive growing seasons of winter 2012/2013 and 2013/2014 on potato (*Solanum tuberosum*, L.) cultivar Salany. The experimental soil was analyzed before planting, where texture of was clay loam (36.50 % sand, 29.59 % silt and 34 % clay). Saturation percentage was 64 % and bulk density was 1.27 g cm⁻³. The analysis also illustrated that soil pH in 1:2.5 soil suspension was 7.8. The soil was non-saline where EC in saturated paste extract was 3 dS m⁻¹ (less than 4 dS m⁻¹). Soil organic matter content was 3.20 % and CaCO₃ % was 3.2 %. Soil fertility was medium where the values of available nitrogen, phosphorus and potassium were 35, 15 and 380 ppm, respectively. The previous soil analyses were carried out according to Jackson (1967).

The treatments were arranged in a split plot design with 3 replicates, whereas the plot area was 10.5 m^2 . The five levels of nitrogen, i.e. (0, 150, 175, 200 and 225 kg N fed.⁻¹) were in the main plots, and the sub-plots were assigned for the three rates of foliar application of mixed sulphats of Fe, Zn, and Mn at a ratio 2:1:1 as follows, with spraying volume of 200 L fed.⁻¹

T₁: without foliar. T₂: 1.25 g mixed micronutrients L⁻¹ (which gives 175 mg Fe L⁻¹, 70 mg Zn L⁻¹ and 75 mg Mn L⁻¹) T₃: 2.5 g mixed micronutrients L⁻¹.(which gives 175 mg Fe L⁻¹, 70 mg Zn L⁻¹ and 75 mg Mn L⁻¹)

¹¹²⁷

Potato was planted at 20 December 2012 and harvested at 28 April 2013 in the 1st season and at 17 December 2013 and harvested at 30 April 2014. Applications of fertilizers were as follows, the levels of nitrogen fertilizers (Ammonium Sulfate 20.5% N) were divided into two equal doses and added with the 1^{st} and the 2^{nd} irrigation after planting. Calcium superphosphate fertilizer (15 % P_2O_5) was applied before planting at the rate of recommended doses of 75 kg P_2O_5 fed.¹ for all plots. Potassium sulfate fertilizer (50 % K₂O) was applied at the rate of 50 kg K₂O fed.⁻¹ for all plots, in one dose. Application of foliar treatments of Fe, Zn and Mn was done twice after 45 and 60 days from planting at the rate of 200 letter fed.⁻¹. At harvest, the following parameters were recorded:

- 1- Shoot dry yield (kg fed.¹) and fresh tuber yield (Mg fed.¹). Dry matter % was determined by drying 100 g of fresh tuber at 70 C^{0} , starch % and protein % were calculated as follows.
- 2-Protein % = total N % in tuber x 6.25 (Ranganna, 1977).
- 3- Starch % = 17.457+(0.89 x (dry matter % -24) Burton (1948).

N, P and K % were determined in shoot and tuber dry matter at harvest, according to the methods described by Jackson (1967). N, P & K uptake as kg fed.⁻¹ in tuber and shoot were estimated:

> Nutrient content $\% \times$ Yield (kg per fed) Nutrient uptake (kg per fed) =

100

- 4- N efficiencies, the amount of nitrogen originating from mineralization for each year and experimental treatment was determined as the difference between the content of mineral nitrogen in soil before planting with nitrogen absorbed by the potato plants in the plants without fertilization (0 kg N ha⁻¹) and mineral nitrogen in the soil after harvest (Huggins and Pan, 1993). The following parameters were calculated for each treatment:
- N uptake efficiency (NU_oE; kg N-Uptake kg⁻¹ N-Supply) as the ratio of N

where encoded y the plants to N supply. $NUpE = \frac{Total \ Nitrogen \ Uptake \ .kg}{Total \ nitrogen \ supply \ .kg}$

- N utilization efficiency (NUtE; kg- Tuber yield kg⁻¹-Nitrogen Uptake) as the ratio of Tuber yield dry weight of plants to N uptake.

$NUtE = \frac{Tuber \ yield \ .kg}{Total \ nitrogen \ Uptake \ .kg}$

N apparent recovery fraction (NRF; %) as the percentage of (N uptake by plant at applied treatment (N_x Uptake) - N uptake by plant at control treatment (N_0 .Uptake)) from N applied at applied treatment (N_x .Supply).

$$NRF\% = \frac{Nx.Uptake - N0.Uptake}{Nx.Supply} \times 100$$

The statistical analysis of the obtained data was done according to the methods described by Gomez and Gomez (1984).

RESULTS AND DISCUSSION

Potato Yield and its components:

Data in Table 1 show the effect of application of N-levels, foliar treatments of Fe, Zn and Mn mixture and their interactions on total tuber yield, average weight of tuber and shoot dry weight. As shown in Table 1 the addition of N-levels significantly increased total tubers yield, average weight of tuber and shoot dry weight up to N₂₀₀ in the two seasons. The highest total tubers yield was 18.213 & 18.857 Mg fed.¹ in the 1st and the 2nd seasons, respectively. Also, average weight of tuber and shoot dry weight significantly increased with N-level up to 200 kg N fed.¹ in both seasons. These results may be return to the low level of available N in soil before planting and to the vital role of N in plant. These results are confirmed with those obtained by Mohammad et al., (1999). Also, data reveal that foliar application of Fe, Zn and Mn treatments increased total tubers yield, average weight of tuber and shoot dry weight and foliar treatments of T2 was more effective in both seasons, since, the differences between T₂ and T₃ were insignificant. Similar results were obtained by Mousavi et al., (2007) and Bybordy and Malakoty (2003).

Concerning the effect of interactions between N-levels and foliar treatments, results in table 1 illustrate that values of total tubers yield, average weight of tuber and dry shoot weight were not significantly affected by interaction except the average weight of tuber which was significantly affected in one season only and application of 200 N fed.⁻¹ along with foliar applied micronutrients at the rate of 2.5 g L⁻¹ recorded the highest value (219.0 g tuber⁻¹).

Potato tubers quality:

Data in Table 2 show that the addition of nitrogen fertilizer levels significantly decreased dry matte % in tuber when compared with control. As for protein %, it is obvious from the results that its values significantly increased with N fertilization, while starch % decreased with addition of N levels up to N₂₂₅. These results are confirmed with those obtained by Nofal, *et al.*, (1998) and Khalifa *et al.* (2003).

Concerning the effect of foliar treatments, data reveal that percentages of dry matter, protein and starch significantly increased by foliar treatments T_2 and T_3 compared with T_1 (control). Similar results were obtained by Bybordy and Malakoty (2003).

The interaction between nitrogen levels and Fe, Zn and Mn foliar treatments insignificantly affected on dry matter %, starch % and protein% as shown in Table 2. The values of dry matter % were decreased with interactions, and the highest values of dry matter % were obtained with $N_0^*T_3$ and $N_0^*T_2$ in both seasons. The effect of interaction on protein % was insignificant.

			ers yield	s on potato Average	weight of	shoot dr	y weight
		(Mg	fed. ⁻¹)	-	er (a)		ed. ⁻¹)
Treatn	nents	1 st	2 nd	1 st	2 nd	1 st	2 nd
		season	season	season	season	season	season
			Nit	rogen Leve			
N ₀		7.343	7.610	78.6	81.4	455.56	514.29
N ₁₅₀		15.629	15.410	143.4	141.0	598.41	673.02
N ₁₇₅		16.190	16.978	172.4	181.6	611.11	698.10
N ₂₀₀		18.213	18.857	195.3	201.6	636.51	717.46
N ₂₂₅		17.838	17.892	196.7	197.7	636.51	707.94
LSD at	t 5%	1.337	1.398	19.649	18.900	16.451	12.453
		F	e, Zn and	Mn foliar t	reatments		
T ₁							
		14.310	14.406	149.3	150.1	571.43	626.67
T ₂		15.333	15.779	159.5	164.4	585.71	672.19
T ₃		15.484	15.863	163.1	167.4	605.71	687.62
LSD 5	%	1.376	1.037	Ns	Ns	14.233	22.472
	-	Intera	iction (Nit	rogen Lev	els*FZM fol	iar)	
	T_1	0.057	7 057	74.0	75.0	400 57	474 40
No	-	6.657	7.057	71.3	75.2	428.57	471.43
-	T ₂	7.629 7.743	7.752 8.019	81.5 83.1	83.2 85.8	461.90 476.19	528.57 542.86
	T₃ T₁	1.143	0.019	03.1	05.0	470.19	042.00
	• 1	14.848	14.581	158.8	156.3	571.43	623.81
N ₁₅₀	T_2	14.848	15.543	129.3	125.7	604.76	690.48
	T_3	16.219	16.105	129.5	140.9	619.05	704.76
	T_1	10.215	10.100	141.5	140.5	015.00	104.10
	• 1	15.514	16.352	181.0	190.8	590.48	657.14
N ₁₇₅	T_2	16.543	17.114	176.9	183.6	600.00	684.76
	T_3	16.514	17.467	159.3	170.4	642.86	752.38
	T₁		-		_		
N ₂₀₀		17.267	17.076	168.1	163.6	638.10	676.19
	T_2	18.600	19.848	198.7	211.9	623.81	752.38
	T_3	18.771	19.648	219.0	229.2	647.62	723.81
	T ₁	17.267	16.962	167.1	164.6	628.57	704.76
N ₂₂₅	T_2	18.076	18.638	210.9	217.4	638.10	704.76
	T_3	18.171	18.076	212.0	210.9	642.86	714.29
LSD 59	%	Ns	Ns	30.457	Ns	Ns	Ns

 Table 1: Effect of foliar application of Fe, Zn and Mn and nitrogen levels and their interactions on potato yield.

		Drv Ma	atter %		ein %		ch %		
Treatm	Treatments		2 nd	1 st	2 nd	1 st	2 nd		
			season	season	season	season	season		
Nitrogen Levels									
N ₀		20.67	20.68	12.32	11.99	14.42	14.43		
N ₁₅₀		20.17	20.24	14.49	14.94	13.97	14.03		
N ₁₇₅		19.80	19.49	14.96	15.24	13.64	13.37		
N ₂₀₀		19.41	19.38	15.02	15.33	13.29	13.27		
N ₂₂₅		19.00	18.98	15.08	15.55	12.93	12.91		
LSD 5%		0.417	0.416	0.388	0.229	0.371	0.370		
		Fe	, Zn and M	n foliar trea	atments				
T ₁									
		19.45	19.17	14.13	14.40	13.33	13.08		
T ₂		19.87	20.09	14.40	14.63	13.70	13.90		
T ₃		20.11	20.01	14.59	14.80	13.92	13.83		
LSD 5%		0.410	0.516	0.293	0.155	0.365	0.460		
		Interac	tion (Nitro	gen Levels	s*FZM folia	r)			
	T ₁								
No		20.03	20.13	12.15	11.83	13.84	13.94		
••0	T ₂	20.45	21.12	12.33	11.92	14.23	14.82		
	T ₃	21.53	20.80	12.48	12.23	15.18	14.53		
	T_1								
N ₁₅₀		19.80	19.47	14.23	14.65	13.64	13.35		
1130	T ₂	20.24	20.79	14.42	14.94	14.03	14.52		
	T ₃	20.46	20.46	14.81	15.25	14.23	14.23		
	T ₁								
N ₁₇₅	_	19.40	19.00	14.71	15.04	13.29	12.93		
	T ₂	19.93	19.48	15.00	15.29	13.76	13.36		
	T₃	20.07	19.99	15.17	15.40	13.88	13.81		
	T ₁	10.05	40.70	4470		40.45	40.00		
N ₂₀₀	-	19.25	18.72	14.73	15.15	13.15	12.68		
	T ₂	19.54	19.87	15.08	15.40	13.41	13.71		
	T ₃	19.43	19.55	15.25	15.46	13.32	13.42		
N.	Τ ₁	18.77	18.51	14.83	15.35	12.72	12.49		
N ₂₂₅	T ₂	19.18	19.18	15.15	15.60	13.09	13.09		
	T ₃	19.06	19.24	15.25	15.69	12.98	13.15		
LSD 5%		NS	NS	NS	NS	NS	NS		

 Table 2: Effect of foliar application of Fe, Zn and Mn and nitrogen levels and their interactions on potato tubers quality.

N-Uptake (kg fed.⁻¹):

Data in Table 3 reveal that application of N-levels significantly increased N-uptake by shoots, tubers yield and total uptake by potato plants. Application of N₂₂₅ recorded the highest N-uptake by shoots, while N₂₀₀ recorded the highest N-uptake by tubers yield and total uptake. These results are in accordance with those reported by Abdel-Kader (2002).

Also, results show that foliar application of Fe, Zn and Mn treatments significantly increased the uptake of N by shoot and tubers yield. Total N-uptake were increased by 10.31 and 14.05% in 1st season and by 15.54 and 17.41% in 2nd season with foliar treatments T_2 and T_3 respectively compared with T_1 . Similar results were obtained by Nofal *et al.* (2010)

Although the interaction effect on N uptake was not significant as shown in Table 3, the values were high under N × micronutrient combinations and $N_{200}^*T_3$ recorded the highest total N uptake (114.985 kg fed.¹) in the first season while $N_{200}^*T_2$ gave the highest value (125.58 kg fed.¹) in the second season. This could be attributed to that the applied micronutrients enhanced the metabolic process via enzyme activation which in turn encourages N-uptake by plants.

P-uptake (kg fed.⁻¹):

Data in Table 4 indicate that P-uptake by shoots, tubers yield and total uptake were significantly increased with increasing N-levels, up to N_{175} for P-uptake by shoots and up to N_{200} for total P-uptake. The positive effect of nitrogen application on P uptake by plants could be attributed to the increasing of root growth, altered metabolism, and increased solubility of soil P. Similar results were obtained by Sakr *et al.* (1998) and Khailfa *et al.* (2003).

Data in Table 4 reveal also that foliar treatments of mixed Fe, Zn and Mn significantly was insignificant in P-uptake by potato plants (shoots, tubers or total), whereas these increases were significant up to T₂. These results are confirmed with those obtained by Nofal *et al.* (2010). Respecting the effect of interactions, results show that the effect of interactions between N-levels and foliar treatments was insignificant on p-uptake for shoots or tubers and the total uptake in both seasons. However, the highest total P-uptake was 15.573 and 17.659 kg fed.⁻¹ at the interaction $N_{200}^*T_2$ in 1st and 2nd seasons, respectively.

K-uptake (kg fed.¹):

Data presented in Table 5 show that application of N-levels significantly affected potassium uptake. The values of K-uptake significantly increased by N fertilization up to N_{200} in both seasons then declined. The highest total K-uptake was 69.764 and 80.188 kg fed.⁻¹ in the 1st and the 2nd seasons respectively with N_{200} . The positive effect of nitrogen fertilization on K uptake may be related to the role of N in increasing the root and vegetative growth and consequently the uptake of nutrients. These effects are in agreement with that obtained by Nofal *et al.*, (2010).

Also, data reveal that foliar treatments of mixed Fe, Zn and Mn significantly increased K-uptake by potato plants, since the highest total K-uptake was 62.320 kg fed.⁻¹ with T_3 in 1st season and 72.151 kg fed.⁻¹ in 2nd season with T_3 too. Nofal *et al.* (2010) reported similar results.

Here again, though the interaction effect was not significant as shown in Table 5, K uptake by potato plants was high by N level × micronutrient compared with the micronutrients application only and the highest total K uptake was recorded by N_{200} *T₃ (75.96 and 87.213 kg fed.⁻¹ during the first and second season, respectively.

	and	tubers yi		N-Uptake	(ka fed. ⁻¹)					
_			1 st season	it optatio		2 nd season				
Treatr	nents	Shoots	tubers	Total- uptake	Shoots	tubers	Total- uptake			
	Nitrogen Levels									
N ₀		12.804	30.002	42.806	12.821	30.248	43.069			
N ₁₅₀		21.208	73.133	94.341	21.990	74.869	96.858			
N ₁₇₅		23.544	76.781	100.324	25.934	80.762	106.696			
N ₂₀₀		24.913	85.024	109.937	27.233	89.751	116.985			
N ₂₂₅		26.240	81.788	108.029	28.116	84.540	112.656			
LSD 5%	, D	3.622	3.859	3.818	3.822	6.544	6.177			
		F	e, Zn and l	Mn foliar tre	atments					
T ₁										
		20.469	63.776	84.245	21.352	64.473	85.826			
T ₂		21.847	71.086	92.932	23.836	75.331	99.168			
T ₃		22.910	73.176	96.086	24.468	76.297	100.765			
LSD 5%	, D	0.597	2.146	2.173	0.758	5.123	4.819			
		Intera	action (Nitr	ogen Level	s*FZM foliar)				
	T ₁									
No		11.566	25.923	37.489	11.156	26.874	38.031			
•••	T ₂	12.996	30.789	43.785	13.250	31.224	44.474			
	T ₃	13.851	33.294	47.145	14.057	32.645	46.702			
	T ₁									
N ₁₅₀		19.709	66.948	86.657	19.421	66.610	86.032			
. 150	T ₂	21.551	73.745	95.296	22.609	77.509	100.117			
	T ₃	22.365	78.707	101.072	23.939	80.487	104.426			
	T ₁					- 4 - 200				
N ₁₇₅	-	22.099	70.837	92.936	24.151	74.702	98.854			
	T ₂	23.340	79.119	102.459	26.408	81.564	107.972			
	T ₃	25.192	80.386	105.578	27.242	86.019	113.261			
	T ₁	24.338	78.348	102.686	25.111	77.073	102.184			
N ₂₀₀		24.338 24.393		102.686		77.073 97.147	102.184 125.580			
	T ₂		87.748		28.433					
	T ₃	26.008	88.977 76.824	114.985	28.155	95.034	123.189 104.029			
NL		24.634		101.458	26.922	77.107				
N ₂₂₅	T ₂	26.952	84.028	110.980	28.482	89.214	117.696			
	T ₃	27.135	84.514	111.649	28.945	87.300	116.244			
LSD 5%	D	NS	NS	NS	NS	NS	NS			

Table 3: Effect of foliar application of Fe, Zn and Mn and nitrogen levels and their interactions on N-uptake (kg fed.⁻¹) by potato shoots and tubers yields.

	(un)	ers yields.		P-Uptake	(kg fed. ⁻¹)			
			1 st season	•		2 nd season		
Treatm	ents	Shoots	tubers	Total- uptake	Shoots	tubers	Total- uptake	
		•		ogen Levels				
N ₀		1.753	4.753	6.506	1.841	5.451	7.291	
N ₁₅₀		2.397	10.213	12.610	2.509	11.545	14.054	
N ₁₇₅		2.726	11.251	13.977	2.795	13.272	16.068	
N ₂₀₀		2.692	11.994	14.685	2.748	13.521	16.269	
N ₂₂₅		2.628	11.745	14.373	2.769	12.712	15.481	
LSD 5%	/ 0	0.466	0.444	0.432	0.186	1.111	1.091	
		-	Fe, Zn and	Mn foliar tre	atments		-	
T1								
		2.316	9.062	11.378	2.368	10.075	12.443	
T_2		2.452	10.326	12.778	2.603	11.821	14.424	
T ₃		2.550	10.585	13.136	2.626	12.005	14.631	
LSD 5%	/ 0	0.045	0.475	0.437	0.103	0.830	0.829	
		Inter	raction (Nitr	ogen Levels	s*FZM foliar)		
	T ₁							
No		1.613	4.139	5.751	1.693	4.874	6.567	
0	T ₂	1.737	4.866	6.603	1.868	5.574	7.442	
	T ₃	1.911	5.254	7.165	1.962	5.904	7.866	
	T ₁	0.400	0.540	44 700	0.005	40.045	10.010	
N ₁₅₀	-	2.190	9.519	11.709	2.305	10.015	12.319	
100	T ₂	2.395	10.318	12.713	2.578	11.393	13.971	
	T ₃	2.607	10.801	13.408	2.643	13.229	15.871	
	T ₁	2.523	10.059	12.582	2.609	12.215	14.823	
N ₁₇₅	T ₂	2.525	11.461	12.562	2.809	13.751	14.823	
	T ₃	2.910	12.233	14.207	2.007	13.852	16.822	
	T ₁	2.910	12.233	15.145	2.970	13.052	10.022	
	1	2.660	10.730	13.391	2.532	11.574	14.105	
N ₂₀₀	T ₂	2.700	12.873	15.573	2.918	14.741	17.659	
	T ₃	2.714	12.378	15.092	2.795	14.250	17.044	
	T ₁	2.593	10.865	13.457	2.702	11.699	14.401	
N ₂₂₅	T ₂	2.682	12.111	14.793	2.843	13.647	16.491	
•220	T ₃	2.609	12.260	14.870	2.761	12.789	15.550	
LSD 5%		0.100	NS	NS	NS	NS	NS	

 Table 4: Effect of foliar application of Fe, Zn and Mn and nitrogen levels and their interactions on P-uptake by potato shoots and tubers yields.

	K-Uptake (kg fed. ⁻¹)								
				n-Uptake		2 nd season			
Treatments		1 st seasor			2	2 ^{IIIII} season			
		Shoots	tubers	Total- uptake	Shoots	tubers	Total- uptake		
			Nitro	gen Level					
N ₀		11.826	20.172	31.997	13.820	22.573	36.392		
N ₁₅₀		17.425	45.000	62.425	20.067	47.960	68.027		
N ₁₇₅		18.754	50.107	68.860	21.795	55.263	77.059		
N ₂₀₀		18.415	51.349	69.764	21.186	59.002	80.188		
N ₂₂₅		17.504	50.152	67.656	20.521	55.004	75.525		
LSD 5	%	1.278	2.371	3.102	1.022	5.946	6.297		
		Fe,	Zn and M	n foliar tr	eatments				
T ₁									
		16.161	39.834	55.995	18.214	41.948	60.162		
T ₂		16.674	45.432	62.107	19.989	50.011	70.001		
T ₃		17.519	44.801	62.320	20.230	51.922	72.151		
LSD 5	%	0.871	2.691	3.253	1.024	3.332	3.513		
		Interact	tion (Nitro	ogen Leve	Is*FZM fo	liar)			
	T ₁								
No		10.560	17.311	27.871	12.332	19.932	32.263		
0	T_2	12.098	20.590	32.688	14.231	23.322	37.553		
	T ₃	12.819	22.614	35.433	14.895	24.466	39.361		
	T ₁	40.000	44.000	F7 400	47.050	44.004	50 500		
N ₁₅₀	-	16.339	41.083	57.422	17.852	41.681	59.532		
100	T ₂	16.535	45.477	62.012	20.388	48.914	69.301		
	T ₃	19.402	48.440	67.842	21.961	53.285	75.246		
	T ₁	18.634	45.406	64.040	20.855	50.676	71.531		
N ₁₇₅	T_2	18.362	43.400 51.094	69.456	20.833	55.003	76.205		
	T_3	19.265	53.820	73.085	23.330	60.111	83.440		
	T_1	13.205	55.020	75.005	20.000	00.111	03.440		
	• 1	18.521	46.168	64.689	20.760	47.255	68.015		
N ₂₀₀	T_2	18.276	57.684	75.960	22.159	65.054	87.213		
	T_3	18.448	50.194	68.643	20.639	64.697	85.335		
	T ₁	16.752	49.203	65.955	19.272	50.199	69.471		
N ₂₂₅	T_2	18.099	52.318	70.417	21.967	57.763	79.730		
-225	T_3	17.660	48.937	66.596	20.323	57.050	77.373		
LSD 5		NS	NS	NS	NS	NS	NS		

Table 5: Effect of foliar application of Fe, Zn and Mn and nitrogen levels and their interactions on K-uptake by potato shoots and tubers yields.

N fertilization efficiencies:

Nitrogen use efficiency can be defined as the maximum economic yield produced per unit of nutrient applied, absorbed or utilized by the plant to produce grain and straw (Fageria, and Baligar, 2001). However, in the literature, nutrient use efficiency has been defined in several ways including. Apparent recovery, nutrient uptake efficiency and nutrient utilization efficiency. In field studies, nutrient use efficiencies are either calculated based on differences in crop yield and/or nutrient uptake between fertilized plots and unfertilized control or by using isotop-labled fertilizers to estimate crop and soil recovery of applied nutrients.

Data presented in Table 6 show the effects of application N-levels and their interactions with foliar treatments of mixed Fe, Zn and Mn on N utilization efficiency (NU_tE), (kg tubers yield kg total N-uptake⁻¹), N-uptake efficiency (NU_pE) (kg N-uptake kg N-Supply⁻¹) and N apparent recovery fraction percentage (NRF %) for potato plants in two seasons.

Table 6: Effect of foliar application of Fe, Zn and Mn and nitrogen levels
and their interactions on some indices of nitrogen use
officiancias of notato viold

efficiencies of potato yield.								
		N Utili Effici	zation iency	N Uptake Efficiency NU _P E kg N-uptake kg N- supply ⁻¹		N Apparent Recovery Fraction NRF %		
		NU	J _t E					
Treatr	nents	kg yield kg	g N-uptake ⁻					
		1 st	2 nd	1 st	2 nd	1 st 2 nd		
		season	season	season	season	season	season	
				rogen Levels				
N ₀		171.536	176.683	0.000	0.000	0.00	0.00	
N ₁₅₀		165.660	159.093	0.629	0.646	34.36	35.86	
N ₁₇₅		161.381	159.124	0.573	0.610	32.87	36.36	
N ₂₀₀		165.664	161.193	0.550	0.585	33.57	36.96	
N ₂₂₅		165.123	158.820	0.432	0.451	26.09	27.84	
Mean		165.873	162.983	0.437	0.458	25.38	27.40	
		Int	eraction (Ni	trogen Level	s*FZM foliar)			
	T ₁							
No	-	177.575	185.565	0.000	0.000	0.00	0.00	
0	T ₂	174.228	174.312	0.000	0.000	0.00	0.00	
	T₃ T	164.235	171.707	0.000	0.000	0.00	0.00	
	T ₁	171.338	169.483	0.578	0.574	32.78	32.00	
N ₁₅₀	T ₂	166.000	155.246	0.635	0.667	34.34	37.10	
	T ₃	160.000	155.240	0.674	0.696	35.95	38.48	
-	T ₁	100.470	104.222	0.074	0.000	00.00	50.40	
	.,	166.936	165.420	0.531	0.565	31.68	34.76	
N ₁₇₅	T ₂	161.458	158.507	0.585	0.617	37.13	36.28	
	T ₃	156.418	154.216	0.603	0.647	33.39	38.03	
	T ₁							
N		168.150	167.112	0.513	0.511	32.60	32.08	
N ₂₀₀	T ₂	165.862	158.047	0.561	0.628	34.18	40.55	
	T ₃	163.251	159.491	0.575	0.616	33.92	38.24	
	T ₁	170.185	163.050	0.406	0.416	25.59	26.40	
N ₂₂₅	T ₂	162.878	158.358	0.444	0.471	26.88	29.29	
	T ₃	162.756	155.502	0.447	0.465	25.80	27.82	
Me	an	166.116	163.349	0.437	0.458	25.62	27.40	

It is obvious from the results in Table 6 that values of NU_tE and NU_pE were decreased with increasing N-levels, and N₂₀₀ recorded the highest percentage of NRF% (36.96 %) in 2nd season. Also, data illustrate that interactions between N-levels and foliar treatments affected NU_tE, NU_pE and NRF %, since the highest percentage of NRF% were 37.13 and 40.55 % in 1st and 2nd season, respectively with interaction N₁₇₅*T₂ and N₂₀₀*T₂ respectively. This reflect the effect of foliar Fe, Zn and Mn on N-uptake and consequently on the studied indices of N use efficiency.

CONCLUSION

The present study showed that application of 175 kg N fed.⁻¹ with foliar application of mixed sulfate Fe, Zn and Mn at a ratio 2:1:1 at 1.25 g L^{-1} could be recommended to obtain high fresh tuber yield of potato with high quality and high N efficiency.

REFERENCES

- Abdel-Kader, A. E. (2002). Effect of some organic and mineral fertilizers on some potato cultivars. M. Sc. Thesis, Fac. of Agric. Mans. Univ., Egypt.
- Adamski, J. M.; J. A. Peters; R. Danieloski and M. A. Bacarin (2011). Excess iron-induced changes in the photosynthetic characteristics of sweet potato. Journal of Plant Physiology, 168: 2056- 2062.
- Alloway, B.J. (2004). Zinc in Soils and Crop Nutrition. 1st Ed., International Zinc Association (IZA), Brussels, Belgium, pp: 128.
- Bybordy, A. and M.J. Malakoty (2003). Effect of nitrogen and manganese levels on performance and quality of two species rapeseed in Ahar city (Eastern Azarbyjan). J. Sci. Res. Soil and Water, Natl. Soil Water Res. Inst. Tehran, Iran, 17: 1-8.e to nitrogen fertilization. Communications in Soil Science and Plant Analysis. 32: 1405-1429.

Butron, W. G., (1948). "The Potato". Chapman and Hall, London, pp:319.

- Fageria, N. K. and V. C. Baligar (2001). Low land rice response to Nitrogen Fertilization Communcation in Soil Sci. and Plant Analysis,32:1405-1429.
- Gomez, K. A. and A. A. Gomez (1984). "Statistical Procedures for Agricultural Research". 2nd Ed. John Wiley and Sons, pp. 680.
- Goos, R.J.; Johnson, B. Jackson and G. G. Hargrove (2004). Greenhouse evaluation of controlled release iron fertilizers for soybean. J. Plant Nutr. 27: 43– 55.
- Hänsch R.; and R. R. Mendel. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B and Cl). Curr. Opin. Plant Biol., 12: 259–66.
- Heckman, J.R. (2000). Manganese needs of soils and crops in New Jersey. New Jersey Agricultural Experiment Station.

- Huggins D. R. and W. L. Pan (1993). Nitrogen efficiency component analysis: an evaluation of cropping systems differences in productivity. Agron J. 85: 898–905.
- Iqbal, J.M. (1995). Response of potato crop to zinc sulfate application. Proceeding of National Seminar Held at NARC,Islamabad.
- Jackson, M. L. (1967). "Soil Chemical Analysis". Printic Hall of India, New Delhi. pp 144-197.
- Khalifa, R. Kh. M.; O.A. Nofal and Nadia, M. Badran (2003). Influence of foliar feeding with micronutrients on the yield and nutritional status of winter potato var. Diamond. Annuals Agric. Sci., Ain Shams Univ., Cairo, 48 (2), 473 – 483.
- Li, D.; W. Cong; Z. Cai; D. Shi and F. Ouyang, (2002). Response of growth and photosynthesis of marine red tide alga Heterosigma akashiwo to iron and iron stress condition. Biotechnol. Lett. 24, 743–747.
- Mohamadi, E. (2000). Study effects of nutrient elements utilization methods (Zn, Mn and Mg) on increase performance quantitative and quality of two potato species. Jehad and Agriculture Ministry Final Report of Res. Inst. Reformand Providing Sapliny and Seed.
- Mohammad M. J.; S. Zuraiqi; W. Quasmeh and I. Papadopoulos (1999). Yield response and nitrogen utilization efficiency by drip-irrigated potato. Nutrient Cycling in Agroecosystems, 54: 243–249.
- Mousavi, S. R.; M. Galavi and G. Ahmadvand (2007). Effect of zinc and manganese foliar application on yield, quality and enrichment on potato (*Solanum tuberosum L.*,). Asian Journal of Plant Sciences, 6: 1256-1260.
- Nikolic, M.; and R. Kastori (2000). Effect of bicarbonate and Fe supply on Fe nutrition of grapevine. J. Plant Nutr. 23: 1619–1627.
- Nofal, O. A., A. B. El-Nasharty and N. M. Badran (2010). Sustainable improvement of nutrients utilization using micronutrients foliar application on potato plant. International J. of Acad. Res., 2(4): 292-296.
- Nofal, O.A.; M. F. El-Massri and A. A. El-Sayed (1998). Response of some potato cultivars grown on alluvial soil to micronutrients foliar spray. J. Agric. Sci. Mansoura Univ., 23: 4121-4123.
- Nour,Y.M.(1992). Cultural Role of the Egypto-German Project "Micronutrients and Other Plant Nutrition Problems in Egypt" in the Field of Fertilizers Use in Egypt. Proc. Egypto-German Seminar "Environmental and Cultural Aspects of Fertilizers Use", 25-28 Nov. 1991, Cairo, Ed. M.M. El-Fouly, pp. 161-174 (1992).
- Omil, B. (2007). Trace elements in soils and plants in temperate forest plantations subjected to single and multiple applications of mixed wood ash. Science of the Total Environment, Michigan, v.381, n.1-3, p.157-168.
- Ranganna, S. (1977). "Manual of Analysis of Fruit and Vegetable Products". Central Food Technological Research Institute Mysore.

- Ruza, A.; I. Skrabule and A. Vaivode (2013). Influence of nitrogen on potato productivity and nutrient use efficiency. Proc Latvian Acad. Sci., B 67: 247-253.
- Sakr, A. A.; S. Risk and S. A. Ibrahim (1989). A fertilizer leaf spray for potato plants. J. Agric. Sci., Mansoura Univ., Egypt, 14: 1894 – 1900.
- Tyler, K. B; F. E. Broadbent and J. C. Bishop (1983). Efficiency of nitrogen uptake by potatoes. AmPotato J, 60:261–269.
- Vos, J. (2009). Nitrogen responses and nitrogen management in potato. Pot. Res. 52: 305-317.
- Westermann, D. T. (2005). Nutritional requirements of potatoes. Am. J. Pot. Res., 82: 301–307.

تأثير التسميد النيتروجيني والاضافة الورقية لبعض العناصر الصغري على محصول البطاطس وكفاءة التسميد النيتروجيني.

الحسينى المرسى السيد خفاجى معهد بحوث الأراضي والمياه والبيئة – مركز البحوث الزراعية – الجيزة – مصر.

أجريت تجربتان حقليتان بقرية بطرة, مركز طلخا بمحافظة الدقهلية, مصىر. خلال الموسمين الشتويين لعام 2013/2012 و2014/2013 في تصميم القطع المنشقة مرة واحدة في 3 مكررات حيث شغلت مستويات النيتروجين القطع الرئيسية (صفر ،150 ،175، 200 و225 كجم ن/للفدان) و الإضافة الورقية لخليط سلفات كلا من الحدّيد والزنك والمنجنيز كنسبة 1:1:2 في القطع المنشقة (صفر و 1.25 و 2.5 جم /لتر) لدراسة تأثيرها على محصول البطاطس وجودتة (صنف سيلاني) والممتص من النتروجين والفوسفور والبوتاسيوم وكفاءة التسميد النتروجيني.

وكانت النتائج كما يلى:-

- زاد معنويا كلا من محصول الدرنات الكلي ومتوسط وزن الدرنية ومحصول العرش الجاف مع إضافة مستويات النتروجين، وكذلك الإضافة الورقية لمخلوط كل من الحديد والزنك والمنجنيز وكاّن تأثير التفاعل بينها وبين مستويات النيتروجين غير معنويا.
- سجل أعلى محصول درنات طازج (18.771 و 19.648 ميجا جرام/فدان) عند تفاعل مستوى النيتر وجبن 200كجم/فدان مع الإضافة الورقية لمخلوط الحديد والزنك والمنجنيز عند معدل 2.5جرام/لتر.
- تأثرت النسبة المئوية للمادة الجافة في الدرنة ونسبة البروتين ونسبة النشا معنويا بإضافة مستويات النتروجين ومعاملات الرش بينما كان تأثير التفاعل بينهما غير معنوى في الموسمين.
- زاد الممتص من كلا من النتروجين والفوسفور والبوتاسيوم بواسطة العرش والدرنات مع إضافة مستويات النتروجين والرش بالحديد والزنك والمنجنيز زيادة معنوية بينما كان تأثير التفاعل غير معنوي.
- انخفضت قيم كفاءة استخدام النيتر وجين وكفاءة الامتصاص مع الإضافة المتثالية لمستويات التسميد النيتر وجيني، في حين كانت أعلى معدل استفادة للنتر وجين 36.96% عند مستوى التسميد النيتر وجيني 200 كجم/فدان.
- أثر التفاعل بين معاملات الرش بالحديد والزنك والمنجنيز ومستويات اليتروجين على كفاءة استخدام النيتروجين وكفاءة الامتصاص ومعدل استفادة للنتروجين، حيث كانت معدل استفادة للنتروجين في الموسم الأول 37.13% وفي الموسم الثاني 40.55 % عند التفاعل بين مستوى النتروجين 175, 200كجم على التوالي مع الإضافة الورقية لمخلوط الحديد والزنك والمنجنيز عند معدل 1.25جر ام/لتر.