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 Radon concentrations have been measured using Sealed Can Technique with CR-39 detector for twenty 

collected samples from Hamash gold mine area, South Eastern Desert of Egypt. This area is one of the 

most important areas of gold-bearing granites in Arabian Nubian Shield and is being used as a gold 

mine. The average values of radon concentrations, the exhalation rates, annual effective doses, and 

working levels are found to be 27.18 ± 0.13 kBqm-3, 3.27 ± 0.03 Bqm-2h-1, 686.27 ± 5.15 mSvy-1 and 2.94 ± 

0.02 respectively. The results indicate that the radon concentrations in all samples are higher than the 

recommended world limit given by ICRP and IAEA. The present study can be used to assess any 

changes in the radioactive background and any harmful radiation effect on the human in this area. 

Finally, the obtained data are useful when building a radioactivity atlas of radon for Hamash gold mine 

and its surrounding region. 
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Introduction 
 

Radon is emitted from the soil, rocks, and water 

into the air. It comes from the natural decay of 

radium deposits in the soil, rocks, water and 

depending on the geographical and the geological 

features of the region. Radon is an important 

natural radioactive element that could be 

harmful to the human population [1]. Radon is a 

radioactive gas having different isotopes, there a 

great interest in 
222

Rn which decays with a half-life 

of 3.82 days into many short-lived isotopes, but 

highly alpha emitter daughter progenies such as 
218

Po and 
214

Po [2]. Radon and daughter products 

are the highest contributor to human exposure of 

the natural background radiation, and hence, it is 

considered as an environmental health hazard 

when concentrated in closed areas like 

underground mines, caves, and cellars or poorly 

ventilated and badly designed houses. The 

determination of radon concentration is very 

important due to the health risk and design the 

control strategies and to detect the risk of radiation 

exposure for workers in the studied area. Hamash 

gold mine area (HGMA) location is in the south 

Eastern Desert, Egypt. The area is limited by 

longitudes (34
o
 04' and 34

o
 09') and latitudes 

(24
o
 38' and 24

o
 43'). In the current work, 

radon concentrations were measured for 

samples of granite stone and metavolcanics, as 

shown in Fig. (1).  From the obtained data, the 

difference in the radioactivity background 

level due to geological processes in the 

studied area can be detected. 
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Fig. (1): The location and geological map of the samples [3] 
 

  

Materials and Methods 

Twenty samples have been collected from Hamash 

gold mine areas. Closed Can technique was used 

to estimate radon concentrations CRn, exhalation 

rates (EA), Annual effective doses (HE) and 

working levels (WL) using CR-39 detectors. The 

collected samples were dried for 3 hours at 110 °C 

in the oven, sieved by 1 mm mesh, weighted and 

saved for 50 days in a closed stainless-steel can 

(17 cm height & 10.6 cm diameter). All samples 

were stored within the same volume in the 

container up to 6 cm height, leaving 11 cm free 

height to the detector above as shown in Fig. (2). 

The detectors CR-39 of thickness 500 µm, made 

by American Technical Plastics, were cut into 

sheets (1.5 x 1.5) cm
2
 and fixed at the internal-side 

of the can cover and the containers were closed 

tightly. In the same way, the background radiation 

has been measured by cans containing no samples. 

All samples were stored for 50 days in a dry and 

dark place to reach secular equilibrium. The 

detectors were removed carefully from the cans 

and etched in a solution of NaOH with   6.25 N at 

70 ± 1
o
C for 8hrs, then eroded in distilled water 

and dipped for 5 minutes in a 3% acetic acid 

solution. Finally, the detectors were washed again 

with distilled water and dried. The alpha tracks 

were then counted using an optical microscope at 

a magnification of 640x, taking into consideration 

the background [4]. Radon concentrations CRn 

were calculated in (kBqm
-3

) by the following 

equation: 

 

       

 

 

    
 

  
                                                  (1)  

Where ρ is the track density (track cm
-2

), η is the 

calibration coefficient of the CR-39 detector and T 

is the exposure time in days [5]. 

The exhalation rate EA of radon was calculated by: 

 A 
   

    
 

 
        

                                  (2)                                                                 

Where λ radon decay constant (h
-1

), C radon 

concentration (Bqm
-3

h), V effective volume of the 

Can (m
3
), A is the cross-sectional area (m

2
) and T 

the irradiation time [6, 7].  

The annual effective dose HE was calculated by: 

                                            (3) 

Where F = 0.4 the indoor equilibrium factor 

between radon and its progeny, H is the indoor 

occupancy   factor (0.8), D is the dose conversion 

factor (9×10
-6

 mSvh
-1

 / Bqm
-3

) and T is the indoor 

exposure time equal to 7000 hy
−1

 [2, 4]. 

The working levels have been given using the 

following equation: 

WL = (CRn x F)/3700                                      (4) 

Where F is the equilibrium factor for radon which 

equal 0.4 as suggested by [2, 8]. 

Fig. (2): Closed container Can use for stored samples in 

passive technique 
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Results and Discussion 

The Locations and description of the investigated 

20 samples obtained from (HGMA) are presented 

in Table (1). The obtained values of radon 

concentrations (CRn), exhalation rates (EA), annual 

effective doses (HE) and Working levels (WL) for 

all samples using CR-39 detectors are given in 

Table (2). The average values of CRn, EA, HE and 

WL are found to be equal to 27.18 ± 0.13 kBqm
-3

, 

3.27 ± 0.03 Bqm
-2

h
-1

, 686.27 ± 5.15 mSvy
-1

 and 

2.94 ± 0.02 respectively.  

The differences in radon concentrations from a 

sample to another are due to the variation in the 

geological structures and chemical compositions of 

the samples. From Table (2) it can be noticed that 

the values of CRn, EA, HE and WL are higher than 

the reported permissible limit [9, 10, 11, 12]. Most 

of our results agree with the published data of 

different countries as shown in Table (3).  

Figure (3) shows the radon concentrations of the 

samples in different locations. Samples No. 7, 8, 9, 

10 and 11 have high values of radon concentration. 

The high values of CRn in these locations are due to 

the increase of 
238

U, since uranium ore deposits are 

in secular equilibrium with its daughters. The high 

values of CRn in these locations can be attributed to 

increasing of 
238

U content.  Samples No. 15, 16 

and 17, which have low values of radon 

concentration are from the Um. Hagalig area.  

Figure (4) shows the correlation between CRn and 

EA, where R
2
 = 1.  There is a good agreement 

between CRn and EA. The relation is linear because 

EA calculation depends on CRn. EA is important to 

understand the relative contribution of the material 

to the total CRn found in the samples and is helpful 

to know radon health hazard. 

 

Table (1): Locations of samples obtained from different areas 

Sample 

No. 
Area name Description Latitude Longitude 

1 

Hamash 

Gold 

Mine 

Younger granite 

(Au-Cu quartz) 

24 ˚ 41' 32" 34 ˚ 04' 31" 

2 24 ˚ 41' 12" 34 ˚ 04' 27" 

3 24 ˚ 41' 02" 34 ˚ 04' 53" 

4 24 ˚ 40' 36" 34 ˚ 04' 49" 

5 24 ˚ 40' 36" 34 ˚ 05' 28" 

6 24 ˚ 40' 12" 34 ˚ 05' 17" 

7 

Wadi 

Hamash 

24 ˚ 40' 23" 34 ˚ 05' 57" 

8 24 ˚ 40' 05" 34 ˚ 05' 35" 

9 24 ˚ 39' 12" 34 ˚ 05' 13" 

10 24 ˚ 39' 40" 34 ˚ 05' 39" 

11 24 ˚ 40' 05" 34 ˚ 06' 35" 

12 

Um. Tundub 

Metavolcanics 

(Shear zones) 

24 ˚ 42' 40" 34 ˚ 05' 22" 

13 24 ˚ 42' 11" 34 ˚ 05' 11" 

14 24 ˚ 41' 47" 34 ˚ 05' 33" 

15 

Um. Hagalig 

South 

24 ˚ 41' 13" 34 ˚ 06' 27" 

16 24 ˚ 41' 04" 34 ˚ 05' 57" 

17 24 ˚ 40' 49" 34 ˚ 06' 01" 

18 

Um. Hagalig 

North 

24 ˚ 42' 17" 34 ˚ 07' 58" 

19 24 ˚ 42' 53" 34 ˚ 07' 37" 

20 24 ˚ 43' 10" 34 ˚ 07' 04" 

 

 

 

 

 

 

 



Arab J. Nucl. Sci. & Applic. Vol. 52, No. 4 (2019) 

ENVIRONMENTAL RADIOACTIVITY OF RADON.... 
193 

 

 

 

Table (2): CRn, EA, and HE, of the samples obtained using CR-39 detectors 
 

Sample 

No. 

Area 

name 

CRn EA HE 
WL 

(kBqm-3) (Bqm-2h-1) (mSvy-1) 

1 Hamash 23.10 ± 0.14 2.78 ± 0.02 583.08 ± 4.16 2.50 ± 0.02 

2 Gold 29.88 ± 0.15 3.60 ± 0.03 754.41 ± 5.60 3.23 ± 0.02 

3 Mine 26.62 ± 0.15 3.20 ± 0.03 672.06 ± 7.00 2.88 ± 0.03 

4 
 

41.29 ± 0.18 4.97 ± 0.04 1042.44 ± 8.71 4.46 ± 0.04 

5 
 

34.76 ± 0.17 4.18 ± 0.03 877.45 ± 5.64 3.76 ± 0.02 

6 
 

27.28 ± 0.15 3.28 ± 0.04 688.83 ± 8.07 2.95 ± 0.03 

7 

Wadi 

Hamash 

47.02 ± 0.19 5.66 ± 0.02 1186.99 ± 5.16 5.08 ± 0.02 

8 52.00 ± 0.20 6.26 ± 0.03 1312.74 ± 6.43 5.62 ± 0.03 

9 54.93 ± 0.21 6.61 ± 0.04 1386.81 ± 7.85 5.94 ± 0.03 

10 64.13 ± 0.23 7.72 ± 0.03 1619 ± 5.46 6.93 ± 0.02 

11 54.97 ± 0.21 6.61 ± 0.03 1387.90 ± 6.07 5.94 ± 0.03 

12 

Um. 

Tundub 

3.78 ± 0.06 0.46 ± 0.04 95.53 ± 7.47 0.41 ± 0.03 

13 1.47 ± 0.03 0.18 ± 0.03 37.17 ± 5.97 0.16 ± 0.03 

14 12.60 ± 0.10 1.52 ± 0.03 318.10 ± 5.44 1.36 ± 0.02 

15 
Um. 

Hagalig 

South 

0.03 ± 0.00 0.00 ± 0.04 0.71 ± 8.07 0.00 ± 0.03 

16 0.17 ± 0.01 0.02 ± 0.01 4.42 ± 2.22 0.02 ± 0.01 

17 0.66 ± 0.02 0.08 ± 0.00 16.74 ± 0.36 0.07 ± 0.00 

18 
Um. 

Hagalig 

North 

24.75 ± 0.14 2.98 ± 0.01 624.89 ± 0.73 2.68 ± 0.00 

19 22.26 ± 0.13 2.68 ± 0.01 561.98 ± 1.49 2.41 ± 0.01 

20 21.95 ± 0.13 2.64 ± 0.01 554.06 ± 1.13 2.37 ± 0.00 

Average 27.18 ± 0.13 3.27 ± 0.03 686.27 ± 5.15 2.94 ± 0.02 

 

 

 

Fig. (3): Comparison of the results of radon concentrations of the samples 
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Fig. (4): Correlation relation between CRn and EA of the samples 
 

Table (3): Comparison between present and previous publication in different countries 
 

Region 
CRn 

(kBqm
-3

) 

EA 

(Bqm
-2

h
-1

) 
Reference 

Poland 8.90 
 

[13] 

France 598 
 

[14] 

South Africa 226.50 
 

[15] 

Hungary 1.7 
 

[16] 

Germany 
 

1.89 [17] 

India 30.45 
 

[18] 

East Asia 
 

1.75 [19] 

China 
 

2.97 [20] 

Australia 
 

2.60 [21] 

India 1.74 
 

[22] 

Spain 
 

1.85 [23] 

Brazil 1.80 1.02 [24] 

South Africa  1.20 [25] 

Egypt 27.18 3.27 Present study 
 

 

 

 

Conclusion 

The present study clearly demonstrates that 

Hamash gold mines area (HGMA) is highly 

contaminated with radon due to its geological 

structure and chemical composition of different 

rocks from the surrounding areas. The average 

values of CRn, EA, HE and WL are found to be 

equal to 27.18 ± 0.13 kBqm
-3

, 3.27 ± 0.03 Bqm
-2

h
-

1
, 686.27 ± 5.15 mSvy

-1
 and 2.94 ± 0.02 

respectively. Obtained results agree with published 

data from different countries [14, 15, 18]. The 

results indicate that the radon concentrations CRn 
of all samples are higher than the permissible 

recommended world limit [9, 10, 11].  It is 

generally higher than the reference level (0.50-1.50 

kBqm
-3

) recommended in workplaces. The 

obtained data help in detecting any change in the 

radioactive background level due to geological 

processes, and it can be used as reference 

information in Hamash gold mine to detect any 

harmful radiation that would affect the workers in 

this area.  

For the above reasons, strong safety considerations 

are recommended for protecting the working 

personnel in Hamash gold mine and its 

surrounding areas. 
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