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LATERAL VIBRATION OF CANTILEVERS ON VISCOELASTIC FOUNDATIONS 

S. A. KASSEM* 

ABSTRACT 

'Lateral vibrations of uniform cantilevers resting on viscoelastic foundations 
are investigated. Effect of foundation parameters and a follower force 	• 

applied at the cantilever free end, on natural frequencies and vibration 
stability is studied. The system governing equations reduced to a dimension-
less form, is solved using variational method, with three modes of vibrations 
taken into account. The second and third natural frequencies are shown to 
increase with the increase of either the foundation elastic and shear rigi-
dities or the applied external tensile force. The first natural frequency 
increases with increasing the foundation elastic rigidity, while it decreases 
with the increase of the foundation shear rigidity and/or the tensile follower 
force, till it vanishes indicating vibration instability. Regions of stable 
vibrations are determined when the cantilever is subjected to a tensile or 
compressive follower force. Results obtained can be used for design 
purposes to determine the foundation parameters that should be guaranteed 
for stable vibrations when a certain follower force is applied to the beam, 
or alternatively to determine the limits to be imppsed on this force when 
the cantilever is mounted on a viscoelastic medium of known parameters. 

INTRODUCTION 

'Lateral vibrations of cantilevers resting on viscoelastic foundations might, 
under certain circumstances,increase indefinitely with time elapse. Smith and 
Herrmann 114 discussed this problem, and showed that unstable vibrations 
occur when an externally applied compressive follower force to the cantilever 
is increased above a certain value, that depends on the system parameters. 
Wahed 121 verified this conclusion theoretically by solving the system govern-
ing equation, then determining the thresholds of vibration instability. In 
developing the governing equation, he considered the foundation reaction on 
the beam as resulting from infinite number of closely spaced independent 
springs and dashpots. More appropriate representation of the foundation 
behaviour at the contact surface would result when assuming same kind of 

!interaction between the postulated infinite elements 131 , or alternatively 
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by considering the foundation as a semi-infinite isotropic continuum and 
solving the equations governing its dynamic behaviour. For developing a simple, 
but fairly accurate mathematical model in the latter case, simplifying assum-
ptions with respect to displacements were adopted in hi during investigating 
the behaviour of pure elastic foundations. Despite being tedious, the latter 
approach has the merit of evaluating the foundation parameters in terms of the 
foundation material properties. Sthrting from the equations of equilibrium of 
a continuum, the derivation of the equation governing the dynamics of a visco-
elastic foundation at the contact surface is presented in an Appendix. 

The analysis of lateral vibrations of beams on viscoelastic foundations carried 
,out in 151 showed that simply supported beams are always stable, except for • 
high compressive follower forces. A simplified analysis of cantilevers vibrat-
tions, based on a two-mode approximation, revealed that instability may result 
even in the abscence of external follower forces, due to the assumed interaction 
between the adjacent elements representing the foundation. 

In this paper a more detailed analysis of cantilevers vibrations is carried out, 
using a three-mode approximation, to investigate the effect of foundation and 
follower forces on the vibration stability and natural frequencies. 

GOVERNING EQUATIONS 

The foundation reaction acting on the cantilever is assumed to be q(x,t), as 
shown in Fig. 1. The equation governing the small transverse vibration of a 
uniform cantilever of flexural rigidity EI, length E, and mass per unit 
length m

1  is 

EI b
4
v/ox

4 
+ m

1 2)
2
v/6t2 N  -q(x,t) 	 (1) 

Viscoelastic foundation dynamic behaviour at the contact surface is governed' 
by the equation 

2 
s viox2  - kv + c b3v/6tox2  - b bv/25t - mo  b2v/ot2  + q(x,t) = 0 	(2) 
where s, 	c, b, and mo  are foundation parameters. 

Substituting for q(x,t) from eq.(2) into eq.(1), we get 

EIv/ex - s 2)2v/ox
2 

+ kv - c 3v/6tbx2 + b bv/bt + m 2
v/ot2 = 

where m = m
o 

+ m
l 

0 	(3) 



f .o 

The solution of this equation can be assumed in the form 

V = E yx)h(T) 
i=1 

where cp. is a function satisfying the boundary conditions at X=0 and X=1 
while ei  is a yet unknown normal coordinate. 

For the jth virtual displacement 6V. 
, 

eq.(6) transforms to 

( 	d4h/dX4  tp.
1 
 + K 2 (1,4. - S 	d 2t./dx2  h 	B 	opidh/dT 

i=1 	 i=1 " 	i=1 	1 	 i=1 
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r 
Using the following reference quantities: 

tr = f, tr = 2 (m/EW , s = EI/22 , kr = EI/t4 
, C

r 
= (mEI) , b = (mEI)

2 

r

eq.(3) can be rewritten in the dimensionless form 

b4V/bx4 + KV - S -62VAX2 + B rbV/6T - C -b3V/bT6X2 + 2V/bT2 = 0 	 (4) 

where V = v/vr , X = r , K = k/kr , S = s/sr , ... etc. 

The boundary conditions are: 

V = 0 = bV/bX at X = 0 , and e2 V/6X2  = 0 = -2)3V/bX 3 at X = 1 	 (5) 

SOLUTION OF EQUATION OF MOTION 

0 	 + KV - S -62 V/bX 2  + B bV/bT - C -63V/6T6X2  + WV/bT2) 61, = 0 (6) 

6 

The variational form of eq.(4) is 

I
1 4 (6 V/6X4  

	

- cpc12,1).41)(2 .4./di,  + 2 t.d2tp./dT2 ) cP.6X = 0 , j=1,2,...,n 	(7)•  
i=1 1 	i=1 " 

1  

Changing the order of integration and summation, we get 

E t..d2tp./dT2 
+ 8.. dip./dT  + y11).) = 0 	 , j=1,2,...,n 	(8) 

, 
ii 	1 	ij 	1  i=1 

wherect.=f 1t4.(1x,f3.=.11(4.--C d2(1)./dX2 )11).dX , and a.. 
	0 	1 j 	ij 	0 	1 	1 	J 

y . = II  ( (6 . / (11)(4  + KA1) K. - S c12(1) . / clX 2
4 .dX ij 0 	1 	1 	1  

Taking (P i  to be the i th characteristic function of the undamped free vib-
rations of the cantilever alone, and from the orthogonality of vibration 

.modes, eq.(8) takes the form 

a..d2IP /dT2 + B a..dtP. 	E/dT - C n  6..4./dT + (A.a..+Ka..)11). JJ 1 	JJ J 	. ij 1 1=1 	 J JJ 	JJ J 

- S 2 S i .IP. = 0 	 , j=1,2,...,n 	(9) ! i 	
i=1 3  1  

= I d 1 2t/dX  2 	 2 i 	.t.dX , and X. 0 

	

	 is the eigen value of the jth  vibration 
J 

EVibration modes are thus coupled through the terms containing E o 4. 
i=1 1-1 

where 6.. 
mode. 13  
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considering three modes of vibration. The functions yX), as given in 161, 
yield: 
a 	= a 	= a 	= 1 , 6 	= 0.85824 , 11 	22 	33 	11 	612 = 1.8738 , 613  = 1.5645 , 621  = -11.74 
6
22 

= -13.294 , 6
23 

= 3.229 , 6
31 

= 27.453 , 6
32 

= -9.042 , 6
33 

= -45.904 , 

and A
l 
= 3.516 , A

2
2  
 = 22.0346 , X

2
3 
 = 61.697 

With the solution of eq.(9) assumed in the form t1).= A.ePt, the system charac- 
teristic equation is 	 J 	J 

ij = 0 
(10) 

2 	rn 	\ J.  1 4 Where d.. = p + 	+ K - S6.. 	, for i=j  1.1 	13 	1 	13 

	

= -(Cp + 5)6.. 	 , for i/j 
J1  

and the determinant detfd
ij1 is of the third order. 

Setting both B and C equal to zero, and substituting p=jw in eq.(10), then 

solving the resulting frequency equation, the system firsP three natural fre-
quencies are obtained. The effect of foundation elastic and shear rigidities on the natural frequencies is depicted in Fig.2. The figure shows that while 
bothand w 

wn2 	n3 increase with the increase of K and/or S, the first natural 
frequency increases with K, and decreases with the increase of S. The varia-
tion of to and wn3  is shown to be more sensitive to the increase of S than 
to the increase 	of K. At certain values of S, the first natural frequency 
vanishes, indicating vibrations instsbility. These results conform qualitati-
vely with those predicted with the two-mode approximation presented in 151. . 

It is to be noted that when an external tensile or compressive follower force 
f , or in a dimensionless form F=ft2  /(EI) , is applied to the beam, it can 
simply be accounted for by adding it to, or subtracting it from S, respectively. 
This is because this force is entered in the equation of motion; i.e. eq.(4), as +F b2V/b)(2. Thus, with applied external follower force, the parameter S is 
replaced in eq.(10) by F1 = S+F, where F is positive for tensile forces, and 
negative for compressive ones. 

Now, if a cantilever resting on an elastic foundation is subjected to 
a tensile 

follower force, this force should not exceed certain limit in order to avoid 
vibration instability. The variation of the critical value of F1 ; namely Fi

e  , 
with K is shown in Fig.3. An emperical relation that fits the curve 

well, 
with an error less than 3% occuring at K=200, is 	 • 
F
lc 

= 32.2 + 7.25 K°.8  
(11) 

This relation can be made use of to determine the maximum 
allowable tensile follower force Fc  subjected to the beam, provided that K and S are known. 

Vibration stability, when damping is present, can be determined by applying 
Routh's criterion to eq.(10). The obtained results for different combinations 
of foundation parameters and tensile follower forces are presented in Fig.4, 
which shows the regions of stable vibrations of the cantilever. For small values of C (Cs0.1), the foundation elastic rigidity is seen to have negli- gible effect on the stability boundary. The critical value of the linear 
damnino 	tl 4- _4_ 
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increase of F1 , till it attains a minimum at Fl= 32 . It then increases to 
reach asymptotically a value of 0.72Cs  at large values of F1. At C = 1 , and 
for Fl< 1,0 , Be  is shown to depend on both F1  and K. In this region, Bc  dec-
reases with the increase of K, and is seen to decrease with the increase of 
F1 for the smaller values of K, while it increases monotoneously with F1 for 
K >1000 . When Fl is greater than 40 , Bc  depends solely on F1 again and app-
roaches asymptotically 0.72. The same tendency of results is observed when 
C=10 , except that the dependence of Bs  on K, when F1 <►0, is notable, beside 
that the final value of Bc  at the higher values of F1 is 7.2 . These results 
are different from those predicted with the two-mode approximation followed 
in 151, specially at the higher values of F1 . Figure It can be used to deter-
mine, for each combination of B, C, and K , the allowable values of F1 that 
.render the vibrations stable. FOr instance, with C=0.1 , the allowable range 
of F1  is 8<F1<110 , for. B=0.05 . Generally, 'for F1>2, stable vibrations are 
guaranteed when B/C>0.72 . This limit is extended towards lower values of F1  
when both C and K are increased. 

If the cantilever is subjected to compressive follower force smaller than S, 
the same previous conclusions hold, with a resultant tensile follower force 
of value (S-F). On the other hand, if F>S, a resultant compressive force (F-S) 
is applied to the beam. The dynamic characteristics of the system can be stud-
ied in this case using eq.(10) with S replaced by -(F-S). Using Routh's cri-
terion, conditions of stable vibrations are obtained, and plotted in Fig.5 . 
The figure gives the allowable values of the resultant compressive force for 
the different combinations of K, B, and C. With C=0, this force is constant 
when B=O, and increases linearly with K when B>0. At any value of K, the all-
owable force increases with the increase of B. It is worth noting that these 
conclusions conform well with those reported in 121 , where the analysis 
.considered two modes of vibrations, the maximum deviation in the values obtain-- -ed being less than 4% in the range of K and. B dealt with. This indicates that if more than three modes were taken into account, no significant improvement 
in results would be expected. For the values of C>0, the critical force increa-ses with the increase of either K or B. The increase of C would allow the application of higher compressive follower forces only when both K and B are 
large (e.g. B=5 and K>120) , but at the low values of: B and K , the increase 
of C is detrimental regarding the allowable force, since this force is reduced. The figure shows also that at certain combinations of foundation parameters, • the maximum allowable compressive follower force might attain zero or even negative values. For these combinations, no resultant compressive force would 
be applied to avoid vibration instability. In this case, the critical value 
of foundation viscous linear damping coefficient; Be  , at each value of C and • :K can be obtained by setting S=0 in eq.(lo), and finding the conditions undel" 
which sustained oscillations occu•. The obtained results are presented in 	. Fig.6 . It is to be noted that for foundations with B<Bc  , unstable vibrations might be stabilized by applying resultant tensile follower force to the beam, the value of which can be determined from Fig.4 . 

CONCLUSION 

Analysis of lateral vibrations of cantilevers resting on viscoelastic founda-tions showed that the second- and third natural frequehcies increase with the increase of foundation elastic and/or shear rigidities. The first natural frequency is shown to increase with the increase of foundation elastic rigidity and decrease of its shear rigidity. At certain value of shear rigidity, depend-ina On plagfir 1-4,;,q4+- 
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vibration instability. Consequently, cantilevers should not be mounted on 
foundations with high shear rigidity or subjected to high tensile follower 
forces to avoid vibration instability. Regions of stable vibrations of canti-
levers mounted on viscoelastic foundations and subjected to tensile follower 
forces, are determined. For small foundation viscous shear damping coefficient, 
elastic rigidity is shown to have very slight effect on the stability bound-
ary. To guarantee stable vibration, the foundation viscous linear damping 
coefficient should be higher than a minimum value, that depends on the result-
ant tensile follower force. With the increase of viscous shear damping coeffi-
cient, the minimum viscous linear damping coefficient is increased. At low 

.values of resultant tensile follower force, the minimum value of the viscous 

.linear damping coefficient is shown to decrease with the elastic rigidity 
'increase. 

Resultant compressive follower forces applied to cantilevers should not be 
increased above certain values to avoid vibration instability. The higher 
limit of this force is shown to increase with the increase of elastic rigidi-
ty and/or viscous linear damping coefficient. With the increase of the viscous 
shear damping coefficient, the limiting value of the force decreases for small 
elastic rigidities, while it increases for high elastic rigidities. 

Presented results can be used to determine the suitable values of the founda-
tion parameters, when certain follower forces are applied to the cantilever, 
or alternetively to find the limits imposed on the follower force applied to 
a cantilever mounted on a certain viscoelastic foundation. 
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NOMENCLATURE 

b,c foundation viscous linear and shear damping coefficients, respectively 
E  modulus of elasticity of cantilever 
f 	external follower force acting on cantilever free tip 
f1 resultant follower force 
I 	moment of inertia of cantilever 
k 	foundation elastic rigidity 



by/by)/(1 - 

oi1/6x)/(1 - 

+ )7-1-/bY)/(1 

P
2
) + 2q(2 bii/bx 

I-12) + 2n(2 g/?5,-  

+ p) + n(b/bx + 

are the modulus of elasticity, Poisson's ratio, and viscosity 
material, respectively. 

61-1 = E oUiHi 	and 
i=1 

Considering any nth  virtual displacement, eq.(a2) can be rewritten as 

(57 = E 6V.R. 

j=1 	
J J 

I
DYN-2 121 
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respectively m ,m1,m foundation, cantilever, total mass per unit length, 
o 

foundation shear 
t time 
u,v displacements in the x and y directions, 
x,y coordinates 
ct,O,y05 coefficients 
w 1 ,wn2 

 ,w 3 first, second, third natural 
n n 

cantilever lateral deflection 
normal coordinate 

.b ,c ,... reference quantities 
r r 
.B, C, K,... dimensionless parameters 

Subscript  
c 	critical 

APPENDIX 

6 

q reaction between 	and foundation cantilever 
rigidity 

respectively 

and variables 

frequencies, respectively 

The set of equations governing the dynamic behaviour of an infinite visco-
elastic body in two-dimensional deformation, are obtained by applying Newton's 
laws to an infinitismal rectangular element, of dimensions dx and dy, In the 
abscence of body forces, these equations are: 

x
/ox + bT 

xy 
 /by = pu and be r /by + bT 

xy
/bx = pv 

where 0x  and cry  are normal stresses, Txy  is shear 
lacements of the C.O. of the element in the x and 
and U and V are the respective accelerations. 

:The stress-strain relations are 

(al) 

stress, U and V are disp-
y directions, respectively, 

ox = E( 	+ p 

a
y 

= E( by/by + p 

T 
y x = 0.5E( b-17/6x 

where E, p, and 
index of the body 

The variational form of the second of eqs.(al) is: 
f(bd

y 
 /Oy + 'OT xy/bx - 	(SV d = 0 
	

(a2) 
where -V- is the volume 

•The displacements 11 and v can be assumed in the form 

u = 	Ui(x,t)Hi(y) 
i=1 

where Hi(y) and RA(y) 
lines y = constant. 
Now, 

and 	7 
= 1[1: V.(x,011.(y) 
j=1 

are functions satisfying certain conditions 

(a3) 

along the 
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Integrating the first term by parts w.r.t. y, we get 

0(bT xy /bx - 67) - ayRn}  (SV
n
dIct + Ila 

y
R 
n

1 Y  dVndA * 0 
AO 

where R
n 

= dR /dy 	and 	II
n 

= di!
n
/dy 

Using the stress-strain relations together with eq.(a3), the last equation 
takes the form: 

Al M 
.1 1E(03. - C.rbIlibx -1- ().+F%).b21-Ji/Okbtlq(Gbak7./bx

2 
- 
K.. V.A i=1 	in 	in 	i 	in 	in 

2 	J=1 	
J 

+ L. 3V./bx2bt - Q. bV./bt - S. b2V./bt2} + 
WynIAVn 

dA = 0 jn 	j 	in j 	jn 	j 	 (a4) . 

,where n = 1,2,...,N 	, and 

B. = f0.5n.
. 
R /(1+p) dY , 

in 	i n 	Cin=l-EPHO/11 /(1-1.1 2)dV,Din=fnllR cili-  , 
1 n 

F. = f201.R//3 d-V- in 	i n 	, C. n= f0.5ER
j
R
n
/(1+0) dV-  , K. 	fER/J(/(1-1-12) &V- 

Jn 	 ) j n 

Lin = fflR.Rn 
	gi 
dv- , Q. n = A 	n in

TIR.R /3 dv- , Si n= fpR.R 
n
dV- , W

yn
=  la

y
R
n

l
y j  

For SV 
n/ 0 , the integrand in eq.(a4) should be zero. 

When M and N are increased to infinity, and on the flat surface of the medium; 
namely at y=0 , where the external force q(x,t) is applied, and where the 
displacement ii(x,t) can be assumed zero I 7,, it can be shown that eq.(a4) is 
the variational form of the partial differential equation 

s b
2
v/bx

2 
- kv + c

3
vfox

2
Ot - b bv/bt - m b

2
v/bt

2 
+ q(x,t) = 0 o  

where 

s = G.k = K. 	, c = L
jn 

, b = Q
jn 	and m = S. jn 	jn 	 in 

For pure elastic medium, both b and c are zero. The resulting equation in this 
case is identical to that derived in 14 k 

• 

• 

• 
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