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ABSTRACT 

This paper deals with the development of simple lumped models 
of hydraulic transmission line. The models take into consideration the 
effect of viscous damping, fluidinertia, fluid compressibility and elas-
ticity of line material. The developed models are one-directional;the 
fluid speed and pressure are thought of as averaged quantities over the 
cross section of the line. The simplicity of models result from the sepe-
rate evaluation of the effect of the above mentioned parameters. The vali-
dity of the models is discussed onthe bases of the comparison of the step 
and frequency responses of models with experimental results. 
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1. Introduction 

Hydraulic transmission lines are basic elements in Hydraulic systems. 
They are applied to communicate hydraulic power between the individual 
elements. Generally, the dynamics of these lines can't by neglected, speci-
ally in the hydraulic control systems, where high power and quick response 
are required. 

The dynamic behaviour of hydraulic lines has been the subject of 
numerous studies Ill  to 191. In their papers, D'SOUZA & OLDENBERGER 131, 
GOODSON & LEONARD 1519 LALLEMENTI7Iand DOEBLIN191, have developed distrib-
uted parameter models considering the variation of the speed and pressure 
in both axial and radial directions. These models consist of a system of 
partial differential equations. 

When using the lumped parameter approach, considering averaged variab-
les along the radial direction, the partial differential equations are 
replaced by ordinary differential equations 111 ,121 and 191. The treatem-
ent of these equations lead to a transfer matrix relating the flow and pre-
ssure at both extremities of the line. The transfer matrix includes hyper-
bolic functions of the Laplace operator;s. 

The resulting transfer functions of line are trancendental in s. The 
computation of frequency response from such models is simple, but serious 
mathematical difficulties are encountered whencomputing line transients. 
The standard techniques of expanding the functions in power series yield 
characteristic equations with negative coefficients implying systeminstab-
ility where it does not actually occur 131. 

These models may be convenient for the study of the transmission line 
itself ;as a system. But when studying a hydraulic control system, including 
several transmission lines, the application of such models results in highly 
complicated models, difficult to be treated mathematically or numerically. 

We have to look then for a simple model, the application of which 
does not complicate the global model of the system. An idea of such a model 
is presented by KARNOPP 161 . 

2. DEVELOPPMENT OF LUMPED PARAMETER MODELS 

The models, proposed in this paper, take into consideration the effect 
of the viscous damping, inertia of the fluid column, compressibility of 
the fluid and elasticity of pipe walls. The flow in the line is considered 
as one-dimensional flow. The fluid speed,v , and pressure, p, are thought 
of as averaged quantities over a field of velocities and pressures which 
vary over the cross-sectional area. The fluid is assumed to move as one lump 
subjected to the above mentioned effects. 

Aiming to evaluate seperately the effect of these parameters, let us 
imagine that the line is divided into three portions, Fig. 1. The effect of 
the resistance of the whole line is localized in the first portion, the 
effect of the inertia of the fluid is localized in the second portion,where 
as the effect of fluid compressibility and elasticity of material takes 
place in the third portion. 
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Fig.2 . Scheme of hyd. Line. 

2.1. Line resistance 

The first portion of line simulates only the effect of line resistance 
dueto viscous friction, thus the flow every where is equal in this portion. 

Qo 
0 

 '1 ( 1 ) 

Assuming laminar flow, the pressure drop due to viscous friction is 
given. by 

Where R is the line resistance.Applying Laplace's transform to equa-
tions 1&2, then after rearrangement one gets: 

[Po(s)I = I 1  

Q0(s) 	0 

Where IR iS the 

2.2. Line inertia  

`1 	Q11  
(s) 

(s) 	 P
1  

R1  

(3) 

resistance transfer matrix. 

Assuming that the fluid in the second portion is accelerated as one 
lump, then 

Q1 = Q2 

	

	 (4) 

Applying the second low of Newton to the accelerated mass offluid; 

dv  
F = m 	 (5) dt 	; F = 71  n2  4 '' -P2

) 

m = 'm  -4- D2P L 

4  v = 
rrD  

Q : 

Then substituting for F, m and v, equation 5 becomes : 

4L 	_c_19 P -P 	-P 	dQ 	
(6) 1 2 

	

D
2 dt 	dt 

Where I is the inertia of the fluid. 

This expression for the fluid inertia is convenient when replacing the 
effort and flow variables of the mechanics of translation;Fand v, by those 
of mechanics of fluids p and Q. 

L. 	 -J 



But the input flow Q, differes from the output flow QL  by the flow due to 
compressibility;Q

c'
watch is given by: 

(9) 
dP

2 
c = 	dt. 

Then Q2-QL=  C  dt 

C = V/B
e 

dP 
2 

(12) 

I
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Applying Laplace's transform to equations 4 & 6, assuming zero ini-
tial conditions, then after rearrangement we get: 

P
1
1 	1 	I s 1 {P

21 [132 
= 

Q1 	
0 	i 	Q2 	Q2 

(7) 

Where 1 is the inertia transfer matrix. 

2.3. Line capacitance 

In the third portion, where only the effect of fluid compressibility 
and line material elasticity,are assumed to take place, the pressure every 
where is the same; 

P
2 
= P

L 
	 (8) 

If the deformation of pipe material is to be taken into consideration, 
then this relation becomes: 

	

dP
2 	

dP
2  Qc = V ( I

_
+ 	) 

dt 	B 
- V 
	

dt 	 (10) B 	Eh 	
e 

 

Where B
e is the equivelent bulk moduls. 

The effect of fluid compressibility, which is conservative of energy, is 
described mathematically by a relation analogous to that describing the 
electric capacitance; i = C de/dt. The hydraulic capacitance is thus 
defined, on the basis of equation 10, by: 

Applying Laplace's transform to equations 8 & 12 , then after rearrange-
ment one gets: 

P,)  

Q2 

        

    

P
L 

1 L 

 

P
T. 

QL 

 

 

1 
Cs 

0 

 

=C. (13) 

      

      

       

         

Where C is the capacitance transfer matrix 

2.4. Transfer matrix of a single lump model. 

The transfer matrix of line, A, can be obtained from equations 3,7 
and 13 by the elimination of P1,Q1,P2  and Q

2
. 

L 
P

L PL tC 

P = 

R

Qol 	QL 	QL 
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IC s
2 
+ RCs + 1 	Is+R 

where & = 
Cs 

This transfer matrix represents the line, assuming that the fluid is 
moving as one lump. 

2.5. Representation of line by more than one lump models : 

The fluid may be assumed to move inseveral lumps. In order to find the 
convenient number of lumps representing a line with sufficientaccuracy, 
let us derive the transfer matrix of line represented by different number 
of lumps considering the line with the fluid moving in two lumps, Fig.2. 
the elements R,I and C will be given by 

(15) 

128 pL/2 	4 pL/2  
R = , I = 

D
4 	71. 

D
2 

and C 
it  D-  L/2 
48e  

(16) 

P
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Fig.2. 	ScheMeof line with two fluid lumps. 

The line is thus described by 

P
o 

P
L  

P
L  

= 	[IR 	I 	C]
2 

 /A2 
 (17) 

where 

Q. 
/A9  = 

all 	
a12 

QL QL  

(18) 
a21 	a22 

224 	9 	 2 3  
and all = ICs+ 2IRC s+ ( R2C 	+ 3IC) s2+ 3RCs+1 

a
12 

= I
2
C s

3 
+ 3IRC s

2 
+ ( R

2
C 	+ 21 ) 

2 	3 	22 
s + 2R 

(19) 
a
21 = ICs+ RCs+ 2Cs 

9 
a22 = IC s 	+ RC s + 1 

The 

where 

representation of line 

° 	= [IR Jr 	Ci 3  

Qo 

the elements R, 	I 

	

128pL/3 	4 

P
L  

,L  

and 

pL/3 

by three 

= A
3 

C are 

P
L  

QL  

given 

lumps results in a model of the form: 

(20) 

by 

n D
2
L/3 

Tr 
R = 	;I - 	and 

D
4 	

nD
2 C = 	 (21) 

4 Be  
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The element all  of matrix \3  is given by 

I
3
C
3 
s
6 
+ 3 1

2 
R C

3
s
5 
+ (3 I R

2
C
3
+ 5 I C ) s4  + 

2 2N  4 

(10 I R C
2 
+ R

3
C
3
) s

3
+( 6 I C+ 5 R

2
C
2
) s

2
+ 6 R C s+1 

If the line is represented by four lumps, then it can be described by: 

I 

[Po 	
L = 

] 
	[R II Ci 14 [PL = 

Qo 	QL 	r  

	

128 p 	L 	4p 	L 	TT D R - 	I = 	& C - 4 4 ' 
TT D 	irD2 	4 	4B 

 

The element all of matrix A
4 

is given by 

a
11 

= I
4
C
4 
s
8 
+ 4 T3RC

4
s
7 
+ ( 6 I

2
R
2
C4 + 7 T

3
C
3 
) S

6 
+ 

(21 I
2
RC3  + 4 I R

3
C
4
) s

5 
+ ( 15 1

2
C
2
+ 21 I RC+ RC ) S 

23444
+  

(7R
3
C
3
+ 30 IRC

2
) s

3 
+ (15 R

2
C
2
+ 10 IC) s

2
+ 10 RC +1 	(25) 

3. Modelling of the line by bond graph: 

The representation 	of line by R ,I and C elements is convenient for 
the development of bond graph model of the line, Fig.3. The resistance and 
inertia, which have the same flow, are connected by a series, 1, junction, 
while the capacitance is connected to a common pressure, parallel 0 junct-
ion. The expressions for R, I and C are given by equations 2,6 andll 
respectively. 

R 

P
o 	1 	1 	P

L ------7■1 	'.0 

Qo QL 

1 
Fig.3. Bond graph of line with one fluid lump. 

The equations describing the line can be deduced systematically from the 
bond graph after the assignement of causality;augmented bond graph, Fig.4. 
The determination of the boundary conditions is essential for assignement 
of causality. In case of line closed at its end witha pressure source 
at the input , a source of flow, SF, imposes zero flow at the line end and 
a source of effort, SE, imposes the pressure at the input to the line. 

an = (22) 

2 

(23)  

(24)  
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Fig.4. Augmented bond graph of the line. 

The following equations are those describing the line, obtained from 

the bond graph 

APR
= R Qo 
	 (26) 

API 
= P

o
-AP

R
- F

L 	
(27) 

Qo  = Q0(0) + 
1 fApI  dt 	 (28) 

Qc = Qo 	QL 	
(29) 

Pt  = P1  (o)+ 1 f Qc  dt 	 (30) 

If the line is to have n lumps of fluid, then its bond graph, Fig.5, will 
include n repeatitions of Fig.3. 
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Fig.5. Bond graph of line with n lumps. 
where 

R= 
12p 

 L 	I= 	— and C = 
nD 4 n 	nD

2 n 	B
e 

n 

	

4p L 	nD
2 

L 	(31) 

The above developed models are linear due to the assumption of lam-
inar flow. In the case of turbulent flow, the linear equation (26) descr-
ibing the relation between effort and flow variables of the resistive elem-
ent can be replaced by 

ap =x _ 	Q 

	

L8 p 	2 

	

n 
n
2
D
5 o 
	 (32) 

 
where X= 0,3164 Re

.25  

4. Validity of the proposed models : 

The validity of the proposed models is tested by comparing the resp-
onse of the line with the experimental results published by LallementI71, 
for two different lines. The parameteres of lines are given in the follo-
wing table. 
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Parameter Line 1 Line 2. 

Length 	;L 	Iml 
Inner diameter 	vi) 	ImmI 
Specific mass of fluidyply1 
Kinematic viscosity of fluid 	;vlCsl 
Equivalent bulk modulus;Be IPal 

18 
10 
868 
56 	6  
1.610 

6 
10 
868 
140 
1.610 

 

In the frequency domain , the frequency responses of the models is calcul-
ated for the lines closed at one end and excited by a source of oscillating 
pressure at the other end. 

The transfer function relating the pressures at both extremities of line can 
be obtained from the transfer matrix considering Q1 =0.A line represented 

by one lump;single R ,C & I elements, has the following transfer function, 
from eq. 15. 

P
L  
P
o 	IC s2 + RC s + 1 	 (33) 

where R, I & C are given by equations 2,6 and if. The natural frequency 
and damping coefficient of the system are found, from this transfer funct-
ion, to be : 

1 /Be = 	= 16 1-11, vyr-Fie ' 

r' L p D2 

When representing the line by two lumps, then from equations 17, 18 and 
19, the transfer function of line becomes : 

P 
L 	 1  
P
o 	I

2
C
2
s
4
+ 3 IRC

2
s
3
+ (R

2
C
2 
+ 3 IC) s

2 
+ 3 RC s + 1 
	(35) 

A line represented by 3 lumps will have a transfer function of the 
form : 

P
L  

P 
	H(s) 
	

(36) 
0 

Where the polynomial H(s) is the element a
11 

of the matrix A3, given by 
equation 22. 

The representation of line by four lumps gives a transfer function of 
the same form, but the polynomial H(s) wilt he the element all of the 
matrix A4, given by equation 25 . 

The theoretical and experimental results are plotted in figures 6,7,8 
and 9. 

The representation of line by one lump results in a single resonance 
mode as shown in Fig. 6 and 8. The model"greater damping compared with the 
experimental results. The resonance frequency of model is lower than that 
found out experimentaly by about 29.3 % , for both of tested lines. Thus, 

(34) 
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the frequency of the first mode of resonance of the real line can be 
predicted, on the basis of these results by the relation, 

B
e 1.413  

wM = 	 (37) 

The representation of the line by two lumps leads to a two-degree of 
freedom system, having two resonance modes; Fig. 7 and 9. The first 
resonance frequency approaches the experimental value;w1 /w

nl 
 =0.88, and 

the magnitude ratio comes very close to the experimental results. 

The modeling of line by three and four fluid lumps results in three 
and four modes of resonance respectively. A summary of results of the 
frequency response of line 1 is given in table 1 . The resonance frequen-
cies and damping coefficients of the different modes are extracted from 
the transfer functions by the calculation of their partial fractions. 

Nr of 
1
st 

mode 2
nd 

mode 3
rd
mode 

0  
4 mode 

Lumps w.i/1)i 
n 1  

w
2 
/w

n2 2 w
3
/w

n3  73  
a'4/4444 f4 

1 0.708 0.119 - - - - — — 
2 0.875 0.096 0.731 0.037 - - -- — 
3 0.945 0.089 0.845 0.032 0.722 0.021 -- — 
4 0.983 0.086 0.901 0.029 0.832 0.0204 0.702 0.015 

Table 1. Summary of results of Frequency response analysis of line 1. 

From the study of these results, it can be understood that the greater the 
number of lumps is, the better the agreement between the model and real 
line would be from the point of view of resonance frequencies. But the ma-
gnitude ratio at resonance becomes greater and greater due to the reduction 
of the damping coefficient corresponding to each resonance mode. 

A representation of the line by 12 fluid lumps, not presented here, 
gave very good agreement with the experimental results on the level of freq-
uencies of the first four resonance modes associated with considereable 
diveragence of magnitude ratio at resonance frequencies. 

The validity of the model in the time domain is tested by the study of 
the line step response, for two different boundary conditions. In the 
first case, the line, with closed end, is excited by a step input pressure 
of 44,7 MPa  magnitude, Fig. 5. The response of the pressure at the closed 
end to this excitation is evaluated experimentally by LALLEMENT 171. This 
response is evaluated theoretically by the computer simulation of the line. 
The simulation is realized by the exploitation of the equations describing 
the line, obtained from the band graph, for different numbers of fluid 
lumps. The experimental and theoretical results are presented in Fig. 10 
and 11. 
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In this case, the response of the line is mainly due to the propagat-
ion of pressure waves. The variation of the flow results from the effect of 
fluid compressibility and deformation line walls. From figures 9 and 10 
it can be seen that the model with one fluid lump presents slower oscill-
ations and slightly greater damped response when compared with the expe-
rimental curve. The greater is the number of lumps, the better is the 
agreement between the simulation and experimental results. While the simu-
lation results present slightly smaller damping for greater number of 
lumps. Similar results are obtaind in the second case, where the line, 
supplied by constant pressure is subjected to sudden closing of its end, 
Fig.6. The response of the input speed to this sudden closure is evaluated 
experimentally 17 

vot) 

    

   

   

     

Fig.6. Configuration for the input speed step response measurement.. 

The same response is evaluated theoretically for different number of 
lumps. The results are shown in figures 12 and 13. The study of these res-
ults showsalso that the models with greater number of lumps have the resp-
onses in a good agreement with the experimental results, but the damping 
decreases with the increase of number of lumps. 

CONCLUSION 

This paper deals with the validity of the lumped parameter approach 
for the modelling of hydraulic transmission lines. Four lumped parameter 
models are developed here. The models take into consideration the effect 
of viscous damping, fluid inertia, fluid compressibility and elasticity 
of line material. The simplicity of the models result from the seperate 
evaluation of these parameters. The validity of models is discussed on 
the basis of the comparison between the calculated step and frequency • 
responses of the models and published experimentll results. 

The representation of the line by one fluid lump results in a model 
of a single resonance mode. Its resonance frequency is smaller than that 
of the real line by about 30% . Such a simple model can be applied in case 
if the natural frequency of line is much greater than that of the system 
in which the tine is integrated 

For the systems having the frequency of the first resonance mode 
near to that of the line,. then two or three-Lump models may be more conv-
enient. These models present better precision from the point of view of 
natural frequency and damping coefficient. 

If it is recommended to have better precision on the level of higher 
resonance modes, then a model of four or more lumps can be applied. But, 
we should pay attention to the reduction of damping at the different 
resonance frequencies. 
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NOMENCLATURE 

& a
22 
 Elements of transfer matrix. all'a12'a21 

A Transfer matrix. 

B Bulk modulus of fluid, N/m
2
. 

Be 	Equivalent bulk modulus, N/m
2
. 

C 	Capacitance of Line, m5/N. 
• Capacitance matrix. 
D Inner diameter of line, m. 
e 	Electric potential difference, Volt. 
E Modulus of elasticity of pipe material, N/m

2
. 

F 	Force, N. 
h Thickness of line walls,m. 
i 	Electric current, A. 
I 	Inertia of line, Ns2/m5. 
lI 	Inertia matrix. 
L Total length of line, m. 

Mass of fluid ,kg. 
n 	Number of lumps. 
p,p 

0 
 ,p

1  ,p2 • 
& 	Fluid pressure, N/m

2
. p

L   AP
R 	Pressure drop due to viscous friction N/m

2
. 

AP
I 	Accelerating pressure difference, N/m2. 
Q
o
,Q
1
,Q

2 & Q Flow rate, m3/3. 

Flow due to fluid compressibility, m3/s 
R
c 

Resistance of line, Ns/m5. 
Re 	Reynolds number , 
It 	Resistance matrix.- 
s Laplace's operator. 
t 	Time,S. 
v 
V 	

Fluid speed;m/s 	3 
Volume of fluid, m 
Damping coefficient. 

2 

6 

11 	Dynamic viscosity of fluid, Ns/m 

L. 	 _J 
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r 

v Kinematic viscosity of fluid, m2/s. 
p Specefic mass of fluid, Kg/m3. 

Friction coefficient. 
w Resonance frequency found out theoretically , a-1  
w
n Resonance frequency found out experimentally;s-1 
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