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ANALYSIS OF ANISOTROPIC ELASTIC FOUNDATION UNDER 

CONCENTRATED FORCES 

Brig. Dr. E.E. EL-SOALY* 

ABSTRACT 

. A detailed analysis for anisotropic semi-infinite medium, under the effect 

of concentrated forces,is given. The analysis deals with some kind of ani-: 

sotropy, in which the material properties are cylindrically orthotropic. 

The effect of a line concentrated load on a semi-infinite cylindrically or-

thotropic foundation is treated. The radial and tangential displacement 

components are chosen to satisfy the equilibrium, compatability and boundary 

conditions of the problem. Using the generalized Hookels law, the assumed 

displacement functions leads to a simple radial stress, which occurs in such 

kind of problems, as found in literature. The effect of anisotropic constant 

on radial and tangential displacement components is discussed. Variations of 

displacement components along the radial and tangential directions are given. 

INTRODUCTION 

The problem of determining the stress distribution within a homogeneous, 

elastic, half space under the effect of concentrated forces has 	recei- 

ved much attention in literature. This problem has different engineering 

applications such as piles and foundation problems in civil engineering, 

fretting and contact problems in mechanical engineering. Filonenko [23 

Timoshenko [6] and other authors presented the analytical solution for 

the isotropic case. Jung, Chung et al [4] published a close analytical 

study for a typical two - dimensional fretting problem of isotropic 
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materials. 

Many investigators attempted to obtain precise analysis based on the elast-

icity solution [2] , [6] . In these analyses of isotropic materials/Fig.1., 
two main assumptions are assumed: 

1- there is no shearing stress on the area normal to the radius r, 

2- Compressive stress ac is assumed as : 

dr = - — cos 9 

• where k is a constant. 

In recent years, much interest has been shown for anisotropic materials. In 

some practical cases, the material or the foundation properties are cylin-

drically orthotropic. In such materials, reinforcement is made or naturally 

exists along radial and /or tangential directions. The given work presents 

the analysis of such kind of anisotropic material under the effect of con-

centrated forces. 

Instead of assuming the stress field, the displacement functions are chosen 

to satisfy the equilibrium, compatability and boundary condition of the pro-

blem. Introducing the generalized Hookers law, the equations of equilibrium 

-are obtained in terms of displacements. The unknown constants in the assume-' 

ed displacement functions can be determined from the boundary conditions. 

The effect of anisotropic constant 2k.= E
r
/E
9 on radial and tangential disp-

lacements is discussed, where E
r 

, E
8 are the radial and tangential elastio 

moduli. Tables and figures are presented to show the variations of displace-

ment components along the radial and tangential directions. 

THEORETICAL ANALYSIS 

:Consider a homogeneous elastic anisotropic medium bounded by a plane yoz and 

'extending indefinitely down from this plane, Fig. 2. The following assumpt-' 
ions are made : 

1- the medium is cylindrically orthotropic about the axis oz, 
2- a condition of plane strain exists, 

3- the stress-strain relations, for the medium, obey the generalized 
Hooke's law. 

• • • 
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Fig.l. Isotropic half space 	Fig.2. Cylindrically orthotropic half 

	

under a concentrated 	space. 

force. 

Let a line load of intensity p per unit length acting along the axis oz, 

normally to the plane yoz. 

With the above assumptions, the radial and tangential displacement components 

u and v, may be assumed as follows : 

• 

—u ( p ,e) = u1  ( p ) cose + U
2 
( 9 ) cos 3e, a  

(1) 

—a ( ,e) = 1  U1 / (9) sinG+ DC 2U2 (f) sin 30. 

where : 

a = E /W : medium characteristic length, 

Ee 	: elastic modulus in tangential direction, 

W 	: specific weight of the medium, 

= r/a : dimension-less radial coordinate, 

U
1 and U2: unknown displacement functions, depending only on the radial 

coordinate 9 
OCl  andck

2: unknown numerical coefficients. 

Under a plane strain - condition, the strain - displacement relationships 

in cylindrical coordinate system is given as: 
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r = 
u 
r 

E = 	 v  
e 	r 	r 'De (2) 

T = 	 - re r 9 'Dr r 

E = T rz = -6-8z = O. 

and the stress - strain relationships may be written in the following  form,. 

1 
dr = 77- (B 	- 	E M (B22 r 	B12 e ' 

O 
1 
M 
(-B

12 
a
r 
+

LI_
F0)
' (3) 

1-  =  
re re re 

where : 

2 M = B
11 

B
22 

- B
12 ' 

B
11' 

B
22 

and B
12 are the reduced stiffness coefficients defined as : 

B
11 

= (1-P 
rz 
 P 

Zr
)/ E

r
, 

B 	= (1- 	j) )/ E 

	

22 	8z ze 9,  

B12 = -( 2)
re +rzze)/ Er, 

In this case of plane strain and due to the fact that E= 0, the lateral z  
stress dz can be expressed in terms of dr and de  in the form: 

d = 	d 

	

z 	zr r 	z8 e 

For cylindrically orthotropic material loaded as shown in Fig.2., a simple 

radial stress is obtained,that means: 

[51:  

(4) 

(5) 

Cr.
9  = 0, 

yr = O. 
To satisfy conditions (6) and substituting  the assumed displacement functions 

(1) into the strain - displacement relationships and then into the stress- 

(6) 
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strain relations (3), the following equations are obtained : 

d U
1 	1+ oc1  1  ) = o , 

d 	_S- ' CC1 

3-I-CC d U
2 	

U
2  

d 9 

d U
1 	

U
1  

dp 	.PF 
d U

2 
	U2 

d 531. 

(a 
2
) = 0 , 

2 
 

(1 +CC
1 
 )= 0, 

(1+30c
2
)= O. 

(7) 

where: 

	

= - B
12
/B
11 
	 (8) 

These equations (7) lead to the determination of the coefficients a:1 ancl 
O:

2 
such that : 

oc 	= - 

cc 2 	
= [( -6- _ 1)+ 	346 + 	] /6 

	 (9) 	
• 

Neglecting the body forces and under the conditions (5) and (6), the equations 

of equilibrium,in cylindrical coordinates are reduced to the following eq-

uation. 

	

-? dr 	dr  

	

r 	-0, 	 (10) 

Making use of equations (1), (2) and (3), the radial stress d can be exp-

:ressed in terms of displacement functions in the form: 

d r = 1 
M 

d U
1  

22 dp 	B12 (1+a  1 	
cos e + 

 

+ [B22 

d U
2 

dp - B
12 

(1 +30(
2
)1 cos 3 9 

 

For this expression of radial stress to satisfy the equilibrium condition 

(10), the following two differential equations in displacement functions 

U
1 

and U
2 are obtained : 
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d2 U
l B

22d 2 

d2 U2 
_p 

1 

1 + — 0 

dU1 

22 
d 2  

• • 

B22-B12 (1+0C1) ]= 0, 

r- 
L B22-3312 (11-3( 2 )]-=  O. 

(12) 

d9 

dU2 
d 9 

If the expressions of dUi/dy and dU2 /d .9 are substituted from eqs. (7) 
into eqs(12) they are reduced to the form: 

• 2 d
2U1  k1 U1 = 0 , 

d 92 

2 d
2 U2 k2  U2  = O. 

d 92 

where the coefficients k
1 and k 2 are : 

B12 
1+CC

1) [
B 

k1 = ( CC 
	 (1+CC1) -1 -I r 
1 	22 

3+CC 2 	 B 
k 2 = ( oc 2 ) LB

12  (1+3002  ) -1 ] 
22 

• 

The solution of the two similar - differential equations (13) is given as : 

U1 = Al  9 	+ C  1 
	

1 -)
1  

g2 f
2 U2 = A2  p 	+ C2 9 

where : 

gi = (1 + 

f1 = (1 -1 1+4k
1i )/2, 

g2 = (1 	1+4k 2 )/2, 

f 2 = (1 -1-FT-4y/2. 

The quantities A1 , A2 , C1  and C2  are four integration constants to be deter-
mined from the boundary conditions of the problem. 

At indefinite values of the radial parameter 5 , the radial and tangental 
displacement components tend to zero 

• • 	• 

(13)  

(14)  

(15)  

(16)  



Fig. 3. 

(19) 
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To satisfy these conditions and keeping in mind that gl  and g2  always 

greater than unity, the first terms on the right hand side of eqs.(15) 

must be omitted. Hence, the displacement functions (15) are reduced to : 

U1  = Cl  9 
f
1 

f 	 (18) 

U
2 

= C
2 
	2 

Since the problem is symmetric with respect to 

the MIOZ plane, only one half of the medium may 

be treated < 9 < T1/2. Considering the equi-

librium of a half cylindrical part of the medium 

with unit width along z axis and radius r=a, 

(i.e.9=1), the following two statical conditions 

must be satisfied. 

7r/2 

S
O' cos 9 a d A= P/2, 

0 
fir/ 2.. 
Id sin0 ad 8 = 0 
0 

Substituting the displacement functions (18) into the normal stress exp-

ression (11) and then into the conditions (19) the two integral constants 

C
1 

and C
2 

can be obtained. 

Once the constants C
1 
andC2  are determined, the displacement functions. 

hence the displacement components are deduced in the form: 

u ( p ,e) = 	 ( 	cos 9 	4 	cos 3 0) 
2PM 	.Pf1 
	

ipf 	
2  

N
1 

	N 
 

2PM 	JDf1 	Rf2  
N 	

cr v( 2 ,9) - 	( CC 1 	sin 8 + 	sin 3 8) 
1 	-2 	

2 
where : 

•1 	N1 = B12 (l+0C1)-1322f1' 

N2 	2 
= B

12 (1+3Ct )-B22 f2 
 . 

(20)  

(21)  

• 



SECOND A.M.F. CONFERENCE 

6 - 8 May 1986 , Cairo 

 

MDB -11 8 

	• 

 

• 

1 

The radial stress is also deduced as follows : 

f
1
-1 	f2-1 

dr 
= -2P  

if a (9 	cos 9 + _p 	cos 39) 	 (22) 

The isotropic solution is obtained as a special case of the above express-

ions where A = E/E
e 

= 1, r9 = Vze = 1)  = r  
rz 

RESULTS AND DISCUSSIONS 

Non-dimensional radial and tangential displacement components were computed' 

using expressions (20) and (21) to show how they are affected by the varia-

tion of the anistropy. 

Table 1. shows the variation of radial displacement u with the radius r, 

directly under the load 8=0, for different values of anisotropic constant 

2- = 0.25 , 0.5, 1 and 4 

In Table 2., variations of radial displacement u with the angle 8, at radius 
r = a, and the effect of anisotropy on these variations are given. 

•  
. Similar values of tangential displacement v were computed and a sample of • 

these values are shown in Figures (4) and (5). 

For all values of. X , the radial and tangential displacement components in-

crease rapidly near the point of load application. 

Due to the rapid variation of displacement components, semi-logarithmic 

papers are used to represent these variations. For, different values of 

anisotropic constant, A = 0.25,1 and 4, Fig. 4. Shows the distribution of 
the radial displacement, u, along the problem axis of symmetry, 9 = 0, and 

the free surface deformation i.e. tangential displacement v at e = (Tr 
2 

Fig. 5. shows the variation of the radial and tangential displacement comp-

onents, at radius r=a, with the angle 9 and the effect of the anisotropy, 

It may be observed that,in central regions, positive values of radial disp-

lacement and negative values tangential displacement occur while these 

values are reversed near the free surface Gj 7r/3. 
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Table 1: Non-dimensional values of radial displacement along 

the axis of symmetry e=0, for different values of 

anisotropic constant X= Er
/E8 

r 

E 
e ( sr) , 	o ) u 
P , 	a = 	---. y 

=1 7‘. =1/4 2L=1/2 = 2 /1= 4 

0.025 24.985 1180.86 397.22 11.455 7.303 

0.05 13.870 313.04 136.46 6.352 4.050 

0.1 7.724 138.73 46.65 3.537 2.254 

0.2 4.298 41.32 16.16 1.968 1.255 

0.4 2.395 5.68 5.68 1.097 0.699 

0.6 1.702 6.25 3.10 0.778 0.497 

0.8 1.336 3.81 2.02 0.612 0.390 

1.0 1.108 2.60 1.45 0.508 0.321 

2.0 0.618 0.82 0.52 0.283 0.180 

4.0 0.347 0.27 0.18 0.159 0.099 

6.0 0.247 0.12 0.10 0.113 0.072 

8.0 0.194 0.08 0.06 0.088 0.055 

10.0 0.161 0.06 0.05 0.075 0.047 

Table 2: Non-dimensional values of radial displacement along 

the radius p = 1, for different values of anisotrop-

ic constant A . 

0 

E
e  u 	(1, 	9 
P 

X.= l 2,- =1/4 2,  =1/2 --- 	2 T= 4 

0° 
 

1.107 2.602 1.449 0.5070 0.3210 

10° 
 

1.048 2.445 1.373 0.4795 0.3058 

20°  0.881 2.012 1.161 0.4035 0.2572 

30°  0.645 1.399 0.859 0.2955 0.1884 

4o°  0.390 0.745 0.531 0.1786 0.1139 

50° 
 

0.166 0.185 0.242 0.0761 0.0485 

60° 
 

0.011 -0.178 0.038 0.0051 0.0033 

70°  -0.058 -0.301 -0.057 -o.0266 -0.0169 
0 

80 -0.051 -0.212 -0.056 -0.0233 -0.0149 
90°  0 0 0 0 0 
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Ee 	
( i,e) 

Fig.5. Distribution of radial 

and tangential displace-

ments with the angle e 

for different values of 

?h., (at r = a). 

ND B-1111 

r 

Fig.6. The actual deformed shape 

of a curved line of rad-

ius r=a for different 

values of A . 
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Finally, Fig. 6. illustrates the resultant actual displacement and the de-

formed shape of an arc of radius r=a, for different values of anisotropic 

constant 3. = O. 25,1, and 4. 

CONCLUSION 

The radial and tangential displacement components in a semi-infinite medium 

which possesses cylindrically orthotropic feature has been analised. The 

variation of these displacements along the radial and tangental directions 

are given. The effect of anisotropic constant //. = E
r/E is also discussed.: 

The study deals with a plane strain problem. In a case of plane stress, 

similar analysis can be done in which /5'
z 

=
.8z = /7 = 0. rz 

This analysis shows that the effect of anisotropy on foundations under 

concentrated loads is considerable. 

An experimental work is proposed to verify the obtained results for both 

isotropic and cylindrically orthotropic cases. 
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