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ABSTRACT

A detailed analysis for anisotropic semi-infinite medium, under the effect .
of concentrated forces,is given. The analysis deals with some kind of ani-

sotropy, in which the material properties are cylindrically orthotropic.
The effect of a line concentrated load on a semi-infinite cylindrically ox-
thotropic foundation is treated. The radial and tangential displacement
components are chosen to satisfy the equilibrium, compatability and boundary
conditions of the problem. Using the generalized Hooke's law, the assumed
displacement functions leads to a simple radial stress, which occurs in spch
kind of problems, as found in literature. The effect of anisotropic constant

on radial and tangential displacement components is discussed. Variations of

displacement components along the radial and tangential directions are given.

INTRODUCTION

The problem of determining the stress distribution within a homo geneous,
elastic, half space under the effect of concentrated forces has recei-
ved much attention in literature. This problem has different engineering
applications such as piles and foundation problems in civil engineering,
fretting and contact problems in mechanical engineering. Filonenko [243,
Timshenko [ 6] .and  other authors presented the analytical solution for
the isotropic case. Jung, Chung et al [4] published a close analytical

study for a typical two - dimensional fretting problem of isotropic
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materials.

Many investigators attempted to obtain precise analysis based on the elast-
icity solution [2] ’ [6] . In these analyses of isotropic materials,Fig.l.,

two main assumptions are assumed:

1- there is no shearing stress on the area normal to the radius r,

2- Compressive stress O; is assumed as :

k
. d =- =cos @
r r .

where k is a constant.

In recent years, much interest has been shown for anisotropic materials. In
some practical cases, the material or the foundation properties are cylin-
drically orthotropic. In such materials, relnforcement is made or naturally
exists along radial and /or tangential directions. The given work presents
the analysis of such kind of anisotropic material under the effect of con-

centrated forces.

Instead of assuming the stress field, the displacement functions are chosen
to satisfy the equilibrium, compatability and boundary condition of the pro-

blem. Introducing the generalized Hooke's law, the equations of equilibrium

-are obtained in terms of displacements. The unknown constants in the assum-’

ed displacement functions can be determined from the boundary conditions.

The effect of anisotropic constant A = /E on radial and tangential disp-
lacements is discussed, where Er ; Ee are the radial and tangential elastio
moduli. Tables and figures are presented to show the variations of displace-

ment components along the radial and tangential directions.

THEORETICAL ANALYSIS

Cbn51der a homogeneous elastic anisotropic medium bounded by a plane yoz and
‘extending indefinitely down from this plane, FPig. 2.. The following assumpt-"*
ions are made :

1- the medium is cylindrically orthotropic about the axis OZ,

2- a condition of plane strain exists,

3- the stress-strain relations, for the medium, obey the generalized

Hook€'s law.
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Fig.l. Isotropic half space Fig.2. Cylindrically orthotropic half
under a concentrated space.

force.

Let a line load of intensity p per unit length acting along the axis oz,

normally to the plane yoz.

With the above assumptions, the radial and tangential displacement componants

u and v, may be assumed as follows :

. %(9,9)=Ul(9)cose+U2(9)c0536,
(1)
v .
i = m i + 3 .
= (p,8) lUl(f')51ne 0(2U2 (p) sin38
where :
a = Ee/W : medium characteristic length,
Ee : elastic modulus in tangential direction,
W : specific weight of the medium,
: $ =r/a : dimension-less radial coordinate, ‘

U, and U_: unknown displacement functions, depending only on the radial
coordinate £

d:l and(xzz unknown numerical coefficients.

Under a plane strain - condition, the strain - displacement relationships

in cylindrical coordinate system is given as:
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f,r - Ar ’
u 1l 2v
Ee)_' E T e ' (2)
¥ =% 28, 3% ¥
§aC) ¥ 96 2r i

E =¥ =% =o.

z rz oz

. and the stress - strain relationships may be written in the following form, -

" [s5]:

g, = %'(Bz“ & " By 6e)’
B = % (-B), & + B, &), (3)
re - ‘re b roe
where :
M =B B B 7

Bll' B22 and B12 are the reduced stiffness coefficients defined as :

= -V L

Bll L rz zr)/ Er'

Bap = U= X, 507 By (4)
= = Y

B12 ( L}e y rz JJze)/ Er'

In this case of plane strain and due to the tact that 8z= O, the lateral

stress dz can be expressed in terms of dr and d@ in the form:

: d_=v & +v o (5) ;

Zz Z¥Y r z0 ©

For cylindrically orthotropic material loaded as shown in Fig.2., a simple

radial stress is obtained,that means:
(6)

To satisfy conditions (6) and substituting the assumed displacement functions

(1) into the strain - displacement relationships and then into the stressw
1
[
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strain relations (3), the following equations are obtained

o
dUl Ul (1+ 1) .
- r
ag £ oy
dU2 U 3+OC2

(7)

i 1
- (r -
. ip 5 (1 +0<.)= 0,
avu U ’
2 2
- (1+30C _)= O.
dp T~ oF 2
where :
IS = - B12/B11 (8)

These equations (7) lead to the determination of the coefficients OCl ang

052 such that
i =T
(9) .
: - [(F- 1+ [1+ 34T + T2 _]/6 :

Neglecting the body forces and under the conditions (5) and (6), the equations

R
I

of equilibrium in cylindrieal coordinates,are reduced to the following eg-

uation.
—30} Iy
+ — =
?r r Oy (10)
Making use of equations (1), (2) and (3), the radial stress d’I,can be exp-
.ressed in terms of displacement functions in the form: ‘
du
1 1
g == NI N
o v [B22 ap Blz(l+OCl)]cose+
du
+[B 2 - B (1 +30C )]cos 38 (11)
22 dp 12 2

For this expression of radial stress to satisfy the equilibrium condition
(10), the following two differential equations in displacement functions

Ul and 02 are obtained :




ﬂ . SECOND A.M.E. CONFERENCE

2
a” v, . p
22352 " 5dp
a’u dau

VMU

6 - 8 May 1986 , Cairoc

(12)

2 [ 1322—1312(1+30c2)]= 0.

If the expressions of dUlAiy and dUz/d5> are substituted from egs. (7)

into eqgs(12)

2
s

2

S

where the coefficients kl and k2

" The solution

where

they are reduced to the form:
d2Ul
- k., U =0 7
d92 171 in3)
d2U2
-k. U = 0.
d_92 2 2
axye
1+0C B
1
( l) [*B = (1+0€, ) -1 ]z
iy 22
3+0t2 Bl2 (14)
A [—.;— (1+30¢,)-1 ]
oc, 22 .

0

of the two similar - differential equations (13) is given as .

g f

A 1
A 3% +C 9

g f

2 2
A, » +C, f
& = (1 +U l+4kl)/2,
fl = (1 -d l+4kl)/2,

_ ETvies

g, = (1+\| 1+4k}) /2,
f2 = (1 -d l+4k2)/2.

The quantities A r A_, C. and C2

mined from the boundary conditio

1 2 1

(15)

(16) ’

are four integration constants to be deter~

ns of the problem.

At indefinite values of the radial pbarameter ¢ , the radial and tangental

displacement components tend to zero
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at 5).,00 : u—40 , v—s0 (17)

To satisfy these conditions and keeping in mind that gl and 9, always
greater than unity, the first terms on the right hand side of egs.(15)

must be omitted. Hence, the displacement functions (15) are reduced to :

U, =¢C Jofl
1 " ’

f2 (18)
u,=¢, 9 . '

Since the problem is symmetric with respect to

the x0z plane, only one half of the medium may
be treated B ¢ 8 & M /2. Considering the equi-
librium of a half cylindrical part of the medium

with unit width along z axis and radius r=a,

(i.e.y=1) , the following two statical conditions

must be satisfied. Fig. 3.
m/2
—So;ccose ade = Pp/2,
o (19)
/2~ i

I
(@)

56; sine. ade
0

Substituting the displacement functions (18) into the normal stress exp-
ression (11) and then into the conditions (19) the two integral constants

Cl and C2 can be obtained.

Once the constants C, and C_ are determined, the displacement functions.

1 2
hence the displacement components are deduced in the form:
3 £
1 2
2PM
u(p,8) = — (P cos © + £ cos 3 8) '
T N, N, ¥
£ £ (20)
2PM ! pa
) = — (o i i
v(_p, ) T ( 1 N]_ 51n6+£{2 N2 sin 3 8)
where
Nl = Bl2 (l+0C1)—B22fl,
(21)

N_ =B +30C ) -
2 12 e 2) B22f2'
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The radial stress is also deduced as follows -

e | f_-1
-2P 1 2
= — os 8 + cos 3 6 (22
S, Ta (87« P ) )
The isotropic solution is obtained as a special case of the above expresg-

1 = = :)j :)) :}/_
ions where A Er/Ee 1, j)rG - oo

RESULTS AND DISCUSSIONS

Non-dimensional radial and tangential displacement components were comput ed
using expressions (20) and (21) to show how they are affected by the varia-

tion of the anistropy.

Table 1. shows the variation of radial displacement u with the radius T
directly under the load 6=0, for different values of anisotropic constant

A =0.25, 0.5, 1 and 4

In Table 2., variations of radial displacement u with the angle 8, at radius

¥ = a, and the effect of anisotropy on these variations are given.

Similar values of tangential displacement v were computed and a sample of

these values are shown in Figures (4) and (5).

For all values of A , the radial and tangential displacement components in-

crease rapidly near the point of load application.

Due to the rapid variation of displacement components, semi-logarithmi c
papers are used to represent these variations. For different values of
anisotropic constant, A = 0.25,1 and 4, Fig. 4. Shows the distribution of

- the radial displacement, u, along the problem axis of symmetry, & = O, and -

© the free surface deformation i.e. tangential displacement v at e = lE;-. .

2

Fig. 5. shows the variation of the radial and tangential displacement comp-
onents, at radius r=a, with the angle © and the effect of the anisotropy,
It may be observed that,in central regions, positivé values of radial digp-
lacement and negative values tangential displacement occur while these

values are reversed near the free sur face o) T /3.

L ]
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Table 1: Non-dimensional values of radial displacement along
the axis of symmetry ©=0, for different values of

anisotropic constant A= Er/Ee

o
. 5 U (P, 0)
£ A=1 A =1/4 A=1/2 A= A=4
0.025 24.985 | 1180.86 397.22 11.455 7.303
) 0.05 13.870 313.04 136 .46 6.352 4.050
. 0.1 7.724 138.73 46.65 3.537 2.254
. 0.2 4.298 41.32 16.16 1.968 1.255 :
0.4 2.395 5.68 5.68 1.097 0.699
0.6 1.702 6.25 3.10 0.778 0.497
0.8 1.336 3.81 2.02 0.612 0.390
1.0 1.108 2.60 1.45 0.508 0.321
2.0 0.618 0.82 0.52 0.283 0.180
4.0 0.347 0. 27 0.18 0.159 0.099
6.0 0.247 0.12 0.10 0.113 0.072
8.0 0.194 0.C8 0.06 0.088 0.055
10.0 0.161 0.06 | 0.05 0.075 0.047

L] P ¥

Table 2: Non-dimensional values of radial displacement along
the radius § = 1, for different values of anisotrop-

ic constant A .

s
T u (1, 9) 4
e i m—y
A =1 X =1/4 r =172 A= 2 A=4
o’ 1.107 2.602 1.449 0.5070 0.3210 )
10° 1.048 2.445 1.373 0.4795 0.3058 .
20° 0.881 2.012 1.161 0.4035 0.2572
30° 0.645 1.399 0.859 0.2955 0.1884
40° 0.390 0.745 0.531 0.1786 0.1139
so: 0.166 0.185 0.242 0.0761 0.0485
60 0.011 «0. 178 0.038 0.0051 0.0033
70° -0.058 -0.301 -0.057 -0.0266 -0.0169
2
800 -0.051 -0.212 -0.056 -0.0233 -0.0149
90 0 0 0 0 0
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Fig.5. Distribution of radial
and tangential displace-
ments with the angle 6

for different values of

A, (at r = a).

Fig.6. The actual deformed shape
of a curved line of rad-
ius r=a for different

values of A .
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Finally, Fig. 6. illustrates the resultant actual displacement and the de-
formed shape of an arc of radius r=a, for different values of anisotropic

constant A = 0.25,1, and 4.

CONCLUSION

The radial and tangential displacement components in a semi-infinite medium
which possesses cylindrically orthotropic feature has been analised. The
variation of these displacements along the radial and tangental directions.
are given. The effect of anisotropic constant A = Er/Ee is also discussed{
The study deals with a plane strain problem. In a case of plane stress,

similar analysis can be done in which & =T = T 2 0.
Z 8z rz

This analysis shows that the effect of anisotropy on foundations under

concentrated loads is considerable.

An experimental work is proposed to verify the obtained results for both

isotropic and cylindrically orthotropic cases.
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