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ABSTRACT
The recent approach of Bergan and Wang for the shear inclusion in plate
deformation is used in modeling the gear t0oth as a cantilever plate.
Using Rayleigh-Ritz method a solution is obtained and compared with other

model s.

INTRODUCTTON

Modeling of gear tooth by cantilever is a common practice[l,Z] . Usually,
beam and thin plate theories are nsod[R—S] . Because of the nature of
boundary conditions of the cantilever, and for the analysis of 'thick' teeth
where shear effect can not be neglected, one should use either three-dimens-
ional approach or thick plate rhnory[ﬁ—ﬂ]. Tn this stuly the gear tooth is
mdeled as a 'thick' plate. The analysis of thick plate is based on Reissner
and Mindlin plate theories [9,10] . Recently Bergan and Wang [11] have ad-
.opted a new appraoach for these theories. Their approach, which is used in
“this study, is characterized by the use of one independent variable : namely

the transverse deflection of the mid-plane of the plate

Applying Rayleidigh-Ritz method, a solution is obtained and compared with the
results of beam modeling where shear effect is taken into consideration.
A comparison is also made with the moment image and classical thin plate

solutions [4,5] .
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The paper starts with a review of the energy expressions of classical plate
bending theory and of Bergan-Wang approach. This is followed by a descrip-
tion of Rayleigh-Ritz method used to analyze the cantilever plate. Then

a square cantilever plate under uniform and concentrated loads with diff-
erent thickness is analyzed. HNumerical results show that beam modeling is
stiffer than plate modeling and the thinner the structure the greater the
di fference hetween them. NAs a practical example gear teeth deflections
were calcul ated showing that shear inclusion leads to a more flexible re-

- sultr

ENERGY FXPRESSLONS

a. Thin Plate Strain Fnerqgy:

The classical thin plate theory based on Kirchoff-love assumptions [8 ]
gives a strain enerqgy expression which is a function of the only trans-
verse deflection w(x,y), where x and y denote the cartesian coordinates
in the mid-plane of the plate. More precisely, we have for an isotropic

material the following expression for the strain energy:

U = ;—// KT DK dxly,

where i
K = w w 2w ”
» XX YY XY
( 1 v 0
3
fo——££~7~-ll 1 0
12(1- v) 1-v
0O 0 e
2

and E is the Young's modulus, h is the plate thickness, and v is the

Poisson's ratio.

Because the classical theory neglects the shear effect, its use is generally
limited to thin plates where the ratio of Ethickness to the smaller span
does not exceed 0,05 f6,7,]2_|. When the shear is to be considered, we
usually use eilher Reissner IQJ or Mindlin plate theory [10]. In both

theories the strain energy of the deformed plate is expressed by three
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a prioriunknown functions: the transverse deflection w(x,y), and the two
transver se shear strains 'ny(x'y) and Tyy(x,y) [7,1].
Recently, Bergan and Wang {11] have modified the theory reaching to a for-

mul ation which depends only on the transverse deflection w(x,y) » Their

approach will be used in this stuiy.'

b- Bergan-Wang Expression for Plate Strain Energy

Assuming that the transverse shear strains : 7;7(x,y9 and 7;7(X,Y) are

linear functions of x and y, Bergan and Wang arrived at the following energy

expression:

1 T . 1 JF =
§) :’5.//‘}\!) Dh Kh dx dy + 5—]], Ds’ dx dy

Where
5 .
w + w
W o . g ERKK P XXYY
XX l2
g e PR R .
b Yy 5(1-V ) YYYY P XXYY
2w 2 (w oW )
XY | o Taexxxy  Texyyy
T With Dh =D as in classical bhending theory,
and
2 ;
I"r = _h w + W w + W
5(L-v ) P XXX ' XYY FYYY P XXY
. FEN:]
With 0 = . 5yBh
“ 12 (140 ) o 1

.One can easily notice that while this approach uses only the transverse

‘deflection w, it inwlves its derivatives up to the order four. It is also

clear that as the thicknéés ofdghé biéfo decreases the strain ehérgy would

be given by the classical thin theory without any numerical difficulties.
RAYLEIGH- RITZ METHOD
Consider a rectanqgular plate that is clamped along one of its sides (see

Figure 1). Fbllowing_[4,5,13]‘, the deflection w(x,y) is expressed as a

series of products of functions of the form:
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Where the functions Xm and Yn are the characteristic functions of uniform

thickness beams in the x and y directions respectively. These functions have

the appropriate beam boundary conditions [14] . In our case, they are given

by:

and

Where

X1 (x)

X2(><)

and Iy, are

{0,b,0)

Yy

-1,

S X
=3 (1-2 D

= cosh a_ % + cos a x - ¢ (sinh a x + sin a_ x),
m m m m m

= cosh by = cos hy - d (sinh b y - sin h.y),
n n n n 1

c  and d
m n

the vnknown coefficientg.

Aare tabul ated
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Mig. 1.

Cantilever plate under concentrated end load
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Application of Rayleigh-Ritz method would require a choice of a number of

characteristic functions, and substitution of the expression of w into the
total potential energy expression.

Then differentiating the expression with respect to the unknown coefficients

Amn' and equating it with zero will lead ko a system of equations to bhe sol-

ved for these unknowns. The number of used functions was determined accord -

ing to the experience gained in a previous work '4,'3 I, in addition to the
. pre-implementation and re.ovaluation made for this study. A subsequent

paragraph shows the influence of the number of characteristic function on

the obtained solution.

NUMERT CAL APPLITCANTIONS
Exanple 1:

A square plate subject to a kransverse uniformly distributed load q, and
to a concentrated force P at point B (see Figure 1) is analyzed with diff-
erent thickness to side ratio. The ohtained deflection along the center.

line AB is shown in Figures 2 and 3.

- In Tables 1 and 2 the deflection at the point R is compared with that obt-

ained hy heam analysis which consider the shear effect '15,].6].

ALl numerical results are done with seven funclions X (x) and five functions
A m
Yn (y) [4 | '7]. The model problem was chosen with side length a = 0.4 inch,

. . 6
and Poisson's ratio V = 0.3, and Young's mdulus F = 30x10° psi.

Table 1. Cantilever Square Plate Under Uniform Load

2
' o LR
: B
oz @ (Present 7\11;11y9_1’_.<) & (Beam Theory)
(P: q a") (p - q* a )
0.3 0.680 0.139
0.3 0,528 0.1418

0.5 .262 0.167
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Table 2. Cantilever Square Plate Under Concentrated

Load Acting at

2
- Pa_
DN

w

A (Present: Analysis)

Point B.

h/a o (Beam Theory)
o, 1 1.967 0.369
0.2 1.425 0.388
0.5 N0.695 0.426

Effect of Number of Characteristic Functions

Tn addition to the experience qgained by different authors [5,13,17] ;i LE

is useful to show some results which clarify and justify the chosen numbers

in this study. As shown in Tables 3 and 4 the

increase of number of charac-

teristic functions leads o a nore flexible wdel ..

Table 3. bDeflection o

Conflicient

for h/a = 0.1

No .

of Characteristic Concenktralted Toad tUniform Lo ad

Functions

m n

3 1 1.651 0.642
5 3 1 .91 0.663
7 5 1.967 0.688
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Table 4. Dheflection Coefficient o

for h/a = ©C.5

No. of Characteristic

i a Concentrated TLoad Uniform Load
Functions

m n

3 1 Nn.516 0.2

5 3 .67 ' 0.248

7 (=3 0,695 0.262

Fxample 2. {19]

In Table 5, a comparison between the results ohtained by the moment image
me thod [1,19', and the classical plate theory IA,SI, and the Bergan-Wang
approach is given. As expected the Bergan-Wang approach gives a higher

deflection.

Table 5. Maximum Deflection By Different Modeling

-w (Moment Image) w (Present Study)
Gear Type
w (Classical) w (Classical)
FALK GEAR 1.033 1:138
EATON GEAR 0.790 1.164
HELICOPTER GEAR 0.809 1.247

It is useful to mention that closed form solution of Reissner [9,15J can
not be applied for the solved examples where the span to chord ratio is
near or equal to one. Moreover , the solution of Re ferences '19,20J neg-

lects the effect of the free opposite sides of the cantilever.

It is also worthnoting that the concentrated load in this stuly is tyreated
as a ' point ' load and not replaced by 'conical' loading as done in

Reference 3.
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CONCENTRNATED 1,0)AD

w(inch)
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L] =0.1
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A
/
/
/
. /
10"‘7 | L 1 1
0 0.25 0.5 0.75 1 x/a

Fig. 2 Deflection w along the center line AB due to concentrated load

P=1 1b at point B. (see Fig.1l)
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10 L 1 1 1
0 0.25 0.5 0.75 1 x/ a
0 Fig.3 Deflection w along the center line AB due to uniform load q=1 psi

(see Fig. 1).
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CONCLUSION

The obtained results show that modeling the tooth by thick plate according

to Bergan-Wang approach yields a more flexible model compared with other

models. Comparison with beam modeling shows that the difference is great

especially for thin structures.
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