

Food, Dairy and Home Economic Research

http://www.journals.zu.edu.eg/journalDisplay.aspx?Journalld=1&queryType=Master

MANUFACTURE OF YOGHURT DRINK SUPPLEMENTED WITH CARROT AND GUAVA PULPS

Asala R.M. Mohammed^{*}, M.M. Omar, M.M. El-Abbassy and S.A. Khalifa

Food Sci. Dept., Fac. Agric., Zagazig Univ., Egypt

Received: 07/07/2019; Accepted: 18/08/2019

ABSTRACT: This study was designed to evaluate some properties of fruit yoghurts made with adding carrot and guava pulp during storage. The obtained results revealed that, the pH was decreased by time of storage while acidity was increased in all types of drinking yoghurt. Adding of 10, 15 and 20% guava pulp in yoghurt increased significantly (p<0.05) the total phenolic compounds (TPC), antioxidant activity (AA), fiber content and ascorbic acid (Vitamin c). The rheological and sensory properties of yoghurt were improved comparing to the control samples, While the protein content, pH value and syneresis decreased significantly (p<0.05) than control samples. On the other hand, Addition of 10, 15 and 20% carrot pulp to yoghurt increased (TPC), (AA), ascorbic acid and fiber content, while the protein content, pH value decreased. Along the storage period of all treatments, the TS, acidity, synersis and viscosity increased significantly, while the pH value, ascorbic acid, acetaldehyde content, AA,TPC were decreased significantly.

Key words: Drinking yoghurt, protein content, carrot pulp, ascorbic acid, guava pulp.

INTRODUCTION

Yoghurt is a popular fermented milk product containing both Lactobacillus bulgaricus and thermophilus cultures. Streptococcus Both intervention and observational studies have associated yoghurt consumption with several benefits to human health, including increased digestibility of lactose and assimilation of certain nutrients, enhancement of bone mineral acquisition, weight management, heart health, metabolic health and digestive and immune health. Yogurt is among the most common dairy products consumed around the world (Saint-Eve et al., 2006). Functional foods have become a trend; its functional properties have also been studied with additions of "functional" ingredients such as fruit pulp and the addition of different fruit juice in yoghurt. Utilizing of fruit juices in yoghurt manufacture resulted in more delicious product. In this case the flavoured yoghurt becomes tastier with pleasant flavour. The healthy attributes of yoghurt can be also improved by adding different fruits as a source of beneficial constituents such as fiber and antioxidants (O'Rell

and Chandan, 2006). There is increasing evidence that fruits and vegetables may protect against numerous chronic diseases, including cancer, cardio- and cerebro-vascular, ocular, and neurological diseases (Block et al., 1992). The protective effect of fruits and vegetables has generally been attributed to their antioxidant constituents, including vitamin C (ascorbic acid), vitamin E (α -tocopherol), carotenoids, glutathione, flavonoids and phenolic acids, as well as other unidentified compounds (Sies and Stahl, 1995). Total antioxidant capacity of many fruits and vegetables has been determined by the oxygen radical absorbance capacity assay (ORAC), which measures the ability of plant extracts to scavenge peroxyl radicals (Cao et al., 1996). Polyphenol and flavonoids are metabolic products widely distributed in foods of plant origin and they have numerous biological and pharmacological properties (Cook and Samman, 1996).

Guava (*Psidium guajava*) is a fruit high in nutritional value, six to seven times richer in vitamin C than other citrious fruits (traditional

^{*}Corresponding author: Tel. : +201124970587 E-mail address: asalaramadan12@gmail.com

source of this vitamin). It also stands out due to its elevated amounts of sugar, vitamin A, vitamin B (thiamin and niacin) and significant amounts of phosphorus, iron and calcium. It characterized by its typical aroma and flavour. The quantity of fiber found in the fruit provides it with high digestive capacity and excellent quality. These fruits has attracted attention of agro business due to some of its characteristics such as flavour, appearance and functional compound (**McCook-Russell** *et al.*, 2012).

Carrot (*Dauces carota*) is a favourite vegetable from a long time, due to its nutritive value. Carrot is generally rich in antioxidants such as vitamin A, C and β - carotene and polyphenols compounds (**Luciano** *et al.*, 2009).

The aim of this study was to evaluate the properties of different fruit and vegetable pulp (guava and carrot). Utilizing it in fortification of drinking yoghurt at different levels (10%, 15% and 20%) and evaluating the effect of fortification on the properties of yoghurt drink was given considerable attention.

MATERIALS AND METHODES

Materials

Fresh buffalo's milk (6.8% fat and 9.86% milk solids not fat MSNF) was obtained from the Dairy Products, Food Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt. Direct vat set yoghurt starter (FD-DVS ABY-3 Probio-Tec[®]) containing Lactobacillus (Streptococcus thermophilus, delbreuckii subsp bulgaricus) was obtained from Chr. Hansen Inc. Laboratories, Milwaukee, WI, by Misr Food Additives (MIFAD), Egypt. Commercial grade sugar was purchased from the local market. Stabilizer (Lacta) was obtained from Mefad, Egypt. Guava fruits (Psidium guajava) and Carrot roots (Daucus carota) were purchased from the local market.

Methods

Preparation of carrot and guava pulp

Carrot roots were washed thoroughly with water, peeled by sharp knife and cut longitudinally into halves. These halves were steam blanched for five minutes to inactivate pectinase and peroxidase enzymes. Followed by blending using electric juicer, Guava pulp was washed and cut into pieces then blended using electric juicer without added water. All pulps were heat treated at 85°C for 15min, rapidly cooled and frozen until being used.

Preparation of sweetened solution containing stabilizer

Sweetened solution containing sugar 22.5 g/l and CMC 0.1 g/l was prepared, heated at 85°C for 15min, cooled and stored at 5 °C until use. The above mentioned concentration of sugar and stabilizer were chosen on the basic that addition of sugar at ratio of 8% was perceived on most approtiate sweetness yoghurt drink and adding 0.15% carboxy methyl cellulose (CMC), the formula gave the desired body and texture to full fat yoghurt drink by sensory acceptability test according to **Khalil (2013)**.

Preparation of yoghurt

The milk was standardized to 3% fat, then heated at 85°C for 30 min and then cooled to 43-45°C and inoculated with 3% starter, poured in glass cups and incubated at 42±1°C until complete coagulation, cooled at 42 °C for 18 hr.

Preparation of different drinking yoghurt formulation

The prepared yoghurt was divided into 7 portions. The first portion was left without additives (control). To the other portion 10, 15 and 20% *W/W* of carrot pulp and guava pulp were added to yoghurt. All treatments were sweetened with sugar solution and stabilizer to give 8% sugar and 0.15% stabilizer (Table1) followed by mixing and storage at $5\pm1^{\circ}$ C for 12 days. Samples for analysis were taken when fresh then after 3, 6, 9 and 12 days of storage for different examination.

Chemical analyses of carrot and guava pulp

The total soluble solids (TSS) content (as Brix) were measured using refractometer at 20°C. The moisture, protein, fat, fiber content, total sugar, ash, total acidity and pH value were determined according to AOAC (1995). colour of pulp was measured as described by Jamilah *et al.* (2011) using Hunter lab (colour spectrophotometer, USA) in food safty Laboratory, Fac. Agric, Zagazig Univ. The antioxidant

Item	Control	Carrot pulp			Guava pulp		
	-	T1	T2	T3	T4	T5	T6
Yoghurt	60	50	45	40	50	45	40
Carrot pulp	—	10	15	20	—	—	—
Guava pulp	—	_	—	—	10	15	20
Water with sugar and stabilizer	40	40	40	40	40	40	40

Zagazig J. Agric. Res., Vol. 46 No. (6A) 2019 Table 1. Formulation of different drinking yoghurt mixes (%)

(T1=10% carrot pulp), (T2=15% carrot pulp), (T3=20% carrot pulp),

(T4=10% guava pulp), (T5=15% guava pulp),

(T6=20% guava pulp)

activity of all pulp was measured by using DPPH (2,2-diphenyl-1- picrylhydrazyl) assay according to Nishino *et al.* (2000).The total phenolic compounds (TPC) were estimated by Foline-Ciocalteu reagents as described by Cliffe *et al.* (1994). Ascorbic acid was determined using the method of Osborn and Voogt (1978).

Chemical analyses of milk and drinking yoghurt

Total solids, fat, and protein contents of milk and drinking yoghurt were determined according to AOAC (1995). Lactose content was determined according to Nickerson *et al.* (1975). pH value of drinking yoghurt samples were done according to AOAC (1995) when fresh and during 12 days of cold storage at 5°C. Colour of drinking yoghurt was measured as described by Jamilah *et al.* (2011) using Hunter lab (colour spectrophotometer, USA) in food safty Laboratory, Fac. Agric, Zagazig Univ.

Determination of total phenolic compounds (TPC) in all pulps and drinking yoghurt

Five grams of pulp or drinking yoghurt were mixed with 100 ml of 70% methanol and stirred at room temperature for 2 hr., and filtered through whatman filter paper No.1. The total phenolic compounds were determination in the mathanolic extract. One ml of sample was added to 5 ml from folin-Ciocalteu reagent (previously diluted with water 1:10, V/V) and sodium carbonate (75 g/l, 4 ml). The tubes were vortex mixed for 15 s and allowed to stand for 30 min at 40°C for colour evolution. Absorbance was

measured at 765 nm using spectrophotometer. Gallic acid was applied to gain the standard curve (20-200 μ g/ml), and the lowering of Foline-Ciocalteu reagent by the samples was expressed as mg of gallic acid equivalents (GAE) per g of extract. The calibration equation for gallic acid was y= 0.001x +0.0563 (R²=0.9792), Where (y) is the absorbance and (x) is concentration of gallic acid μ g/ ml (**Cliffe** *et al.*, **1994**).

Determination of Antioxidant Activity (DPPH-assay) All Pulps and Drinking Yoghurt

The DPPH (2, 2-diphenyl-1- picrylhydrazyl) radical scavenging activity was determination by the method of **Nishino** *et al.* (2000) The radical scavenging capacity of the samples was measured as a decrease in the absorbance of DPPH radical and it was calculated using the following equation:

Radical scavenging activity (%)=

(A_{control}- A_{sample})/A_{control} x 100

Where: (A_{control}) is the absorbance of blank

 (A_{sample}) is the absorbance of sample

Flavour Compounds

Acetaldehyde and diacelyl in control and drinking yoghurt samples were determined according to **Less and Jago (1969)**. Acetaldehyde reacts with semi-carbazide to form semi-carbazone which has absorption value at wave length of 224 nm While diacetyle has an absorption value at wave length of 270 nm.

Rheological Analysis

Syneresis

The released whey from drinking yoghurt samples was measured according to the method of **Aryana (2003)**. The quantity of whey collected from every sample in graduated cylinder after 3 hr., of drainage at 20°C was used as index of syneresis.

Viscosity

Viscosity of drinking yoghurt samples were determined by the method of **Aryana (2003)** using Rotational Viscometer Type Lab. Line Model 5437.

Sensory evaluation

Yoghurt treatments were evaluated by 11 panelists of staff members of Department of Food Science, Faculty of Agriculture, Zagazig University in the following parameters, flavour= 45 points, body and texture = 35 points, appearance =10 points, acidity= 10 points according to the scale that suggested by **El-Etriby** *et al.* (1997).

Statistical Analyses

The obtained data were statistically analyzed by a statistical for social science package "SPSS" version 20 for Microsoft windows, SPSS Inc according to **Dominick and Derrick (2001)**.

RESULTS AND DISCUSSION

Chemical Composition of Carrot Pulp, Guava Pulp and Milk

Table 2 shows the chemical composition of ingredients used in the manufacture of drinking yoghurt. Carrot pulp contained 12.9% total solids, 0.4% fat, 2.11% protien, 6.15% total sugar, 2.03% total fiber. The fiber in food increase the feeling of fullness (Lyly et al., 2009), also fibers increase the viscosity and thickness of the products by its water holding capacity (Harries and Smith, 2006). Total phenols were 138.7%, 11mg Vitam. C/100 gm pulp and 20.12% antioxidant activity. The pH was 6.59 and 0.6% acidity. Guava pulp contained 9.5% total solid, 12.56% total sugar, 4.11% total fiber, 175.70% total phenols, 98.3 mg Vitam. C/100 g pulp, 65.23% antioxidant activity, 4.36 pH and 0.8% acidity. These results

indicated that carrot and guava pulp can be used as functional ingredients.

Chemical Composition of Drinking Yoghurt Samples

Tables 3 show the effect of fortifying drinking yoghurt with carrot and guava pulp on its composition. The moisture content was found to be 88.71% in control yoghurt drink in day 1, and then decreased slightly after 12days of storage to 88.12%. On the other hand, moisture content of carrot drinking yoghurt samples was found to be 86.25%, 85.34, and 84.52% with addition of carrot pulp at ratio of 10%, 15% and 20%, respectively. Then decreased after 12days of storage to reach 86.00%, 85.08 % and 84.12%. The moisture content of drinking yoghurt containing guava pulp reached 87.43, 86.65 and 85.42% in day 1, then decreased after 12 days of cold storage to 87.09, 86.16 and 85.08%. The variations between different types of drinking yoghurt in fat content were slight. during storage period These results are in agreement with Pereira et al. (2008), The pH value of different drinking voghurt decreased with prolong of storage period. It was reported that the high rate of production of lactic acid in yoghurt was observed at the 12th day due to the high bacterial metabolic activity with the consumption of lactose (Beal et al., 1999).

Sensory Properties of Drinking Yoghurt

Table 4 shows the effect of addition of carrot and guava pulp on flavour and body and texture scores compared to control. The flovour, body and texture scores of guava drinking yoghurt were higher than this given to carrot drinking voghurt. Scores for the sensory evaluation of all treatments decreased as the storage period proceeded Ibrahim et al. (2003) revealed that the scores for sensory attributes of fermented milk products were decreased with advanced of storage times probably due to the developed of acidity and microbial growth. Table 5 indicated that colour which is an important parameter to the quality of food products because of its association with factors such as freshness, ripeness, desirability, and food safety. These results are in agreement with Hussein et al. (2017).

Zagazig	J.	Agric.	Res	Vol. 4	46	No.	(6A)	2019
	•••		,				(

Component		Carrot pulp	Gauva pulp	Buffalo milk
Total solids (%	(0)	12.90	9.50	11.78
Fat (%)		0.40	1.05	3
Protein (%)		2.11	1.01	3.68
Lactose (%)		—	—	5.08
Ash (%)		0.35	0.98	_
Total sugar (%	%)	6.15	12.56	_
Total fiber (%	b)	2.03	4.11	—
Total phenols	(%)	138.70	175.70	—
Vitam. C (Asc	corbic acid) (mg/100g)	11.00	98.3	_
Antioxidant a	ctivity (%)	20.12	65.23	_
pH value		6.59	4.36	6.64
Acidity (%)		0.60	0.80	0.16
	L	43.62	68.43	_
Colour	a	28.98	-3.49	_
	b	23.82	18.04	_

Table 2. Chemical composition of ingredients used in the manufacture of drinking yoghurt

L*: (Lightness), a*: (redness/greenness), b*: (yellowness/blueness)

Table 3. Chemical composition of drinking yoghurt containing carrot pulp during storage at 5°C for 12 days

Item	Storage	Control	Carrot pulp (%)		G	uava pulp (%	⁄0)	
	period (day)		T1	T2	T3	T4	Т5	T6
	Fresh	88.71±0.05	86.25 ± 0.01	$85.34{\pm}0.02$	84.52±0.01	87.43±0.02	86.65 ± 0.04	85.42±0.03
Maiatura	3	$88.54{\pm}0.02$	86.23±0.01	85.31±0.01	84.47 ± 0.04	87.43±0.04	86.43±0.01	85.32 ± 0.02
(%)	6	$88.34{\pm}0.01$	$86.17{\pm}0.02$	$85.27{\pm}0.06$	$84.39{\pm}0.09$	87.23 ± 0.04	$86.30{\pm}0.02$	85.22 ± 0.01
(,,,)	9	$88.21{\pm}0.02$	$86.11{\pm}0.01$	$85.19{\pm}0.06$	84.22 ± 0.19	87.12 ± 0.13	86.26 ± 0.05	85.13±0.11
	12	$88.12{\pm}0.03$	86.0 ± 0.04	$85.08{\pm}0.07$	84.12 ± 0.03	87.09 ± 0.09	86.16 ± 0.14	85.08 ± 0.07
	Fresh	$3.0{\pm}0.05$	3.0 ± 0.00	3.2±0.2	3.3±0.5	3.0±0.1	3.1±0.1	3.1±0.1
	3	3.2±0.2	3.1 ± 0.09	3.2±0.1	3.4±0.1	3.3±0.4	3.2±0.4	3.1±0.2
Fat (%)	6	3.2±0.2	3.2 ± 0.6	3.3±0.1	3.5±0.3	3.4±0.3	3.3±0.1	3.4±0.1
	9	3.4±0.4	3.3 ± 0.2	3.4±0.5	3.6±0.4	3.5±0.4	3.4±0.4	3.4±0.1
	12	3.5±0.1	3.5 ± 0.1	3.6±0.5	3.7 ± 0.4	3.7±0.2	3.5 ± 0.05	3.6 ± 0.05
	Fresh	0.76 ± 0.01	0.79 ± 0.05	0.83 ± 0.02	0.86±0.03	0.78 ± 0.01	0.85 ± 0.02	0.89 ± 0.01
	3	$0.81{\pm}0.005$	0.85 ± 0.04	0.88 ± 0.01	0.92 ± 0.01	0.85 ± 0.02	0.92 ± 0.03	0.95 ± 0.02
Acidity	6	0.84 ± 0.06	0.93 ± 0.02	0.95 ± 0.01	0.98 ± 0.01	0.90 ± 0.04	0.97 ± 0.02	0.99 ± 0.01
	9	0.93 ± 0.06	$0.97{\pm}0.02$	0.97 ± 0.03	1.00 ± 0.03	$0.93{\pm}0.005$	0.99 ± 0.01	1.05 ± 0.06
	12	0.95 ± 0.06	0.99 ± 0.11	1.00 ± 0.01	1.10 ± 0.005	0.96 ± 0.08	1.05 ± 0.05	1.00 ± 0.05
	Fresh	4.73±0.17	4.44 ± 0.01	4.46 ± 0.07	4.45 ± 0.16	4.37 ± 0.07	4.32 ± 0.02	4.30±0.01
	3	4.53±0.06	4.46 ± 0.05	4.42±0.12	4.40 ± 0.11	4.33±0.02	4.28 ± 0.08	4.24 ± 0.005
nH	6	4.46 ± 0.25	4.39±0.15	4.36±0.01	4.32±1.1	4.29 ± 0.005	4.26 ± 0.06	4.22±0.00
PII	9	4.39 ± 0.05	4.25 ± 0.03	4.21 ± 0.005	4.14 ± 0.05	4.18 ± 0.07	4.12 ± 0.01	4.10 ± 0.005
	12	4.24 ± 0.03	4.16±0.01	4.11±0.01	4.00 ± 0.01	4.11 ± 0.005	4.02 ± 0.005	3.75 ± 0.05

Mohamme	d, et a	l.
---------	---------	----

Treatment	Sensory evaluation									
	Appearance	Flavour	Body and texture	Acidity	Total					
	(10)	(45)	(35)	(10)	(100)					
Control	8.81±0.7	42.90±1	32.09±4	8.54±1	92.36±17.21					
T_1	8.18 ± 0.6	43.18±0.7	31.81±3.5	7.72 ± 0.6	90.90 ± 17.67					
T_2	8.27 ± 0.6	43.27±0.9	31.90±2	7.54 ± 0.5	91±17.75					
T_3	8.00 ± 1.00	43.45 ± 1.1	31.54±2	7.81 ± 0.7	90.81±17.76					
T_4	8.27 ± 0.7	42.90 ± 1.0	32.90±1.5	8.1 ± 0.8	92.19±17.63					
T ₅	8.36±1.1	42.90±1.3	33.09±1.3	8±0.7	92.36±17.67					
T ₆	8.45±1	43.27±1.4	33.45±1	8 ± 0.8	93.18±17.85					

1 able 4. Sensory properties of fresh drinking vognu	Sensory proper	ties of fresh	drinking	voghur
--	----------------	---------------	----------	--------

Table 5. Colour of fresh yoghurt drink

Treatment	L^*	a [*]	b [*]
Control	64.62±0.5	-1.39 ± 0.05	12.18±0.03
T_1	53.92±1.2	12.77±0.09	19.33±0.3
T_2	39.21±0.1	16.35±0.04	20.02 ± 0.05
T_3	$62.07 {\pm} 0.08$	22.48±0.01	27.79 ± 0.05
T_4	81.05 ± 0.06	-1.57±0.4	64.81 ± 0.07
T_5	64.81 ± 0.07	-0.4 ± 0.01	10.82 ± 0.005
T ₆	76.42±0.5	-1.13 ± 0.005	12.78 ± 0.01

L*: (Lightness), a*: (redness/greenness), b*: (yellowness/blueness

Rheological Properties of Carrot and Guava Drinks during Storage Period

Table 6 shows the viscosity of drinking yoghurt. The viscosity of carrot and guava yoghurt drink increased remarkably (p<0.05) with the increase of the added percentage from these additives compared to control samples which can be attributed to the higher total solids of the fruit additives. Moreover, there was an increase in synersis of samples till the end of storage. The high values of synersis may be due to high acidity resulting in shrinkage of the protein matrix and separation of whey. These results agree with **Wijesinghe** *et al.* (2018).

The Phenolic Compounds, Ascorbic Acid and Antioxidant Activity of Drinking Yoghurt

Table 7 shows that the addition of guava and carrot pulp to yoghurt increased the total

phenolic compounds (TPC) and antioxidant activity (AA), Also TPC decreased with extending the storage period. In addition, the storage period affect the yoghurt properties by increasing its acidity and antioxidant activities by increasing the storage time. On the other hand, the ascorbic acid content of yoghurt samples was higher in guava and carrot drinking yoghurt. During storage period the ascorbic acid content was decreased.

The Protein and Fiber Contents of Drinking Yoghurt

Table 8 shows the protein content and fiber content of drinking yoghurt samples. The protein content showed increasing in the order carrot yoghurt > guava yoghurt. The fiber content was higher in yoghurt supplemented with guava pulp > carrot pulp.

Conclusion

The addition (10, 15 and 20%) of carrot or guava pulp improved sensory properties, specially addition of 20% of carrot pulp and 20% of guava pulp improve rheological and sensory properties and increase the total phenolic compounds (TPC), antioxidant activity (AA), fiber content and ascorbic acid (vitamin c).

Item	Storage		Carrot pulp (%)			Guava pulp (%)			
	(day)		T1	T2	Т3	T4	Т5	T6	
	Fresh	152±6.08	1330±4.50	2154±3.60	2472±3.78	1205±5	1946±1.52	2275±4.35	
Viscosity	3	175±4.35	1506±5.29	2554±4.16	2669±4.16	1321±4.72	2427±2.51	2905±5.03	
(CPS)	6	185±4.35	1664±4.04	2653±3.21	2773±4.04	1503±5.77	2521±5.29	2805±5.13	
(015)	9	184±3.51	1882±3.46	2986±1.52	2993±4.04	1906 ± 5.50	2742±3.51	2994±3.60	
	12	193±2.88	1981±2.88	3015±5	3125±4	2015±5	2942±3.51	3020±2.51	
	Fresh	7.33±0.23	5.7±0.1	3.26±0.2	$2.96{\pm}1.50$	4.5±1	2.93±0.3	1.33±0.05	
Syneresis	3	7.53±0.25	$5.9{\pm}0.01$	3.36±1.10	2.9±1.1	4.63±0.1	3.2±0.8	1.56 ± 0.6	
MI	6	7.8 ± 0.4	5.46 ± 0.51	3.66 ± 0.86	3.13±0.2	4.86±1.00	3.7±0.3	1.86 ± 0.05	
Whey/30gm	9	7.9 ± 0.7	6.3±0.1	3.86±0.7	$3.36{\pm}1.40$	4.83±0.35	3.9±0.3	1.93 ± 0.05	
	12	8.2±0.36	6.8 ± 2.06	3.9±0.1	3.7±0.8	5.06±0.15	4.33±0.41	1.9±07	

Zagazig J. Agric. Res., Vol. 46 No. (6A) 2019

Table 6. Rheological properties of carrot and guava drinks during storage period at 5°C for 12 days

Table 7. Ascorbic acid, total phenolic compounds (TPC) and antioxidant activity (AA) of carrot yoghurt drink during storage at 5°C for 12 days

Item	Storage	Control	Carrot pulp (%)			Guava pulp (%)			
	(day)		T1	T2	Т3	T4	Т5	T6	
	Fresh	1.53±0.01	3.69±0.48	4.70±0.15	6.50±0.01	20.88±0.05	33.75±0.02	40.46±0.07	
Ascorbic acid	3	1.44 ± 0.005	3.59±0.005	4.62±0.64	6.48±1.25	20.76±0.02	33.62±0.01	40.38±1.47	
(mg/100g)	6	1.38±0.16	3.52±0.005	4.58±0.1	6.41±0.10	20.65±0.005	33.59±0.17	40.33±0.01	
(111g/100g)	9	1.30±0.02	3.37±0.26	4.50±0.01	6.21±0.01	20.48±0.00	33.53±0.01	40.27±0.02	
	12	1.24±0.04	3.27±0.005	4.39±0.02	6.18±0.06	20.43±0.01	33.47±0.01	40.17±0.07	
	Fresh	8.8±0.45	15.5±0.98	23.23±0.41	32.73±0.47	51.6±0.18	63.4±2.42	89.99±0.40	
	3	7.8±0.55	14.76±0.68	22.2±0.43	31.6±1.47	50.63±0.85	62.96±1.05	88.66±0.49	
TPC (mg/100gm)	6	6.13±0.20	13.96±0.95	21.23±1.00	29.96±0.05	49.63±0.55	61.96±1.05	87.7±0.60	
(9	5.09±1.15	13.3±1.12	20.63±0.55	29.63±0.55	48.86±0.80	61.26±1.41	86.96±1.00	
	12	2.83±0.20	11.63±1.09	19.73±1.02	27.96±1.00	46.73±0.64	60.66±1.15	85.4±0.55	
	Fresh	36.52±0.05	22.40±0.15	37.98±0.00	40.61±0.38	33.35±0.005	44.59±0.04	50.65±0.20	
	3	36.21±0.005	22.37±0.07	37.82±0.02	40.60±0.04	32.72±0.03	44.15±0.04	50.61 ± 0.005	
AA (%)	6	36.13±0.06	21.59±0.00	37.47±0.02	40.31±0.01	32.54±0.05	44.04±0.04	50.56±0.01	
	9	35.87±0.00	21.41±0.005	35.17±0.07	40.28±0.03	32.41±0.02	43.35±0.005	50.53±0.02	
	12	35.51±0.01	21.15±0.005	35.06±0.005	40.22±0.03	32.26±0.005	43.31±0.005	50.51±0.03	

TPC: (Total Phenolic Compound), AA: (Antioxidant Activity).

Mohammed, et al.

Item	Storage		Ca	rrot pulp (%	(0)	Guava pulp (%)				
	(day)	Control	T1	T2	T3	T4	Т5	T6		
	Fresh	2.74±0.11	2.26±0.02	2.67±0.01	2.92±0.07	2.46±0.13	2.38±0.17	2.22±0.005		
Protein	3	2.64±0.10	2.26 ± 0.02	2.68±0.01	2.92±0.005	2.49±0.16	2.39±0.01	2.25 ± 0.02		
content	6	2.76 ± 0.08	2.30±0.01	2.73±0.03	2.94±0.05	2.52±0.03	2.39±0.02	2.33±0.07		
(%)	9	2.79 ± 0.05	2.38±0.03	2.78 ± 0.0	2.96 ± 0.02	2.56±0.13	2.43±0.02	2.33±0.07		
	12	2.77±0.14	2.36±0.02	2.78 ± 0.02	2.99±0.01	2.57±0.01	2.47 ± 0.005	2.31±0.005		
	Fresh	-	0.19±0.01	0.37±0.02	1.52±0.05	1.05 ± 0.03	2.31±0.01	3.42±0.03		
Fiber	3	—	0.21±0.01	0.41 ± 0.01	1.31±0.26	1.08 ± 0.005	2.43±0.02	3.51±0.01		
content	6	—	0.24 ± 0.01	0.42 ± 0.01	1.63±0.01	1.08 ± 0.07	2.45 ± 0.02	3.52±0.01		
(70)	9	—	0.32 ± 0.01	0.49 ± 0.02	1.55 ± 0.02	1.13±0.02	2.52±0.02	3.53±0.02		
	12	_	0.41 ± 0.01	0.52 ± 0.02	1.75 ± 0.005	1.17 ± 0.01	2.52±0.005	3.58±0.01		

Table 8. Rheological properties of carrot and guava drinks during storage period at 5°C for 12 days

REFERENCES

- AOAC (1995). Association of official of analysis chemists. 15th ED. AOAC, Benjanin Franklin Station, Washingten, DC, USA.
- Aryana, K.J. (2003). Folic acid fortified fat free plain set yoghurts. Int. J. Dairy Technol., 56 (4): 219-222.
- Block, G., B. Patterson and A. Subhar (1992). Fruit, vegetables and cancer prevention: A review of epidemiological evidence. Nutr. and Cancer, 18: 1–29.
- Beal, C., J. Skokanova, E. Lactrille, N. Martin and G. Corrieu (1999). Combiend effects of culture condition and storage time on acidification and viscosity of stirred yoghurt. J. Dairy. Sci., 82 : 673.
- Cliff, S., M.S. Fawer, G. Maier, K. Takatta and G. Ritter (1994). Enzymes assay for the phenolic content of natural juice. J. Agric. and Food Chem., 42: 1824-1828.
- Cao, G., E. Sofic and R. Prior (1996). Antioxidant activity of tea and common vegetables. J. Agric. and Food Chem., 44: 3426–3431.

- Cook, N.C. and S. Samman (1996). Flavonoidschemistry, metabolism, cardioprotective effects, and dietary sources. Nutr. Biochem., 7: 66–76.
- Dominick, S. and R. Derrick (2002). Theory and Problems of Statistics and Economtrics. 2nd Ed. New York, 202.
- El-Etriby, M.M., R.K. El-Dairouty and A.H. Zagloul (1997). Physicochemical and bacteriological studies on mango yoghurt manufactured from ultrafiltrated milk retentate using glucono delta lacton (GDL). Egypt. Dairy Sci., 25: 349.
- Harries, P.J. and B.G. Smith (2006). Plant cell walls and cell-wall polysaccharides: structure, properties and uses in food products. Int. J. Food Sci. and Technol., 41 : 129.
- Hussein, A.M.S., M.T. Fouad, M. Abd El-Aziz, N.E. Ashour and E.A.M. Mostafa (2017). Evaluation of physico-chemical properties of some date varieties and yoghurt made with its syrups. J. Biol. Sci., 17 (5): 213-221.
- Ibrahim, G.A., M.I. Kobeasy, N.S. Mehanna and D.A. Gad El-Rab (2003). Production of

noval types of functional fermented milk products. Egypt. J. Nutr., 18:1.

- Jamilah, B., K.W. Tan, M.R.U. Hartini and A. Azizah (2011). Getains from three culture fresh water fish skins obtained by liming process. Food Hydro Colloids, 25 : 1256-1260
- Khalil, R.A.M. (2013). The use of pomegranate juice as a natural source for antioxidant in making functional yoghurt drink. Egyptian J. Dairy Sci., 41: 137.
- Less, G.J. and G.R. Jago (1969). Methods for the estimation of acetaldehyde in culture dairy products. Aust. J. Dairy Technol., 24 : 181.
- Lyly, M., K.H. Liukkonen, M. Samenkallio-Marttial, L.K. Poutanen and K. Lahteenmaki (2009). Fiber in beverages can enchance perceived satiety. Eur. J. Nutr., 48: 251.
- Luciano, J.Q., O.S. Isabel, S.F. Robert, M.R. Afonso and M.B. Olga (2009). Computative study on antioxidant properties of carrot juice stabilized by high density pulsed electric field or heat treatments. J. Sci. Food Agric., 89 : 26 - 36.
- McCook-Russell, L.P., M.G. Nair, P.C. Facey and C.S. Bowen-Forbes (2012). Nutritional and nutraceutical comparison of Jamacian Psidium Catteleianum (*Strawberry guava*) and *Psidium guajava* (common guava) fruits, Food Chem., 2 (134): 1069-1073.
- Nickerson, T.A., I.F. Vujici and A.Y. Lin (1975). Colourimetric estimation of lactose and its hydrolytic products. J. Dairy Sci., 59 : 76.

- Nishino, T., H. Shibahara-Sone and H. Kikuchi-Hayakawa (2000). Transit of radical products milk scavenging activity of millard prepared by reaction and strain lactobacillus caseii shirota fermentation through the hamster intestine. J. Dairy Sci., 83: 915-922.
- Osborn, D.R. and P.I. Voogt (1978). The analysis of nutrients in foods. Acad. Press Inc. (London) Ltd., 24/28 oval Road, London NWI 7DX.
- O'Rell, K.R. and R.C. Chandan (2006). Yoghurt fruit preparations and flavouring materials manufacturing yoghurt and fermented milks, J. Dairy Technol. 151.
- Pereira, E.A., O.E.M. Branda[~], S.V. Borges and M.C.A. Maia (2008). Influence of concentration on the steady and oscillatory shear behavior of umbu pulp. Revista Brasileira de Engenharia Agricola e Ambiental, 12 (1): 87–90.
- Sies, H. and W. Stahl (1995). Vitamins E and C, beta;carotene and carotenoids as antioxidants. Ame. J. Clinical Nutr., 62: 1315 -1321.
- Saint-Eve, C.L., N. Martin and I. Souchon (2006). Influence of proteins on the perception of flavored stirred yogurts. J. Dairy Sci., 89 : 922-933
- Wijesinghe, J.A.A.C., I. Wickramasinghe and K.H. Saranandha (2018). Optimizing organoleptic properties of drinking yoghurt incorporated with modified kithul (*Caryota urens*) flour as a stabilizer and evaluating its quality during storage. Vidyodaya J. Sci., 21 (1): 36-48.

Mohammed, et al.

أجريت هذه الدراسة لتقييم بعض الخواص لمختلف أنواع الزبادي المنكهه، والمصنع بإضافة لب (الجزر والجوافة) وذلك خلال فترة التخزين، أظهرت النتائج المتحصل عليها أنه يحدث انخفاض معنوي في الـ pH خلال التخزين في جميع العينات، وجد أن عينات مشروب الزبادي المدعم بلب الجوافة والجزر لها نفس قيم الـ pH، وعلى الجانب الآخر تزداد الحموضة في جميع العينات بزيادة التخزين، أدى تدعيم الزبادي بثمار الجوافة (١٠، ١٠ و ٢٠%) إلى زيادة معنوية في المركبات الفينولية الكلية، النشاط المضاد للأكسدة، محتوي الألياف، حمض الأسكوربيك وكذلك حسنت الخواص الريولوجية والحسية مقارنة بالكنترول، إلا أن محتوي البروتين وقيم ال pH وطرد الشرش Syneresis مقارنة بالكنترول، وأدت إضافة (١٠، ٥٠ و ٢٠%) من لب الجزر إلي زيادة في المركبات الفينولية، النشاط المضاد للأكسدة ،حمض الاسكوربيك، محتوي الألياف بينما الجزر إلى زيادة في المركبات الفينولية، النشاط المضاد زيادة معنوية في المرادية بالكنترول، إلا أن محتوي البروتين وقيم ال pH وطرد الشرش Syneresis مقارنة بالكنترول، وأدت إضافة (١٠، ١٠ و ٢٠%) من لب الجزر إلي زيادة في المركبات الفينولية، النشاط المضاد زيادة معنوية ألكسدة ،حمض الاسكوربيك، محتوي الألياف بينما المزاد وقيم ال pH وطرد الشرش Syneresis

أستاذ الألبان المتفرغ – كلية الزراعة – جامعة بنها. أستاذ الألبان المتفرغ – كلية الزراعة – جامعة الزقازيق.

المحكم ون:

١- أ.د. محميد بدير الألف

٢- أ.د. عطية عبد المعطي عبد الباقي