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Abstract 
 

This paper concerns with various techniques for estimations from the 

generalized linear exponential distribution (GLED) that can be used for 

modeling bathtub, increasing and decreasing hazard rate (HR) behavior and was 

first proposed by [3]. This distribution is important since it contains as special 

sub-models some widely well-known distributions such as the exponential 

distribution (ED), the Rayleigh distribution (RD), the linear exponential 

distribution (LED), and the Weibull distribution (WD). The various techniques 

for estimations can be considered as maximum likelihood estimation (MLE), 

least-square estimation (LSE), weighted least square estimation (WLSE), 

Cramér Von-Mises estimation (CVME), and Anderson Darling estimation 

(ADE). These methods of estimations are used to estimate the unknown 

parameters of the well-known GLED. Two applications are used to show that 

the GLED is a viable distribution in modeling lifetime data and to compare the 

varying methods of estimations based on the Kolmogorov-Simnorov test with 

the corresponding P-value to show the optimal method. Finally, a simulation 

study is presented to compare the varying methods of estimation based on the 

mean square error (MSE) and the average absolute bias (AAB).  
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1. Introduction 

        In studying lifetime data, One can show that the LED, 

which has only increasing HR, is well-known for modeling 

lifetime data in reliability analysis. Many authors introduced a 

generalization of LED to make it a model phenomenon with 

decreasing, unimodal and bathtub HRF. [1] studied the 

exponentiated linear exponential distribution (ELED) and 

showed that the HRF can be increasing, decreasing and bathtub 

shaped. The transmuted linear exponential distribution with 

increasing, decreasing, unimodal and bathtub HR shapes were 

introduced by [2]. 

        Another generalization of LED was known as the 

generalized LED (GLED) and was proposed first by [3]. Several 

authors have considered the generalization for the GLED [[4], 

[5] and [6]]. Recently, [7] provided some notes on GLED in [2] 

and [8] proposed a new transformation called inverted GLED.  

The fundamental point of this paper is to study how the various 

estimators of the unknown parameters of a GLED behave for 

various sample sizes and different parameter values. 

        The remainder of the article is organized into six sections. 

Section 2 introduces some statistical functions of GLED. The 

MLE of GLED is studied in Section 3. Section 4 studies least 

square estimator and weighted least square estimator for 

estimating the parameters of GLED. Analysis of the Cramér 

Von-Mises estimator using GLED is given in Section 5. Section 

6 describes the Anderson Darling estimator. Analysis of two 

real data sets is presented in Section 7. Section 8 presents a 

simulation study to compare the different methods of 

estimation.  

2.  Generalized Linear Exponential Distribution 

        For a non-negative random variable X, the cumulative 

distribution function (CDF) and the probability density function 

(PDF) of GLED are given respectively by  
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and 
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The survival and hazard rate functions are respectively by 

                 
 
 
        (4) 

and 

               
 

 
                               (5) 

where           is the parameter vector. 

Remark 1. 

For    , Equation (2) reduces to  

                       
 
 
         (6) 

which is the CDF of the LED [9]. If     and     with    , 

the ED and the RD are given respectively. 

It is observed in [3] that the three-parameter GLED can have 

increasing, decreasing and bathtub failure rates. 
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3.  Maximum Likelihood Estimation 

        MLE is likely the most broadly utilized technique for 

estimation in statistics. Suppose that           be an 

independent random sample of size   from GLED. From 

Equation (2), the log-likelihood function can be obtained as 
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By taking the first derivative (      
  

  
) of (7) w.r.t.  ,  , and   

we get 
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3.1. The parameters c, and b are known 

        The normal equation         can be written as  
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It is clear that the first derivative of the right-side hand (     ) 

of (11) w.r.t.   is always positive. This means that the       is 

an increasing function. Then by the graphical method [10], the 

MLE of   exists and unique. 

3.2  The parameters c, b, and   are unknown 

        The MLE  ̂  of   is given by solving the three normal 

equations        ,        ,  and        . These non-

linear equations cannot be solved analytically see [1]. So, some 

numerical technique can be employed  to solve these three non-

linear equations. 

3.3.  Fisher information matrix 

        Since the calculation of Fisher information matrix (given by 

taking the expectation of the second derivative of (7)) is 

extremely difficult, so, it appears to be proper to approximate 

these expected values by their MLEs. Then, the asymptotic 

variance-covariance matrix is given as [see, [11]]; 

(
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where      
    

   

     
,          , see Appendix A. 

Accordingly, the ACIs based on the asymptotic variance-

covariance matrix for the parameters  ,  , and   are 

respectively given as: 

 ̂    

 
√     ̂ ,  ̂    

 

√     ̂ , and  ̂    

 

√     ̂  , 

where   

 
 is the percentile of the standard normal distribution 

with right tail probability 
 

 
. 

 

4.  Least square and weighted least square estimations 

        The study by [12] introduces the LSE and the WLSE for 

evaluating the estimation of the parameters for beta distribution. 

These techniques will perform to estimate the parameters of 

GLED. For this reason, take   ,           as the ordered 

sample of a random sample of size  . At that point, the LSE of 

the parameters of GLED can be obtained by minimizing the 

following function 
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w.r.t. the unknown parameters  ,  , and    or by solving the 

following non-linear equations  
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To determine the WLSE of the unknown parameters of GLED, 

minimizes the following function 
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w.r.t. the unknown parameters   or solve the non-linear 

equations 
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where         ,          and          are given by (12), 

(13), and (14) respectively. 
 

5.  Cramér Von-Mises estimation 

         In a study conducted by [13], it was demonstrated that the 

bias of CVME is smaller than the other minimum distance 

estimator. The CVME of GLED can be given by minimizing the 

following function 

   
 

     
 ∑ 

 

   

       
      

    
     

w.r.t. the unknown parameters   or by solving the following 

non-linear equations 
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where         ,          and          are given by (12), 

(13), and (14) respectively. 
 

6.  Anderson Darling estimation 

         In another study, [14] studied the properties of ADE. 

Under the results gave by him, the ADE of GLED can be given 

by minimizing the following function 
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w.r.t. the unknown parameters   or by solving the following 

non-linear equations: 
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where         ,          and          are given by (12), 

(13), and (14) respectively 

 

7 . Real Data Analysis 

        In this section, two real data sets are presented for 

interpretative study. For identifying the shapes of hazard rate for 

given data sets, the scaled TTT transform plot is given as  

   
 

 
  

∑   
                   

∑   
     

, 

 where           and      is the order statistics of the data 

[see [15]].     test is used for non-parametric test statistic. 

This test is defined as:  

         
 

 
               

   

 
   . 

For every data set, we compare the different methods of 

estimation for GLED using the K-S test with the corresponding 

P-value. All computations were introduced by  Wolfram 

Mathematica11. 

7.1. Lifetimes of 50 devices 

        Consider the lifetime data of 50 devices which were 

provided by [15]. The data set are 

                                                        

                                                     

                                          All  estimates   

of  the unknown parameters based on the different methods, 

which considered in this paper, and the values of K-S with the 

value of the corresponding p-value are summarized in (Table 1) 

for given data. From (Table 1), one can show that the MLE is 

considered as a good method for given data at a level of 

significance         Also, all methods can be considered as 

good methods for given data at         It is clear from Table 

1 that the MLE is the optimal method under the K-S test with 

the corresponding p-value. The data are known to have a 

bathtub-shaped failure rate as shown by the scaled TTT-

Transform plot, which has a convex shape followed by a 

concave shape, See Figure (3a). The graphical method of   and 

      based on Equation (11) can be shown in (Figure 1) for 

given data. 

 

 

 

 

 

 

 

 

 

Table  1: The estimates of unknown parameters under varying methods 

and the 𝐾  𝑆  test with the corresponding P-value for the 

lifetime data of 50 devices data 
 

Methods 𝒄  �̂� �̂� 𝑲 𝑺 𝑷 𝒗𝒂𝒍𝒖𝒆 

MLE 0.0096 0.0004 0.7302 0.1799 0.0786 

LSE 0.0072 0.0004 0.6457 0.2109 0.0234 

WLSE 0.0096 0.0003 1.1484 0.1954 0.0439 

CVME 0.0075 0.0036 0.6738 0.2040 0.0312 

ADE 0.0068 0.0004 0.5776 0.2055 0.0293 
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7.2. The electrical appliances failure time data 

        Consider the following data set from [16] consisting of the 

number of cycles to failure for a group of 60 electrical 

appliances in a life test. The failure times divided by 1000 and 

detailed as  

                                                        

                                                         

                                                         

                                                           

                                                           

                                                          

                                All estimates of the 

unknown parameters based on the different methods, which 

considered in this paper, and the values of K-S with the value of 

the corresponding p-value are summarized in (Table  2) for given 

data. From (Table 2), one can show that all methods can be 

considered as good methods for given data at a level of 

significance         It is clear from Table 2 that the ADE is 

the optimal method under the K-S test with the corresponding p-

value. Furthermore, the TTT plot of the observed data shows 

that the hazard rate of the electrical appliances failure time data 

is bathtub which is first convex and then concave as shown in 

Figure (3b). The graphical method of   and       based on 

Equation (11) can be shown in (Figure 2) for given data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.  Simulation Study 

        In this section, the simulation study is presented. The MSE 

and the AAB are evaluated to study the performance of varying 

methods of estimation which are given in the previous sections. 

To compare the performance of varying methods for estimating 

the unknown parameters of GLED, the following technique is 

adopted as follows: 

1. Set the parameters         as            . 

 
Figure  1:   Plot of the 

 

𝜉
 and Ψ  𝜉  functions for the lifetime data of 50 

devices data 

 

Table  2: The estimates of unknown parameters under varying 

methods and the 𝐾  𝑆 test with the corresponding P-value for the 

electrical appliances failure time data 
 

Methods 𝒄  �̂� �̂� 𝑲 𝑺 𝒑 𝒗𝒂𝒍𝒖𝒆 

MLE 0.2185 0.1763 0.7319 0.0632 0.9702 

LSE 0.1591 0.2029 0.6574 0.0692 0.9361 

WLSE 0.1989 0.1789 0.7462 0.0723 0.9123 

CVME 0.1652 0.2012 0.6787 0.0626 0.9728 

ADE 0.1692 0.2073 0.6685 0.0604 0.9809 

 

 
Figure  2:   Plot of the 

 

𝜉
 and Ψ  𝜉  functions for the electrical 

appliances failure time data. 

 

a)  

b)  

Figure  3:  (a) Scaled TTT transform of the Lifetimes of 50 

devices data.    

(b) Scaled TTT transform of the electrical 

appliances failure time data. 
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2. Generate random samples from GLED with size   

              . 

3. Evaluate the varying estimates as shown in previous sections. 

4. Repeat Steps 1 and 3        times. 

5. Calculate the MSEs and AABs. 

All numerical values of the simulation study for the different 

methods of estimation are reported in Tables 3 - 5. From the 

simulation study, one can show from Tables 3 - 5 that the: 

 MSEs for all methods of estimation decrease by increasing the 

sample size n. 

 AABs for all methods of estimation decrease by increasing the 

sample size n. 

 Based on MSE, all methods of estimation produce smaller 

MSE for   compared to that of   and  . 

 Based on AAB, all methods of estimation produce smaller 

AAB for   compared to that of   and  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.  Conclusion 

        In this paper, we compared the estimation of the parameters 

for the three-parameter distribution IGLED using five 

estimation methods, namely the maximum likelihood, least-

squares, weighted least-squares, Anderson Darling and Cramér 

Von-Mises estimations. This conclusion is also supported by the 

analysis of two real data sets. The K-S test with the 

corresponding P-value is used to show the optimal method using 

the two real data. The simulation study is also presented to 

compare the varying methods using MSEs and AABs. 
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Appendix A. 

The second derivatives of (7) can be written as: 
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Table  3: MSEs and AABs for parameter 𝑐 under proposed methods 

with different sample size n 
 

n  MLE LSE WLSE CVME ADE 

20 MSE 0.1310 0.1053 0.1089 0.1204 0.1117 

 AAB 0.3081 0.2668 0.2721 0.2897 0.2785 

50 MSE 0.1121 0.0935 0.1071 0.1012 0.0941 

 AAB 0.2797 0.2441 0.2636 0.2559 0.2438 

80 MSE 0.1066 0.0853 0.0981 0.0921 0.0841 

 AAB 0.2657 0.2278 0.2455 0.2377 0.2306 

120 MSE 0.0933 0.0758 0.0924 0.0816 0.0738 

 AAB 0.2410 0.2100 0.2357 0.2183 0.2102 

 

 
 

 

 

 

 

Table  4: MSEs and AABs for parameter 𝑏 under proposed methods 

with different sample size n 
 

n  MLE LSE WLSE CVME ADE 

20 MSE 0.3735 0.3536 0.3286 0.4112 0.3715 

 AAB 0.5013 0.4570 0.4487 0.5051 0.4824 

50 MSE 0.3139 0.2837 0.3212 0.3101 0.2916 

 AAB 0.4492 0.4072 0.4405 0.4311 0.4213 

80 MSE 0.3006 0.2536 0.2884 0.2759 0.2516 

 AAB 0.4376 0.3777 0.4093 0.3967 0.3865 

120 MSE 0.2633 0.2214 0.2668 0.2411 0.2176 

 AAB 0.3990 0.3481 0.3913 0.3650 0.3526 

 

 

Table  5: MSEs and AABs for parameter 𝜉 under proposed methods 

with different sample size n 
 

n  MLE LSE WLSE CVME ADE 

20 MSE 0.1670 0.2521 0.2077 0.1901 0.2187 

 AAB 0.2952 0.3852 0.3318 0.3095 0.3548 

50 MSE 0.1654 0.1827 0.1963 0.1618 0.1711 

 AAB 0.3031 0.3214 0.3325 0.2908 0.3154 

80 MSE 0.1625 0.1517 0.1692 0.1449 0.1453 

 AAB 0.3032 0.2887 0.3008 0.2746 0.2871 

120 MSE 0.1535 0.1369 0.1601 0.1354 0.1337 

 AAB 0.2929 0.2721 0.2946 0.2653 0.2737 
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