- ABSTRACT
- Let $M: D \rightarrow V^{3}$ and $\bar{M}: D \rightarrow \bar{V}^{3}\left(D \subset R^{2}\right)$ be two isometric surfaces in the Riemannian spaces V^{3} and \bar{V}^{3} with curvatures R, \bar{R} respectively.

We shall prove that the second fundamental forms of the two surfaces are the same provided that:

1- The Gaussian curvature K of M is positive.
2- M and \bar{M} have the same second fundamental form on $D D$.
3- For each $d \in D, L_{d}: \begin{aligned} & T\left(V^{3}\right) \rightarrow T\left(\bar{V}^{3}\right) \\ & M(d)\end{aligned}$ is the isometry determined by its restriction l_{d} to $T(M)$ which satisfies l_{M} odM $=d \bar{M}$, and $L_{d}\{R(x, y) z=$
$\equiv \overline{\mathrm{R}}\left(\mathrm{L}_{\mathrm{d}} \mathrm{x}, \mathrm{L}_{\mathrm{d}} \mathrm{y}\right) \mathrm{L}_{\mathrm{d}} z$ for all tangent vectors $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{T}(\mathrm{M})$

$$
M(d)
$$

: Also it is shown that the two isometric surfaces M and \bar{M} satisfying the above conditions have the same Gaussian and mean curvatures at corresponding points.

Millもary Technical College, Kobry El-Kobba, Cairo, Egypt.

SECOND A.M.E. CONFERENCE
6-8 May 1986 , Cairo

INTRODUCTION

It is known that the first fundamental forms I of two isometric surfaces are the same. This is not the case for the second fundamental forms II. However A Ș̃vec [3] studied the conditions for two infinitesimal surfaces to have the same second fundamental form. He proved that two infinitesimal isometric surfaces in E^{3} have the same second fundamental form, that is the variation in the second fundamental form $\delta I I=O$ on M, provided that the

- Gaussian curvature $K>0$ on the surface M, and there is a function
$\lambda: M \rightarrow R$ such that the variation of the second fundamental form $\delta I I=\lambda I$ on ∂M.

Our aim in this paper is to generalize Svec's theorem from the case of infinitesimal isometric surfaces in E^{3} to the case of the two general isometric surfaces in Riemannian 3-spaces.

THE RIGIDITY THEOREM

Theorem: Let v^{3}, \bar{V}^{3} be two Riemannian 3-spaces with curvatures $R_{\eta} \bar{R}$ respectively. Let $D \subset R^{2}$ be a bounded domain, and let $M: D \rightarrow V^{3}, \bar{M}: D \rightarrow \bar{V}^{3}$ be two surfaces, such that:
i) M and M are isometric.
ii) the Gaussian curvature of M is K and $K>0$
iii) For each $d \in D$, let $L_{d}: \quad T\left(V^{3}\right) \rightarrow T(d), ~\left(\bar{V}^{3}\right)$ be the isometry determined
 $d \bar{M}$, and $L_{d}\{R(x, y) z\}=\bar{R}\left(L_{d} x, L_{d} y\right) L_{d} z$ for e ach $d \in D$ and all x, y, z $\epsilon T(M)$. M(d)
iv) II and $\overline{I I}$ are the second fundamental formsof M and \bar{M} respectively , and $I I \equiv \overline{I I}$ on the boundary ∂D.
Then $I I=\overline{I I}$ on D.
Proof: In the Riemannian space V^{3}, let $\mathrm{M}: \mathrm{D} \rightarrow \mathrm{V}^{3}$ be a surface. For each point $m \in M$ associate an orthonormal frame $\left\{m, v_{i}\right\}, i=1,2,3$. Hence there are differntial forms $\omega^{i}, \omega_{i}^{j}$ on D such that

$$
\begin{equation*}
d m=\sum_{i=1}^{3} \omega^{i} v_{i} \quad, \quad d v_{i}=\sum_{j=1}^{3} \omega_{i}^{j} v_{j}, \quad w_{i}^{j}+w_{j}^{i}=0 \quad(i, j=1,2,3) \tag{1}
\end{equation*}
$$

with the structure equations

r

$$
\begin{equation*}
d \boldsymbol{\omega}^{i}=\sum_{j=1}^{3} \omega^{j} \wedge \omega_{j}^{i} \quad d \omega_{i}^{j}=\sum_{k=1}^{3} \omega_{i}^{k} \wedge \omega_{k}^{j}-\frac{1}{2} \sum_{k, L=1}^{3} R_{i k L}^{j} \omega^{k} \wedge \omega^{L}, R_{i k L}^{j}+R_{i L k}^{j}=0 \tag{2}
\end{equation*}
$$

Since dm lies in the tangent plane $T_{m}(M)$, hence from (I) we have

$$
\begin{equation*}
\omega^{3}=0 \tag{3}
\end{equation*}
$$

The exterior differential of (3) gives

$$
\begin{equation*}
\omega^{\prime} \wedge \omega_{1}^{3}+\omega^{2} \wedge \omega_{2}^{3}=0, \tag{4}
\end{equation*}
$$

and hence there exist functions $a, b, c: D \rightarrow R$ such that

$$
\begin{equation*}
\omega_{1}^{3}=a \omega^{1}+b \omega^{2}, \quad \omega_{2}^{3}=b \omega^{1}+c \omega^{2} . \tag{5}
\end{equation*}
$$

The first and second fundamental forms of M are given respectively by

$$
\begin{equation*}
I=\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2}, I I=\omega^{1} \omega_{1}^{3}+\omega^{2} \omega_{2}^{3}=a\left(\omega^{1}\right)^{2}+2 b \omega^{1} \omega^{2}+c\left(\omega^{2}\right)^{2} \tag{6}
\end{equation*}
$$

The Gaussian and mean curvatures of M are given respectively by

$$
\begin{equation*}
\mathrm{K}=\mathrm{ac}-\mathrm{b}^{2}, \quad 2 \mathrm{H}=\mathrm{a}+\mathrm{c} \tag{7}
\end{equation*}
$$

- Let \bar{V}^{3} be another Riemannian space, $\bar{M}: D \rightarrow \bar{V}^{3}$ be another surface. For each point $\bar{m} \in \bar{M}$ associate an orthonormal frame $\left\{\bar{m}, \bar{v}_{i}\right\}, i=1,2,3$. Hence there are differential forms $\bar{\omega}^{i}, \bar{\omega}_{i}^{j}$ on D such that

$$
\begin{gather*}
d \bar{m}=\sum_{i=1}^{3} \bar{\omega}^{i} \bar{v}_{i}, \quad d \bar{v}_{i}=\sum_{j=1}^{3} \bar{\omega}_{i}^{j} \bar{v}_{j}, \quad(i, j=1,2,3) \\
d \bar{\omega}^{i}=\sum_{j=1}^{3} \bar{\omega}_{\wedge}^{j} \wedge \bar{w}_{j}^{i} ; \quad d \bar{\omega}_{i}^{j}=\sum_{k=1}^{3} \bar{\omega}_{i}^{k} \wedge \bar{w}_{k}^{j}-\frac{1}{2} \sum_{k, L=1}^{3} \bar{R}_{j k L}^{j} \bar{\omega}_{\wedge}^{k} \bar{\omega}^{L}, \tag{8}\\
\bar{R}_{i k L}^{j}+\bar{R}_{i L k}^{j}=0, \quad(k, L=1,2,3) .
\end{gather*}
$$

Since \bar{M} is isometric to M, then we can choose the frame $\left\{\bar{m}_{,}, \bar{v}_{i}\right\}$ in such a way that

$$
\begin{equation*}
\bar{\omega}^{1}=\omega^{1} \quad, \quad \bar{\omega}^{2}=\omega^{2} \tag{9}
\end{equation*}
$$

Let us write

$$
\begin{equation*}
\bar{w}_{i}^{j}=w_{i}^{j}+\tau_{i}^{j} \tag{10}
\end{equation*}
$$

SECOND A.M.E. CONFERENCE
6 - 8 May 1986 , Cairo

Γ

$$
\begin{equation*}
\omega^{2} \wedge \tau_{1}^{2}=\omega^{1} \wedge \tau_{1}^{2}=0 \tag{11}
\end{equation*}
$$

hence

$$
\begin{equation*}
\tau_{1}^{2}=0 \quad \text { and } \bar{\omega}_{1}^{2}=\omega_{1}^{2} \tag{12}
\end{equation*}
$$

Further we get from (2), (3), (8), (9) and (12)

$$
\left.\begin{array}{rl}
\omega^{1} \wedge \tau_{1}^{3}+\omega^{2} \wedge \tau_{2}^{3}=0 \\
\omega_{1}^{3} \wedge \tau_{2}^{3}+\tau_{1}^{3} \wedge \omega_{2}^{3}+\tau_{1}^{3} \wedge \tau_{2}^{3} & =\left(R_{112}^{2}-\bar{R}_{112}^{2}\right) \omega^{1} \wedge \omega^{2}, \\
d \tau_{1}^{3} & =\omega_{1}^{2} \wedge \tau_{2}^{3}+\left(R_{112}^{3}-\bar{R}_{112}^{3}\right) \omega^{1} \wedge \omega^{2}, \tag{13}\\
d \tau_{2}^{3} & =-\omega_{1}^{2} \wedge \tau_{1}^{3}+\left(R_{212}^{2}-\bar{R}_{212}^{3}\right) \omega^{1} \wedge \omega^{2}
\end{array}\right\}
$$

Equation $\left(13_{1}\right)$ implies that there exist functions $R_{1}, R_{2}, R_{3}: D \rightarrow R$ such that:

$$
\begin{equation*}
\tau_{1}^{3}=R_{1} \omega^{1}+R_{2} \omega^{2}, \quad \tau_{2}^{3}=R_{2} \omega^{1}+R_{3} \omega^{2} \tag{14}
\end{equation*}
$$

. From (14) the second fundamental form of \bar{M} is then

$$
\begin{equation*}
\overline{I I}=I I+R_{1}\left(\omega^{1}\right)^{2}+2 R_{2} \omega^{I} \omega^{2}+R_{3}\left(\omega^{2}\right)^{2} \tag{15}
\end{equation*}
$$

The exterior differentiation of (122) gives

$$
\omega_{1}^{3} \wedge \omega_{2}^{3}+R_{112}^{2} \omega^{1} \wedge \omega^{2}=\bar{\omega}_{1}^{3} \wedge \bar{\omega}_{2}^{3}+\bar{R}_{112}^{2} \omega^{1} \wedge \omega^{2}
$$

From (5)

$$
\left(\mathrm{ac}-\mathrm{b}^{2}\right)+\mathrm{R}_{112}^{2}=\left(\overline{\mathrm{a}} \overline{\mathrm{c}}-\overline{\mathrm{b}}^{2}\right)+\overline{\mathrm{R}}_{112}^{2}
$$

from (7) it follows that

$$
\begin{equation*}
\mathrm{K}+\mathrm{R}_{112}^{2}=\overline{\mathrm{K}}+\overline{\mathrm{R}}_{112}^{2} \tag{16}
\end{equation*}
$$

From (5), (14), (132) and (16) we get

$$
\begin{equation*}
a R_{3}-2 b R_{2}+c R_{1}+R_{1} R_{3}-R_{2}^{2}=\bar{K}-K \tag{17}
\end{equation*}
$$

From (13 3,4) and (14)

$$
\left(d R_{1}-2 R_{2} \omega_{1}^{2}\right) \wedge \omega^{1}+\left\{d R_{2}+\left(R_{1}-R_{3}\right) \omega_{1}^{2}\right\} \wedge \omega^{2}=\left(R_{112}^{3}-\bar{R}_{112}^{3}\right) \omega^{1} \wedge \omega^{2}
$$

r

$$
\begin{equation*}
\left.\left\{d R_{2}+\left(R_{1}-R_{3}\right) \omega_{1}^{2}\right\} \wedge \omega^{1}+\left(d R_{3}+2 R_{2} \omega_{1}^{2}\right) \wedge \omega^{2}=\left(R_{212}^{3}-\bar{R}_{212}^{3}\right) \omega^{1} \wedge \omega^{2},\right\} \tag{18}
\end{equation*}
$$

and hence there exist functions $S_{1}, \ldots, S_{4}: D \rightarrow R$ each that

$$
\begin{align*}
& d R_{1}-2 R_{2} \omega_{1}^{2}=S_{1} \omega^{1}+\left(S_{2}+\bar{R}_{112}^{-3}\right) \omega^{2} \\
& d R_{2}+\left(R_{1}-R_{3}\right) \omega_{1}^{2}=\left(S_{2}+R_{112}^{3}\right) \omega^{1}+\left(S_{3}+\bar{R}_{212}^{3}\right) \omega^{2} \tag{19}\\
& \quad d R_{3}+2 R_{2} \omega_{1}^{2}=\left(S_{3}+R_{212}^{3}\right) \omega^{1}+S_{4} \omega^{2}
\end{align*}
$$

From (2) and (5)

$$
\begin{align*}
& \left(d a-2 b \omega_{1}^{2}\right) \wedge \omega^{1}+\left\{d b+(a-c) \omega_{1}^{2}\right\} \wedge \omega^{2}=-R_{112}^{3} \omega^{1} \wedge \omega^{2} \\
& \left\{d b+(a-c) \omega_{1}^{2}\right\} \wedge \omega^{1}+\left(d c+2 b \omega_{1}^{2}\right) \wedge \omega^{2}=-R_{212}^{3} \omega^{1} \wedge \omega^{2} \tag{20}
\end{align*}
$$

and we may write

$$
\begin{align*}
& d a-2 b \omega_{1}^{2}=o \omega^{1}+\left(\beta+\frac{1}{2} R_{112}^{3}\right) \omega^{2} \\
& d b+(a-c) \omega_{1}^{2}=\left(\beta-\frac{1}{2} R_{112}^{3}\right) \omega^{1}+\left(\gamma+\frac{1}{2} R_{212}^{3}\right) \omega^{2} \tag{2I}\\
& d c+2 b \omega_{1}^{2}=\left(\gamma-\frac{1}{2} R_{212}^{3}\right) \omega^{1}+\delta \omega^{2}
\end{align*}
$$

On differentiating (17) and substituting from (19) and (21) the coefficient of ω_{1}^{2} vanishes. Hencethe coefficient of each of ω^{2} and ω^{2} will be equal to mero, which gives

$$
\begin{align*}
& \left(c+R_{3}\right) S_{1}-2\left(b+R_{2}\right) S_{2}+\left(a+R_{1}\right) S_{3}=-\left(\gamma+\frac{1}{2} R_{212}^{3}\right) R_{1} \\
& +2\left(\beta+\frac{1}{2} R_{112}^{3}\right) R_{2}-\alpha R_{3}-a R_{212}^{3}+2 b R_{112}^{3}+(\bar{K}-K)_{1} \\
& \left(C+R_{3}\right) S_{2}-2\left(b+R_{2}\right) S_{3}+\left(a+R_{1}\right) S_{4}=-G_{2}+2\left(\gamma_{1}+\frac{1}{2} R_{212}^{3}+\bar{R}_{212}^{3}\right) R_{2} \tag{22}\\
& -\left(\beta+\frac{1}{2} R_{112}^{3}+\bar{R}_{112}^{3}\right) R_{3}+2 b R_{212}^{3}-c \bar{R}_{112}^{3}+(\bar{K}-K)_{2}
\end{align*}
$$

In D, let us choose coordinates (u, v) such that

$$
\begin{equation*}
\omega^{I}=r d u, \omega^{2}=s d v, \quad r=r(u, v) \neq 0, \Delta=\Delta(u, v) \neq 0 \tag{23}
\end{equation*}
$$

Γ

which implies that

$$
\begin{equation*}
w_{1}^{2}=-\Delta^{-1} \frac{\partial r}{\partial v} d u+r^{-1} \frac{\partial \Delta}{\partial u} d v \tag{24}
\end{equation*}
$$

From (19), (23) and (24) we get

$$
\begin{aligned}
& \frac{\partial\left(R_{1}-R_{3}\right)}{\partial u} d u+\frac{\partial\left(R_{1}-R_{3}\right)}{\partial v} d v-4 R_{2}\left(-s^{-1} \frac{\partial r}{\partial v} d \dot{u}+r^{-1} \frac{\partial \Delta}{\partial u} d v\right)= \\
& \quad\left(S_{1}-S_{3}-R_{212}^{3}\right) r d u+\left(S_{2}-S_{4}+R_{112}^{-3}\right) \Delta d v,
\end{aligned}
$$

$$
\begin{equation*}
\frac{\partial R_{2}}{\partial u} d u+\frac{\partial R_{2}}{\partial v} d v+\left(R_{1}-R_{3}\right)\left(-s^{-1} \frac{\partial r}{\partial v} d u+r^{-1} \frac{\partial \Delta}{\partial u} d v\right)= \tag{25}
\end{equation*}
$$

$$
\left(\mathrm{S}_{2}+\mathrm{R}_{112}^{3}\right)_{r} d u+\left(\mathrm{S}_{3}+\overline{\mathrm{R}}_{212}^{3}\right) \Delta \mathrm{dv}
$$

From (25) it follows that

$$
\left.\begin{array}{rl}
r \Delta S_{1} & =\Delta \frac{\partial\left(R_{1}-R_{3}\right)}{\partial u}+r \frac{\partial R_{2}}{\partial v}+\frac{\partial \Delta}{\partial u}\left(R_{1}-R_{3}\right)+4 \frac{\partial r}{\partial v} R_{2}+r \Delta\left(R_{212}^{3}-\bar{R}_{212}^{3}\right) \\
r \Delta S_{2} & =\Delta \frac{\partial R_{2}}{\partial u}-\frac{\partial r}{\partial v}\left(R_{1}-R_{3}\right)-r \Delta R_{112^{\prime}}^{2} \\
r \Delta S_{3} & =r \frac{\partial R_{2}}{\partial u}+\frac{\partial \Delta}{\partial u}\left(R_{1}-R_{3}\right)-r \Delta \bar{R}_{212^{\prime}}^{3} \tag{26}\\
r \Delta S_{4} & =-r \frac{\partial\left(R_{1}-R_{3}\right)}{\partial u}+\Delta \frac{\partial R_{2}}{\partial u}-\frac{\partial r}{\partial v}\left(R_{1}-R_{3}\right)+4 \frac{\partial \Delta}{\partial u} R_{2}-r \Delta\left(R_{112}^{3}-R_{1 I 2}^{3}\right)
\end{array}\right\}
$$

Now, let us turn our attention to condition (iii) of our theorem, for x, y, z $\in \mathrm{T}_{\mathrm{M}(\mathrm{d})}^{(\mathrm{M})}$, let
$x=x^{l} v_{1}+x^{2} v_{2}, \quad y=y^{1} v_{1}+y^{2} v_{2}, \quad z=z^{1} v_{1} 1 z^{2} v_{2}, \quad\left(x^{3}=y^{3}=z^{3}=0\right)$.
We have

$$
\begin{aligned}
R(x, y) z & =\sum_{l=1}^{3} R_{i j k}^{l} x^{j} y^{k} z^{i} v_{l}, \quad(i, j, k=1,2 .) \\
& =R_{112}^{2} x^{1} y^{2} z^{1} v_{2}+R_{112}^{3} x^{1} y^{2} z^{1} v_{3}-R_{112}^{2} x^{2} y^{1} z^{1} v_{2}-R_{112}^{3} x^{2} y^{1} z^{1} v_{3} \\
& -R_{112}^{2} x^{1} y^{2} z^{2} v_{1}+R_{212}^{3} x^{1} y^{2} z^{2} v_{3}+R_{112}^{2} x^{2} y^{1} z^{2} v_{1}-R_{212}^{3} x^{2} y^{1} z^{2} v_{3}
\end{aligned}
$$

Γ
$L_{d}\{R(x, y) z\}=\left(x^{2} y^{1}-x^{1} y^{2}\right)\left\{R_{112}^{2}\left(z^{2} \bar{v}_{1}-z^{1} \bar{v}_{2}\right)-\left(R_{112}^{3} z^{1}+R_{212}^{3} z^{2}\right) \bar{v}_{3}\right\}$,
Since $L_{d} v_{i}=\bar{v}_{i}$, then.
$\bar{R}\left(L_{d} x, L_{d} y\right) L_{d} z=\left(x^{2} y^{1}-x^{1} y^{2}\right)\left\{\bar{R}_{112}^{2}\left(z^{2} \bar{v}_{1}-z^{1} \bar{v}_{2}\right)-\left(\bar{R}_{112}^{3} z^{1}+\bar{R}_{212}^{3} z^{2}\right) \bar{v}_{3}\right\}$.
Since from the condition $L_{d}\{R(x, y) z\}=\bar{R}\left(L_{d} x, L_{d} y\right) L_{d} z \quad$ for each $d \in D$ and all $x, y, z \in T(M)$, it follows from (29) that we have on M M(d)

$$
\begin{equation*}
R_{112}^{2}=\bar{R}_{112}^{2}, \quad R_{112}^{3}=\bar{R}_{112}^{3}, \quad R_{212}^{3}=\bar{R}_{212}^{3} \tag{30}
\end{equation*}
$$

Hence from (16) we get

$$
\begin{equation*}
K=\bar{K} \quad(K>0) \tag{31}
\end{equation*}
$$

Using (31), equation (17) can be written in the forms

From (10) and (14) we get,
$\bar{\omega}_{1}^{3} \wedge \bar{\omega}^{2}+\bar{\omega}^{1} \wedge \bar{\omega}_{2}^{3}=2 H \omega^{1} \wedge \omega^{2}+\left(R_{1}+R_{3}\right) \omega^{1} \wedge \omega^{2}=2 \bar{H} \omega^{1} \wedge \omega^{2}$,
Hence

$$
\begin{equation*}
2(H+\bar{H})=2 a+2 c+R_{1}+R_{3} . \tag{34}
\end{equation*}
$$

: Since $\bar{H}^{2}>\overline{\mathrm{K}}=\mathrm{K}>0, \mathrm{H}^{2}>\mathrm{K}, \quad$ imply $2(\mathrm{H}+\overline{\mathrm{H}})>0$, then from (32) and (34),

$$
\begin{align*}
& R_{1}=(H+\bar{H})^{-1}\left\{\left(2 b+R_{2}\right) R_{2}+\frac{1}{2}\left(2 a+R_{1}\right)\left(R_{1}-R_{3}\right)\right\} . \\
& R_{3}=(H+\bar{H})^{-1}\left\{\left(2 b+R_{2}\right) R_{2}-\frac{1}{2}\left(2 c+R_{3}\right)\left(R_{1}-R_{3}\right)\right\} . \tag{35}
\end{align*}
$$

From (26), (35) and (22) we get
r

$$
\begin{aligned}
& \Delta\left(c+R_{3}\right) \frac{\partial\left(R_{1}-R_{3}\right)}{\partial u}-2 \Delta\left(b+R_{2}\right) \frac{\partial R_{2}}{\partial u}+r\left(a+c+R_{1}+R_{3}\right) \frac{\partial R_{2}}{\partial v}= \\
& -r\left(a+R_{1}\right) \frac{f_{1}\left(R_{1}-R_{3}\right)+f_{2} R_{2},}{\partial v}+\Delta\left(a+c+R_{1}+R_{3}\right) \frac{\partial R_{2}}{\partial u}-2 r\left(b+R_{2}\right) \frac{\partial R_{2}}{\partial v}= \\
& f_{3}\left(R_{1}-R_{3}\right)+f_{4} R_{2} .
\end{aligned}
$$

The quadratic form \varnothing of (36) is equivalent to

$$
\begin{equation*}
\phi=-\left(a+c+R_{1}+R_{3}\right)\left\{r^{2}\left(a+R_{1}\right) \mu^{2}+2 r \Delta\left(b+R_{2}\right) \mu \nu+\Delta^{2}\left(c+R_{3}\right) \nu^{2}\right\} \tag{37}
\end{equation*}
$$

Let the discriminant of \varnothing be $-\Delta$, then

$$
\begin{equation*}
\Delta=r^{2} s^{2}\left(a+c+R_{1}+R_{3}\right)^{2}\left\{\left(a+R_{1}\right)\left(c+R_{3}\right)-\left(b+R_{2}\right)^{2}\right\} \tag{38}
\end{equation*}
$$

from (7), (17), (31) and $\left(a+c+R_{1}+R_{3}\right)=2 \bar{H}>0$ equ (38) reduces to
$\Delta=r^{2} \Delta^{2} K\left(a+c+R_{1}+R_{3}\right)^{2}>0$. Hence \varnothing is definite and (36) is elliptic,

- and from (iv) we get $R_{1}-R_{3}=R_{2}=O$ in D. From (35) we get $R_{1}=R_{2}=R_{3}=0$ inside D. Then from (33) we get $H=\bar{H}$, and from (15) we get II $=\overline{I I}$ in D, which proves the theorem.

SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

We conclude that the theorem of A. Svec [3] can be generalized from two infinitesimal isometric surfaces to the case of two general isometric surfaces in Riemannian 3-spaces. Moreover if $v^{3}=\bar{v}^{3}=E^{3}$ the condition (iii) is automatically satisfied since $R_{i j k}^{l}=\bar{R}_{i j k}^{l}=0$.

1 W. Blaschke, K.Leichtweiss: Elementare Differential geometrie. Springer - Verlag, 1973.

2 H. Huck, R. Roitzsch, U. Simon, W. Vortisch, R. Walden, B. Wegner, W. Wendland : Beweismethoden der Differential geometric in Grossen. Springer - Verlag, 1973.

3 A. Svec : Contributions to the global differential geometry of surfaces Publishing House of the Czechoslovak Academy of Sciences, 1977.

