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e ABSTRACT

s °

In this paper a method is developed for the design of Luenberger-type
observers for linear time-—invariant control systems whose state equation is.
of the form Ex = Ax + Bu + Mg where E is a singular matrix and ' g

is an unknown input vector. The method is based on the singular-value deco-
mposition of the matrix E, and on the reduction of the equation Ex=Ax+Bu+Mg

to a system consisting of a differential equation of form €v1=F1w1+F2w2 +G1u+K1g
and an algebraic equation of the form H1w1+H2w2+G2u+K2g = 0. If w, can be
eliminated from the differential equation by the aid of the algebraic equation

and original output equation of the system, the method yields a reduced order

observer for the generalized state space system.
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INTRODUCTION
Linear control systems of the form
Ex=Ax+ Bu . 1)
y =Cx+ Du

as well as their discrete - time analogue

e B %™ M5 Y :
(2)
Y e D 4
k= 0,1,2,.....

where E and Ek+1 are singular square matrices or rectangular matrices have

recently attracted considerable attention under the alternative names

"singular systems",'generalized state-space systems'or" descriptor systems'.

(C.f. the primary reference (Verghese el al.1981)).For brief discussion of
discrete-time systems see Luenberger's 1977,1978) .It seems that most of the
research on singular systems has dealt with systems where E and A, alternat-,

‘ively, Ek and Ak ,are square matrices and the corresponding determinants
det (sF-A),and det (sEk— Ak),where s is a scalar parameter,are not identica-

Ily zero.Such system are termed'"regular singular".The Problem of designing
reduced order observers for ordinary time-invariant linear systems containing
unknown inputs was investigated by Das and Ghoshal(1981) ,Miller and Mukundan
(1982) ,Kurek(1982)and Fairman et al.(1984) .However,no effort seems to have
been made to develop a theory of observers for generalized state space
systems with the one exception of El-Tohami's et al.(1983),which is restric-
?ed to the case whose input vector is completely known.The purpose of this E
paper is to develope a method for the design of reduced order observers

for generalized state-space system containing unknown inputs which has the

form

Ex

Ax+ Bu + Mg (3)

y = Cx (4)

where E and A are qxn, Bis q x p, M is qgx , Cismxn, x is the
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—_— state vector, u is the input vector, y is the output vector and g is the
unmeasurable input disturbance vector.
Since this method makes use of matrix generalized inverses,a breif summary
of some basic terms and notations will first be given. Let E be a mxn

matrix. Any nXm matrix X satisfying the equations

EXE = E (5)

: XEX = X (6) :
(EX) = EX ’ (7) :
xe) = xE (8)

is called {_1,2,3,4} inverse or a Moore-Penrose inverse(pseudoinverse) of

E(1’2’3’4). Any matrix X that satisfies

(5) is called a {1} - inverse of E and is usually denoted by E(l). (For

) +
the matrix E; denoted by M or

the theory of all kinds of matrix generalized inverses, see Ben-Israel and
Greville (1974). For an introduction to the applications of {1}~ inverses
. in systems science, see Lovass-Nagy et al. (1978).) Early applications :
of matrix generalized inverses to singular (not necessarily regular)systems
are discussed by Lovass-Nagy and Powers (1974, 1975). Campbell (1980)bases
this treatment of time-invariant singular systems of differential equations
entirely on the use of matrix generalized inverses.
The importance of the {1 }- inverse lies in its application to the solution
of systems of equations. Let E(l) be any {1} -inverse of E. Then the equa-

(1))g=

tion Ez = g can be solved for z if and only if (Im-EE O.(Imdenotes

. the m x m identity matrix.) If this condition is satisfied, the general
. solution of Ez = g is z = E(l) g & (In - E(l) E) h where h is an arbitra—z
ry n x 1 vector.If E has full row rank (the rank of E equals the num-
ber of rows), then the equation Ez = g can always be solved for z, for in

. 1 1
this case EE( ¥ Im for all {1 }-inverses of E. On the othér hand, if E

has full column rank(the rank of E equals the number of the columns),then

the equation Mz=g may or may not be solvable for z. But, if the condition

1 . S . . . :
(Im— EE( )) g = 0 1is satisfied, the solution of the equation Ez=g is unique,

M L.

Lnbecause in this case E In for all {1 }-inverses of E.

i g -
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Recently, matrix generalized inverses have been used to study a wide spect-
rum of problems related to singular systems, such as eigenvalue assignment
(Al-Nasr et al.1983 a),output function control (Al-Nasr et al.1983 b) and
solvability of discrete-time systems(Lewis 1983) . 1In the paper by Campbe-
11 (1983), time-varying regular singular systems are investigated by the aid
of a special kind of matrix generalized inverse, the "Drazin inverse'.

This idea also implies certain advantages from the point of view of the act=

.ual calculations, as it is well known that "

singular value decomposition "

-combined with Householder transformations is an established procedure to
obtain the Moore-Penrose generalized inverse of a constant matrix(Golub and
Kahan 1965,Businger and Goltb 1971, and Golub (1983)). In a paper by

Klema and Laub(1980), various computational aspects of the "singular value
decomposition " formula of the Moore-Penrose inverse have been discussed,

and various applicationsto linear systems have been outlined

THE METHOD

Consider the time-invariant linear systems of the form (3),(4).
‘Let the singular values and the corresponding orthonormal sets of:left and

‘right singular vectors of the matrix E be denoted by

Oys Ogsevss O

v

1 Ve Va2 Vi V5T %

u u oo u
1? 92 ’

*(Recall that ET Ev., = o? sy EETu. = o? u.,). If rank(E)= r, then
i i i i i i
o; #0 fori=1,2, ..., rand o, =0 otherwise . Let

\'

[vl,...,vn], V--1 = VT; U = [ul,...,uq] , U.1 =T :

t4
|

diag {01, 02,...,01_}
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X 0
T . T
U V'x = AVV" x + Bu + Mg 9)
0 0
. . =1 T -, .
Premultiply equation (9) by U = = U, introduce the notations
T
V'x = w and let
= = . =
: i T [
51 % Ll
U AV=5- , U= , W=
T
S U \
L ®% | | "2 | | V2]
T T
where S1 is r x n, 82 is (gq-r) x n, U1 = [ul,uz,....,u;] s

T T . ; s
U2 = EH”J} U yoseees uq] » Wy is r x 1, w, is (n-r) x 1. Equation (9)

thus splits up into the following two equations

X, .l i T

w, = I (Slw + U1 Bu + U1 Mg) (10) .
L T

Sow + U, Bu + U,Mg = 0 (11)

Finally, equation (4) becomes
y = CVw (12)

Partition S1 and SZ’ respectively, as

S = [S110 S1p] and 5, = [55; 52 :

where S11 isrx r, S1 = r x(n-r), S is (g-r) x r, 522 is (q-r) x (n-r),

2 21

and partition the product matrix Q = CV as Q = [Ql,Qz]where Q1 ismx r and

Q2 is m x (n-r), then equations (11) and (12) can be written as

S,,w, + S

211 W, + US Bu + Ug Mg = 0 (13)

22 "2 2
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Qwy * vy =7 e

Equations (13) and (14) can be compressed into the equation

= = 15
Rw, Nw, + Y (15)
where
: (s, ] S [ T ¢ Mg)]
. 22 21 2
R= , N= - Y = =
Q Q -y
L 2 d 1 L .

Equation (15) is consistent if and only if

(1 - RR(l))(--Nw1 +Y) =0 for t >0 (16)

then, w, = R(l)(—Nw + 7)) + (I—R(l)R)¢-where ¢ is an arbitrary {n-r) x 1

2 1

vector. This solution yields a unique W, if and only if R has full column

- rank, i.e. R(l) R = In—r for any {1 }- inverse of R. In what follows, it

will be assumed that R has full column rank, and thus

w, = R(l)(—Nw1 +v) a7

Substitution of equation (17) into (10) yields

w, = Aw,+ B + Mg (18)

[ o T [« B

(1-R % Yy = (1) +(1-rr‘D)y "
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which yields
u

kw, = H + ﬁg (19)

2 §

vhexe —UgB 0 ' -Ug M

K=(I—RR(1))N, H=(I—RR(1)) 5 ﬁ =(I—RR(1)) 5
0 T

.Now one has to find an observer whose state space equation is

u
z = Fz+(TB+GH) (20)

y
and z—->Tw1 as t—»omwhere B and H are given matrices, and the r x r matrices

F and T, and the r x (gq+m-r) matrix G are to be determined.
Premultiplication of (18) by T and subtraction of the resulting equation

from (20) yields

u
d - ~
—Ez(z—Twl) = F(z—Twl) +(FT—TA) Wy + GH - TMg (21) )
. . .
If F, T and G are chosen so that
u
(FT—TA)W1 + GH - ™™g = 0 (22)
y
equation (21) will reduce to
4 (z-1w)) = F(z-Tw.)
dg “F ) = PhEshey | (23) .,
. u L .
Substitution of H = le - Hg, from (19), into (22) yields
y
(GK + FT - TA)w, - (TM+ GH) g = 0 (24)
Since.é is an unknown input,one must have
TM+ GH= O (25)
Hence(24) and (25) yield
GK + FT - TA =0 (26)
-l

b
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Equations (25) and (26) are equivalent to
ET;‘I, TA- FT ] = GD (27)
where
p=[u x].
Now one has to find an r x r matrix F that has prescribed eigenvalues whose
real parts must be negative, a nonsingular r X T matrix T, and any
- r x (g*m-r)matrix G that satisfy equation (3.41).
Of course, the "nicest" result is obtained in the case where T is an ident—
ity matrix, i.e. in the case where we can find a G such that
(%, a- 7 ]- o (28)
However, this is not always possible.
One can proceed as follows
1)Let D(l) be a {1 }- inverse of D. Since G will be computed from (27),
one must have
: [, Ta- FT] (T - My = 0 (29) :
' Use this equation to specify some of the undetermined elements of F and T.
2) Use the still unspecified elements of T to satisfy the condition det(T)#0.
3) Use the still unspecified elements of F to satisfy det ( XiI -F)=0
where Ai,i=1,2,...,r are prescribed eigenvalues.

4) Compute G, where

¢ =[m, Ta- 1) 0P + nz-o0 ) (30)
 h being arbitrary. :
Example(Chua and Lin 1975,P.348)
Let
[2 2 o o [0 0o -1 o] [o [ 0]
E= O 0 2 A= -1 O 1 O B= =1 M = 0 ;
0 0 1 =1 0 0 1 0
0 0 0 0 0 0 1 =1 0 -1
L A L J L L. - 4
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The non-zero singular values of E are 0, =0y = /§-. Hence one obtains

1 1 0
V = L 1 -1 , U= IA
2 |o 0
) o 1 o0 -1
Thus
[0 -1 o -17
1 1 0 T 0 T !
g= piays =171 B ,UlB= ,UM = , U.B =
f;‘ 9 1 1 2
Y -1 0 Q
0 2
= —
0 1 0 1 0 1
M= and CV= —
2 )
-+l f;_ 0 1 0 =1
. Hence substitution in (3) yields
0 -1 0 -1 0
. 1 1 1 ;
w, = — Wt — W, + — u (10'")
1 4 -1 1 1 4 -1 1 2 g -1
and
-
1 o0 1 [ o
IE w2+ u+ g=0 (13")
0 1 0 -1
. The output equation y = Cx becomes
rO 1 0 1
g 7,21, W - (14")
1 y2 2
' 0 1 0o -1

Now, using (13') ,one can eliminate v, from equations (10') and (14') and

obtain, respectively
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0 -1 0 0 0 u T -1
- _ 1 L2 L2 .
Vi & Y1 8 8
-1 1 =i} 0O O y 1
and
0 1 0l1 0 u —1T
Y2 1
) —-—2 w1= + —2 g
. 0 1 nlo 1 v 1

Thus, using equation (20), one can construct an observer for Wy -

In this case

1 o V2 1 -1
D= and the matrix —%— 0 0 is a {1} -
-1 0 2 101
2 Y2

(1)D=diag{0,1,0}'

inverse of D,one may write I-D
An identity observer may be constructed if there exists a 2 x 2 matrix F=l%iﬂ

having prescribed eigenvalues Al and AZ and satisfying equations(28). Hence,

:in equation (29)let T = I,, F must be of the form

2’
0 f
F= 12
-1
£ f22
. 12 1
The elements f12 and f22 may be determined from det( A I-F)= X Af22+jg— f12’
1f Al # Xz, the equations
2
f12 = 4A1f22 = -4 Al
. and
£~ & A =4 A2
12 2722 2
yield f12 and f22.

Lf Xl = lz . f12 and f22 are obtained from the equations

- 2, - -
£, - 4, = - 42" 5 - 4f,, = - 8)

i.e. in the latter case, f,, = 2)X and f 4A2.

22 12

Hence, one can compute G from equation (30) where T = I_.

L £ _J
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CONCLUSION

A method has been developed for the design of observers for linear time-
invariant control systems of the form Ex = Ax +Bu + Mg , y = Cx where E is a
singular matrix and g is:an unknown input vector. Such a system may or may
not have a solution. If a solution exists, it can be obtained by looking for
a vector that satisfies an ordinary(non-singular)matrix differential equation
and an algebraic matrix equation simultaneously. The observer design method
“is based on the singular-value decomposition of the matrix E, which can be
:obtained by making use of the algorithm developed by Golub and Kahan(1965),:
based on Householder transformations. If the given singular differential
system has any solution at all, and if a simple rank condition is satisfied,
the method yields a reduced order Luenberger-type observer for the solution

of the singular control problem containing unknown inputs.
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