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ABSTRACT 

In this paper a method is developed for the design of Luenberger-type • 
• 

observers for linear time-invariant control systems whose state equation is 

of the form Ek = Ax + Bu + Mg where E is a singular matrix and 	g 

is an unknown input vector. The method is based on the singular-value deco-

mposition of the matrix E, and on the reduction of the equation EX=Ax+Bu+Mg 

to a system consisting of a differential equation of form W1=F1w1+F2w2  +G1u+K1g 

and an algebraic equation of the form H1w1+H2w2+G2u+K2g = 0. If w2  can be 

eliminated from the differential equation by the aid of the algebraic equation 

and original output equation of the system, the method yields a reduced order 

observer for the generalized state space system. 
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INTRODUCTION 

Linear control systems of the form 

EX=Ax+ Bu 	 (1) 

y =Cx+ Du 

as well as their discrete - time analogue 

• 	Ek+ixkl4= Akxk+Bk  uk  

(2) 

Yk= Ckxk Dk uk 

k= 0,1,2, 	 

where E and E
k+l are singular square matrices or rectangular matrices have 

recently attracted considerable attention under the alternative names 

"singular systems","generalized state-space systems"or" descriptor systems". 

(C.f. the primary reference (Verghese el al.1981)).For brief discussion of 

discrete-time systems see Luenberger's 1977,1978),It seems that most of the 

research on singular systems has dealt with systems where E and A, alternat- 

Ek  and Ak  ,are square matrices and the corresponding determinants 

det (sF-A),and det (sEk- Ak),where s is a scalar parameter,are not identica- 

lly zero.Such system are termed"regular singular".The Problem of designing 

reduced order observers for ordinary time-invariant linear systems containing 

unknown inputs was investigated by Das and Ghoshal(1981),Miller and Mukundan 

(1982),Kurek(1982)and Fairman et al.(1984).However,no effort seems to have 

been made to develop a theory of observers for generalized state space 

systems with the one exception of El-Tohami's et al.(1983),which is restric-

ted to the case whose input vector is completely known.The purpose of this • 

paper is to develope a method for the design of reduced order observers 

for generalized state-space system containing unknown inputs which has the 
form 

EX = Ax+ Bu + Mg 
	

(3) 

y = Cx 	 (4) 

where E and A are q x n, B is q x p, M is qx , C is m x n, x is the 

• • • 
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state vector, u is the input vector, y is the output vector and g is the 

unmeasurable input disturbance vector. 

Since this method makes use of matrix generalized inverses,a breif summary 

of some basic terms and notations will first be given. Let E be a mxn 

matrix. 	Any nxm matrix X 	satisfying the equations 

EXE 	= E (5)  

XEX 	= X (6)  • 

(EX)*  = EX (7)  

(XE)r = XE (8)  

is called I 1,2,3,41 inverse or a Moore-Penrose inverse(pseudoinverse) of 

the matrix E; denoted by M
+ 
or 

E(1,2,3,4).  Any matrix X that satisfies 

(5) is called a {1} - inverse of E and is usually denoted by E
(1). (For 

the theory of all kinds of matrix generalized inverses, see Ben-Israel and 

Greville (1974). For an introduction to the applications of {1}- inverses  

in i systems science, see Lovass-Nagy et al. (1978).) 	Early applications • 

of matrix generalized inverses to singular (not necessarily regular) systems 

are discussed by Lovass-Nagy and Powers (1974, 1975). Campbell (1980)bases 

this treatment of time-invariant singular systems of differential equations 

entirely on the use of matrix generalized inverses. 

The importance of the {1 }- inverse lies in its application to the solution 

of systems of equations. Let E(1) be any {1} -inverse of E. Then the equa-

tion Ez = g can be solved for z if and only if (I
m
-EE

(1)
)g=0.(I

m
denotes 

. the m x m identity matrix.) If this condition is satisfied, the general 

• solution of Ez = g is z = E(1)  g + (I
n 
- E

(1) 
E) h where h is an arbitra-' 

ry n x 1 vector.If E has full row rank(the rank of E equals the num-

ber of rows), then the equation Ez = g can always be solved for z, for in 

this case EE(1) = I
m for all {1 }-inverses of E. On the ottWr hand, if E 

has full column rank(the rank of E equals the number of the columns),then 

the equation Mz=g may or may not be solvable for z. But, if the condition 

(Im- EE(1)) g = 0 is satisfied, the solution of the equation Ez=g is unique, 

L.because in this case E(1) E= I
n 

for all {1 }-inverses of E. 
• • • 

6 
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Recently, matrix generalized inverses have been used to study a wide spect-

rum of problems related to singular systems, such as eigenvalue assignment 

(Al-Nasr et al.1983 a),output function control (Al-Nasr et al.1983 b) and 

solvability of discrete-time systems(Lewis 1983) . 	In the paper by Campbe- 

ll (1983), time-varying regular singular systems are investigated by the aid 

of a special kind of matrix generalized inverse, the "Drazin inverse". 

This idea also implies certain advantages from the point of view of the acttt 

.ual calculations, as it is well known that " singular value decomposition ". 

combined with Householder transformations is an established procedure to 

obtain the Moore-Penrose generalized inverse of a constant matrix(Golub and 

Kahan 1965,Businger and Golub 1971, and Golub (1983)). In a paper by 

Klema and Laub(1980), various computational aspects of the "singular value 

decomposition " formula of the Moore-Penrose inverse have been discussed, 

and various applications to linear systems have been outlined, 

THE METHOD 

Consider the time-invariant linear systems of the form (3),(4). 

.Let the singular values and the corresponding orthonormal sets oftleft and 

`right singular vectors of the matrix E be denoted by 

al' 
	

° • 
	a n 

v , V. V. = 6.. 
vl, v2 	n 1 	11 

T 
ul, u2,..., uq  , ui j  

u. = 6.. 
ij 

• 

• 2 
:(RecallthatET Ev.=2v.,EETu.=o. u.). If rank(E)= r, then 

a. 1 0 for i = 1,2, . 	r and G. = 	otherwise . Let 
1 

V =
1 	

v n1 V
-1 = V

T; U = 	1,,u ] 	U-1 = U
T ; 

"'  

= diag {al, a2 ,..., r  } 

L 
• _J 



  

SECOND A.M.E. CONFERENCE 

6 - 8 May 1986 , Cairo 

 

 

CA-7 171 

 

    

r • • • 

 

1 

Then, equation (3) can be written as 

U

[ 	0 

V x = T. AVV
T x + Bu Mg 

0 	0 

Premultiply 

V
T
x = 

UTAV=S= 

Where 

U2  = 

w 

S 

and let 

Si  

S2 

1 	
is 

equation 

U
T
= 

r x n, 

ur+2,..., 

(9) by 

UT 
1 

UT 
2 

S2 is 

u9] T  

U 1 = UT, 

w = 

(q-r) x 

, wl 	is 

w1 

w2 

n, U1  
1 

r x 1, 

, 	ntroduce the notations 

T 
[u l u' 2"u r] 

w2  is (n-r) x 1. 	Equation (9) 

thus splits up into the following two equations 

• w1 = 	E 
-1 

 (S1w + U1 Bu + U
T Mg) 
1 

(10)  

S2w + U2 
Bu + U2Mg = 0 (11)  

Finally, equation (4) becomes 

y = CVw (12)  

Partition 	S1 and S2, respectively, as 

S
1 = [811' 	S12] and S2 = E 21 	,  S22] 

• 

where 	S11  is r x 	r, 	S12  = r x(n-r), 	S21  is 	(q-r) x r, 	S22  is (q-r) x (n-r), 

and partition the product matrix Q = CV as Q = [01,02]where Q1  is m x r and 

0
2  is m x (n-r), then equations (11) and (12) can be written as 

S21w1 + S22 w2 + U2 Bu + U2 Mg = 0 
	

(13) 

• -J 

6 

( 9 ) 



-U2 M 

+(I-RR
(1)) g 

0 
.16 
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1 

Qlwl Q2w2 = Y  

Equations (13) and (14) can be compressed into the equation 

Rw2 
= - Nw1 

 + y 

_ ••• 

S S U(Bu+ Mg) 
22 21 2 

N= , Y = - 
-y  

Q2 
- 	- 

(15) 	is consistent if and only if 

(I - RR
(1))(-Nw1 

+ y) = 0 for t > 0 

then, w2 = R
(1)(-Nw1 + 

y ) + (I-R
(1)R)It where 11) is an arbitrary {n-r) x 1 

vector. This solution yields a unique w2  if and only if R has full column 

• rank, i.e. 	R(1) R = I 	for any {1 }- inverse of R. In what follows, it 
n-r 

 

• will be assumed that 	R 	has full column rank, and thus 

w2 = R
(1)(-Nw1 + y) (17)  

Stilbstitution of equation (17) 	into 	(10) yields 

w1 
 = Aw1  + B 

uy 	
+ Mg (18)  

and the consistency condition (16) can be written as 

(14)  

(15)  

(16)  

where 

R= 

Equation 

0 	I 

(I-RR41)  )Nw1 =(I-RR
(1)
) 

-U2 B 	
0 
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which yields 

iu 1 _ 

Kw
1 
 = H 	+ Hg  

Y 

where 	 [  
-U

T
B 	0 	-UT  M 2  

K=(I-RR(1))N, H=(I-RR
(1)

) 	H =(I-RR(1))  
0 	I 	0 

.Now one has to find an observer whose state space equation is 

= Fz+(TB+GH) {Yi 

and z—.).Tw
1 as t-30o0where B and H are given matrices, and the r x r matrices 

F and T, and the r x 

Premultiplication of 

from (20) yields 

(q+m-r) matrix 	G 	are to be determined. 

(18) by T and subtraction of the resulting equation 

+(FT-TA) wl  + GH 	- TMg 	(21) 

{ 

(z Tw1) = F(z-Twi) dt 

If F, T and G are chosen 

(FT-TA)w1  + GH 

so that 

u] 

	

TMg = 0 (22)  

equation (21) will reduce 

d 

to 

dt (z-Twl)  = F(z-Twl)  (23)  

Substitution of 	H [d= Kw
1 
 - Hg, from 

(GK + FT - TA)wi  - (TM+ GH) g = 0 

Since g is an unknown innut,one must have 

(19), 	into 	(22) yields 

(24)  

4.4 

TM+ GH= 0 (25)  

Hence(24) and (25) yield 

GK + FT - TA = 0 

L 	 • • 	• (26) -J 

6 

(19)  

(20)  
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Equations (25) and (26) are equivalent to 

[TM, TA- FTJ = GD 
	 (27) 

where 

D = [7- H, K] . 

Now one has to find an r x r matrix F that has prescribed eigenvalues whose 

real parts must be negative, a nonsingular r x r matrix T, and any 

r x (q+m-r)matrix G that satisfy equation (3.41). 	 • 

Of course, the "nicest" result is obtained in the case where T is an ident-.  

ity matrix, i.e. in the case where we can find a G such that 

[M, A- II= GD 	 (28) 

However, this is not always possible. 

One can proceed as follows 

1)Let D(1) be a {1 }- inverse of D. Since G will be computed from (27), 

one must have 

[TM, TA- FT] (I - D(1)D) = 0 	 (29) 

Use this equation to specify some of the undetermined elements of F and T. 

2) Use the still unspecified elements of T to satisfy the condition det(T)00. 

3) Use the still unspecified elements of F 	 F)= 0 

where,  X.,i=1,2,...,r are prescribed eigenvalues. 

4) Compute G, where 

G =[TM  , TA- FT] D(1) + h(I-DD(1)) 
	

(30) 

h being arbitrary. 

Example(Chua and Lin 1975,P.348) 

Let 
••• 

2 2 0 0 0 0 -1 0 0 

E= 0 0 2 2 A= , -1 0 1 0 ,B= -1 M 0 

0 0 0 0 1 -1 0 0 1 0 

0 0 0 0 0 0 1 -1 0 -1 
IP& 

L • • • 



0 1 0 1 

0 1 0 -1 

1 

0 -1 
• 1 	, 
wl = 	w1  [1 1 

and 

1 0 
a 

1 
4 — 

11+  

[ 

	

0 	-1 

w2 +  

	

-1 	1 

1 

g = 0 

1 
0 

-1] 
(10') 

(13') 

[0 I 1 

w2+  
1 	0 	-1 

6 
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Thus 

The non-zero 

C = 

V = 1 

S= UTAV= 

singular 

0 

1 

1 

0 

0 t- 

1 

0001 

	

0 	1 	0 

values of 

	

0 	1 	0 

	

0 	-1 	0 

	

1 	0 	1 

	

1 	0 	-1 

	

0 	-1 	0 

	

-1 	1 	-1 

	

0 	0 	2 

	

0 	0 	0 

E are  

, U 

-1 

1 

0 

2 

a1 	 02 
= IF. 

= 14 

0 

,UTB=
[

_I.  

Hence 

,UTM = 

one 

0  

0 

obtains 

, UT2B =  
0 

01 
M= U2  

and CV= 

[1 

Hence substitution in (3) yields 

The output equation y = Cx becomes 

0 	1 0 	1 
1 

tO 

1 
Y w + w2 (14') 

1 0 	-1 

Now, using (13') 	,one can eliminate w2  from equations (10') and (14') and 

obtain, respectively 

• • • 



0 -1 

• • • 

0 	0 
1 12-  

0 	01[ 4 
-1 1 

wl 8 
-1 

"Ina. 

0 1 0 1 	0 

1 
2 

wl  2 
0 1 0 	1 

r 

w1- 

and 

+ ri g  
y 	8 	1 
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Thus, using equation (20), one can construct an observer for w1
. 

In this case 

1 0 1 -1 

42 
r_ and the matrix 	0 	0 

-1 0 
2 
1 

	

1 	1 

fT 
inverse of D,one may write I-D

(1)D=diag{0,1,0}- 

is a {1} - 

 

An identity observer may be constructed if there exists a 2 x 2 matrix F=1 13
!.. 

having prescribed eigenvalues Al and X2 
and satisfying equations(28). Hence, 

:in equation (29)let T = 2' 
F must be of the form 

• 

The elements f12  and f22  may be determined from det( AI-F)= A2  -A f.22+ 4 f12.  
1  

If Al 	X2' the equations 

f12 - 4X1f22 = - 4 Al  
2 

and 

2 
- 4 A

2
f
22 

= - 4 A 
 

yield f12  and f22. 

If Al  = X2  , f12  and f22  are obtained from the equations 

f12 - 4 Xf22 = - 4 X
2 

; - 4f22 = - 8X 

i.e. in the latter case, f22 
= 2X and f12 = 4X

2
. 

Hence, one can compute G from equation (30) where T = 12. 
. • • 

F=0 
	f12i 

[ 
„7 1... 
4 	f22 
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CONCLUSION 

A method has been developed for the design of observers for linear time-

invariant control systems of the form EX = Ax +Bu + Mg , y = Cx where E is a 

singular matrix and g is an unknown input vector. Such a system may or may 

not have a solution. If a solution exists, it can be obtained by looking for 

a vector that satisfies an ordinary(non-singular)matrix differential equation 

and an algebraic matrix equation simultaneously. The observer design method 

is based on the singular-value decomposition of the matrix E, which can be 

-obtained by making use of the algorithm developed by Golub and Kahan(1965), . 

based on Householder transformations. If the given singular differential 

system has any solution at all, and if a simple rank condition is satisfied, 

the method yields a reduced order Luenberger-type observer for the solution 

of the singular control problem containing unknown inputs. 
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