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ABSTRACT 

• The Stokesian motion of viscous liquid lubricants in externally•  
pressurized thrust collar bearings due to an off-centre pressure 

source has been studied by potential theory. The complex poten-

tial function that satisfies the boundary conditions of the 
bearing has been constructed by reflection across the ring circles. 

It has been determined in terms of Jacobi Theta Functions. The 

pressure distribution has been obtained for the following cases:- 
i- Externally pressurized thrust circular concentric collar 

bearings. 

ii- Externally pressurized thrust elliptic collar bearings. 

	I 
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1. INTRODUCTION. 

The study of the Stokesian motion of viscous fluids finds 

an important application in the design and analysis of exter-

nally pressurized hydrostatic bearings [1 - O. A class of these 

bearings that is characterized by having large recesses, gives 

good load carrying capacity. On the other hand, it has been re.= 

ported (Cf.[6]) that this class possesses poor stability when 

• 

such bearings are subjected to cyclic vibrations. To remedy this 

deficiency it was thought better to use thrust collar bearing6 

having fluid supply holes that communicate directly with the lub-

ricant film , thereby avoiding recesses. 

In the present paper , the Stokesian motion of viscous liquid 

lubricants in thrust collar bearings is studied theoretically. 

These bearings are without recesses and they are externally 

pressurized by an off-centre supply source. Two geometriestnamely, 
the circular and elliptic bearings have been investigated. 

2. MATHEMATICAL MODEL. 

Figure(l) shows a general 

configuration of a thrust 

collar bearing. The boundary 
I)D1 denotes the thrust 

collar while 2D2  is the 

bearing outer edge. The pressure 
• source is situated at the point 
• A . For simplicity, A is 

taken on theX - axis. 
Fig.(1) Bearing Configuration. 

It is to be noted that the boundaries i)D, and ?D2  are 
composed of piecewise smooth arcs. This condition is always 

realized in practical bearings configurations. To study the 

Stokesian motion of the lubricant in the domain D that is 
bounded by 'aD1  and 2D2  boundaries , one introduces the 
vectorial quantity Q that indicates the volume flow rate 

• • • 
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6 per unit length. Following Ref.L1J , we write 

h3 	?Pe  

12/4  /ax 
h3  

12/' 

Qx 

Q = 

(2.18) 

( 2 .1b) 

in which p is the liquid pressure 	h is the film thickness 

and /A- is the coefficient of viscosity. 

From the continuity equation,i.e, 

Qx, f  2 Q  = (2.2) 
a X, 	-a I 

we introduce the Likewise Stream Function .-Q 9c-y -1-) which 
is defined by 

Qx  

Q= 

(2.3a) 

(2.3b) 	. 

It is clear that Eqs. (2.1 & 2.3) reveal that p and —Cl-
are harmonic conjugate functions. 
This last statement leads us to put forward the function 

w = p + i-C2- where w is denoted as the complex potential. 

It is an analytic function of the variable 	= x + i y. 

Thus,the problem under consideration is reduced to the deter-

mination of the analytic function w CO that satisfies the 

following conditions : 

644 = 0 	for 	E (aD, LI 210 	(2.4a) 

fR (yr) =
5 

 >O 	for I 	LI == Y; 	(2.4b) 

in which it denotes the distance OA
, 
rs  is the radius of 

the source and ps  is the pressure at the source. 

L- 
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3. COMPLEX POTENTIAL. 

To determine the complex potential 
w (i') that satisfies Eqs.(2.4a&b), 

we first consider the annulus B 
as a canonical domain. The inner 
circle bounding B has a radius 

r1 while the radius of the outer 

circle bounding B is r2  as 

shown in Fig. (2) . 
Fig.(2) Canonical Bearing: 

Eow,we define the Hyper-potential Function VV ( 	as : 

W () = 	exp (- w) 	(3.1) 

that satisfies 

lwl = 1 	for I j I = r1  and 111 = r2 	(3.2) 

and 
In 'WI = - Ps  for (3 - t1 = rs  (3.3) 

We attempt to continue the Hyper-potential WO) beyond the two 

circles. To achieve this end , we associate to each point 

E B , a corresponding point ji  inside the inner circle 
2 such that I/ ri  . Thus, WO) satisfies the functional 

equation 

ww • w (c21*) = i 	 (3.4) 
Similarly, reflection across the outer circle leads to the 

second functional equation 

WU). W(r2213) = 1 	(3.5) 

Since the point A is a simple zero of WO) 	it follows 

from successive application of Eqs.(3.4 & 5) that W() has 

simple zeros at the points : 

2 - 
rl r22 

D 
 

-2 2 
rl  r2  , • • • • r r 

2n - 
2 	r r 
2n)t 	-2n 

2 	
2n0 , A, 

1 	c 	9 

L • 0 • 

° 
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and simple poles at the points : 

2 # ; r2 it 	r4 r-2 it -2 
I A' ' 2 	' 1 2 	r1 1 	r 

r-2n4-2 r2n 1 	2 

„ At 

• Thus,a,fUnction with the zeros and poles aforementioned may 

• take the form 

co Tr i I  _ r2P1 -211 j, i 	2k1 -2.kt 
 £ 

 ) 
( l - Y; r2  

FW = (I 4) 
n=1 l 

	

to —1,1+2 1 	63- 4) 63- 
TT / 
	2V"Z -21.1 • . 

k  1 — ; C  -7-  C 1(9 ( I  - i r2 1 	
ij 

n=i 

A direct calculation reveals that the function FM satisfies 
the following equations : 

F( 3) • F 012/60 
	

1 	 (3.7) 

F()) • F N = (4/0 
	

( 3.8) 
Taking tentatively W(3)=. o(j FO) 	where c( and (3 are 
constants to be determined from substitution in Eqs.(3.4 & 
we get 

6 

 

Am. 

2
f. 

1. ( VIZ II 2. 1113  

 

and 

r2  

   

Defining 

for both 
given by 

the "nome" A = r1 / r2 and taking logarithms 
sides of Eq.(3.1), the complex potential w is 

L_ 
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and 

wo)= 	7, .4 -1-  fi 	+ L. (1 —  7,11), 

(1—A2" 	—t Li, 	
" c/h)*  

p1.1 

h=-I 

(Cf'[7] 11).354) Now, we consider the Jacobian Theta Functions 

CzJ A) :  

G 	(e:̀Z- (-T‘ 7) 
00 	lti 21 Z 	2t1 

 

r-/ 	L QO2rt \ 

-A co5.2,t+ A ) 
11=1 

G Tr ( 	e"') (I 	VI) 
00 

2I 
G Ti 	A

"
-  ( -2 	cos z l+ ri 

 

 

in which 

(3.13) • 

	

oo 	2n 

	

G = IT 	■ 
 

m=1 

2b Z 

	

Letting 41/ = e 	, substituting into Eq.(3.11) and 
noting that 

(3.14) 

0 
	 ►t =1 

and 

LI:  L 03A)] 
7h (16)12'- 

00 s  0_ 	r:/ / j) t f 	(I— 	//11.2) 

04(-217, 	( 131r;  

(3.15) 

(3.16) 



• 

in which 

A = 

r = 

(Ir 	"4, 2 '7 > 
2 f   

X2-  4.9 	fl 

B = 71- 	arg.(k) 

C = Ft 1L r 

I
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we obtain 

(5) 11410 	 07 14 13k t) 

044+1- el (*Lilt 9A) 
(3.17) 

4. PRESSURE DISTRIBUTION. 

Case I. Circular Bearing : 	 • 

For the determination of the pressure distribution inside 
a circular thrust collar bearing subject to the conditions 

Eqs.(2.4 a & b) , the real part of Eq.(3.17) should be evaluated. 
This can be easily achieved by noting the relations between 
Theta and Circular Functions via Schottky Functions (Cf. 0) 
Thus, Eq.(3.17) is simplified to take the form : 

tet, okl)  
Sin (Trig k 	0) 

• in which 	Y /tri- 

Therefore, the pressure p which is UL (w) 	can be expressed 
as 

p (= K In 
2 sin2  A + Sinh B 

sin C ▪ Sinh7 B 
.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 



K Ps 

In (sin2  As) - in (sin
2  C 

in which 

A = 	(i-r3) 
S

C = riE 	(1-3)/1 
S 
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We note that the scale constant K is introduced in Eq.(4.2) 

simply to satisfy the condition Eq.(2.4b). 

Substituting 	p = ps 
for r = - rs andn(i) 0 	the 

value of the constant K is given by 

Case II. Elliptic Bearing : 

We consider the elliptic thrust 

• collar bearing shown in Fig.(3). 
The collar boundary ,4  Dlis 
given by : 

f207-41) 

-4-  4 a2 b2 = 0 	(4.10) 

in which /a and 2b are the 
	Fig.(3) Elliptic Bearing. 

major and minor-axes of the 
collar respectively. 

f is the focal distance and it is equal to Vat-122  - 
The asterisk denotes the conjugate of a complex quantity. 

The bearing outer edge )D2 	takes the form : 

f 2  (f-i-tz) —2  (c2.-/-  et, j-3 	Li-C2a = 0 	(4.11) 
in which 2c and .2d are the major and minor_ axes of 

the outer edge. The pressure source is situated at A as 

• • • 
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shown in Fig.(3) at a distance • from 0 in which 

satisfies the inequalities 	a < .4 <c • 

To determine the pressure distribution in the domain D of 
the bearing via the theory of Sec.3 , we must map the domain 

D in the 	plane onto the annulus B in the 4— plane. 
This mapping can be accomplished in two steps. Firstly, we map 

• D conformally onto an infinite strip in the intermediate 

• t - plane by the relation 
1 / 

t = Cosh ( c2=4,1-) 
Setting t = u + iv , then from Eq. (4.12) we obtain 

F175,7  Cosh u cos v 

Yc 2- - i 	Sinh u 	sine 

( 4.12) 

(4.13a) 

(4.13b) 

Further, the transformation 

= 	c+ d 
	exp (t) 	 (4.14) 

maps the strip in the t - plane onto the annulus B in the 

4'- plane such that its outer radius is unity and its inner 
a +6 radius 2k is equal!to ..7 - . Eow, the pressure source lies 

on the horizontal axis 4-  in the 4°  - plane at a distance from 
0 given by 

(t -f-  1/ 12-01-e)  
(4.15) • 

Substituting for 4.  from Eq.(4.14) into Eq.(4.1) - note 
that k is now replaced by lc in Eq.(4.1) -, we get 

sio 	(t-te) In  	(4.16) 
Si JL. 

x? 

in which the constants e and h 	are 

e  = 11-tvL 	ti.tb 
c 	 (4.17) 

h =c-tt  2 	 (4.18) 
-J • • • 
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Thus, the pressure p which is #?(w) 	can be written 

sing  D + Sinh2  E  

( sin? F + Sinh.7  E 

in which 

p = K In (4.19) 

qr D = 	(u+ e) 
xQ 

E = 	2 	•1)-  
2 c 

F = 	( 

The scale constant K is evaluated by substituting ul  = 

t 	 
Cosh 1 	= 0 	for 	p = ps  in Eq.(4.19) . 

Vet-dt 
This gives 

(4.20) 

(4.21) 

(4.22) 

K = (4 .23) 

5. CONCLUSI01:S. 

Vethods of potential theory have been applied for the analysis 

of externally pressurized thrust collar bearings, The pressure 

distribution has been determined for circular and elliptic 

bearings for a pressure source that communicates directly with 

the lubricant film without feeding into recesses. Also, the 

results obtained can be directly utilized in the design of 

bearings with lubricants that are compressible fluids. Naturally, 

this can be achieved by simply supplementing the polytropic 

exponent 	of the compressible lubricant and then substituting 
o for the pressure by P = pVit  

• • • 
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NOMENCLATURE  

a , b = semi—major and minor axes of the elliptic collar 

c , d = semi—major and minor axes of the outer elliptic 

bearing edge 

focal distance 

film thickness 
distance of the source from the bearing centre 

pressure 

7r 	= volume flow rate per unit length vector 

rr2 	
radii of the collar and the outer circular bearing 

edge 

rs 	radius of the source 

w 	complex potential function 

hyper—potential function 

polytropic exponent 

mapping modulus 

absolute coefficient of viscosity 

likewise stream function 

• • • 
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