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ABSTRACT

- The Stokesian motion of viscous liquid lubricants in externally,

pressurized thrust collar bearings due to an off-centre pressure
source has been studied by potential theory. The complex poten-
tial function that satisfies the boundary conditions of  the
bearing has been constructed by reflection across the ring circles.
It has been determined in terms of Jacobi Theta Functions. The
pressure distribution has been obtained for the following cases:-
i- Externally pressurized thrust circular concentric collar

bearings.
ii- Externally pressurized thrust elliptic collar bearings.
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1. INTRODUCTION .

The study of the Stokesian motion of viscous fluids finds
an important application in the design and analysis of exter-
nally pressurized hydrostatic bearings [i - i}. A class of these
bearings that is characterized by having large recesses, gives
good load carrying capacity. On the other hand, it has been re=

. ported (Cf.[6]) that this class possesses poor stability when

- such bearings are subjected to cyclic vibrations. To remedy this

. deficiency , it was thought better to use thrust collar bearings
having fluid supply holes that communicate directly with the lub-

ricant film , thereby avoiding recesses.

In the present paper , the Stokesian motion of viscous liquid
lubricants in thrust collar bearings is studied theoretically.
These bearings are without recesses and they are externally
pressurized by an off-centre supply source. Two geometries,namely,
the circular and elliptic bearings have been investigated.

2. MATHEMATICAL MODEL.,

Figure(l) shows a general
configuration of a thrust
collar bearing. The boundary
’3Dl denotes the thrust

collar while 2D2 is the
bearing outer edge. The pressure
source is situated at the point

A . For simplicity, A is
taken on the ¢ - axis.
Fig.(1l) Bearing Configuration.
It is to be noted that the boundaries 'avl and ?DQ are.
composed of piecewise smooth arcs. This condition is always
realized in practical bearings configurations. To study the
Stokesian motion of the lubricant in the domain D that is
bounded by 'aDl and-__;a D2 boundaries , one introduces the
vectorial quantity Q that indicates the volume flow rate

(I . w s . -
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i per unit length. Following Ref.[l] , we write
Q = - __1_1?_ _‘?_f——- (2018)
x 124 X
3
Q = - --b_ 2 (2.1b)
a2 120 97

in which p is the liquid pressure , h is the film thickness
and 1+ is the coefficient of viscosity.

From the continuity equation,i.e,

2 Gy 2@ _ o 2.2
==t am (2.2)

we introduce the Likewise Stream Function S (‘x,yr) which
is defined by

3
h DS
Q = e - (2.3&
* 1M 27 )
3

h 2.SL
. — —_— 2.b .
: % L (2.3b) :

It is clear that Egs. (2.1 & 2.3) reveal that p and St
are harmonic conjugate functions.

This last statement leads us to put forward the function
wW=1p+ i£L where w is denoted as the complex potential.
It is an analytic function of the variable % = x + i y.

Thus,the problem under consideration is reduced to the deter-
mination of the analytic function w(3) that satisfies the
following conditions :

Kw)= 0 for 3«6(9]), U’.Dz) (2.42)
R (w)= E)O for l}-l' =1 (2.45)

in which ,e denotes the distance OA , r is the radius of
the source and Pg is the pressure at the source.
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3, COMPLEX POTENTTAL.

To determine the complex potential
w (3) that satisfies Eqs. (2.4a&b) ,
we first consider the annulus B
as a canonical domain. The inner
circle bounding B has a radius
Ty while the radius of the outer

circle bounding B 1is T, as ) .
Fig,(2) Canonical Bearing:

shown in Fige. (2) °

Now,we define the Hyper-potential Function W(}) as :

W(3) = exp (- w) (301)

that satisfies

|w]

In |Wl

]
[

for |}l = ry and|}|=;r2 (3.2)
and i

-p,  for [3-U = rg (3.3)

We attempt to continue the Hyper-potential W(})beyond the two

circles. To achieve this end , we associate to each point '
%€ B, a corresponding point j; inside the inner circle

such that % '3' = ri + Thus, W(}) satisfies the functional

equation
2 )
(g e w(nf3) =1 (3-4)
Similarly, reflection across the outer circle leads to the
second functional equation

) 2
w(z)e w(5[3) =1 (3.5)
Since the point A 1is a simple zero of W(}) s it follows

from successive application of Eqs.(3.4 & 5) that W(}) has
simple zeros at the points : :

2 o f -2 2 1. on - -
1 ] I‘l I‘2 l F) I'l I‘2 y ] ® o 00 ; r' n I‘22n ; I‘-lzn I‘gnﬁ L
: 9
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and simple poles at the points :
ri,ﬂ . rz‘l 3 r _2 -4; riz rg /e PR P ;rin r52n+2 X
pren2 an f

Thus,a function with the zeros and poles aforementioned may
take the form

o0
m -n an -2k z
F(ﬁ) (,__]_) n!n ('-Y.,;”‘Y‘ 7}‘ ("‘ ’?. X T) (3-6)
l ﬁw_ ( | - 2 ..2.11}) Y;z.n r;-znfl—_l_
n=1 13

A direct calculation reveals that the function F(}) satisfies
the following equations :

°()- 20 < 1 (5.7)
FG) - £(513) =(5/t) (5:6)

Ié
Taking tentatively W(3)= A 3 F(%) where &« and 3 are

constants to be determined from substitution in Eqs,(3.4 & é)

L L
2 4
i [(w"q’}“ 7 ] o

we get

2
and
s - _An(n/0)
- ‘ (3.10)
L (%] 1)
Defining the "nome" A = / r, and taking logarithms

for both sides of Eq.(3 1) the complex potential w is
given by
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—w(})- ﬁno( -r/o’lm}—r[n(i—?/[)-r
7_1»(: 3L - le(n A5/ L3)
y_ Lo (1- X7 4[3) - le(, A A3fR)  (5a)

Now, we consider the Jacobian Theta Functions (Cf [7] sDe ’554)

) (Z,0) =2 €, (Z, 2):
ZJ'}\) = = (3 XF (
2n alZ an -2 L

TT(-%e7) (0 -7"e")

n=|\

= .ZG?\ sint TF(' )\szZw‘?\%) (3.12)

-

Z C—" Z)

Z))) G.T-'— . /\:ml .uZ) (,- 2n- '-ZLZ
4n-2
..GTI—(’ 27\ wszz +7\'1 (3.13) -
W= ’
in which ’
¢ = ZT (1—7\2" (3.14)
ILZ

Letting }/[ = e , substituting into Eq.(3.11) “and
noting that

z‘: b (1-N'FL) + f I (1-%"43) =

6, (L L3t ,n) |
Im [ TG AR U g)‘z ] (3.15)

and

,tw(l A r/lj) +Zzw(l—'>\ U/)

ﬂw [ O, ('y- l.(;(f}/r\r, 17\)] (3.16)

MR
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G
— we obtain

{ '?\#f% O, (% b i, )

GG R )| O

w() = An

4. PRESSURE DISTRIBUTION.

Case I. Circular Bearing :

For the determination of the pressure distribution inside

a circular thrust collar bearing subject to the conditions
Eqs.(2.4 a & b) , the real part of Eq.(3.17) should be evaluated.
This can be easily achieved by noting the relations between
Theta and Circular Functions via Schottky Functions (Cf. [8]) .
Thus, Eq.(3.17) is simplified to take the form :

- Si,;(Tr/z( An t?l'iz)
tw‘(%) 4 ﬂw Sin (tr/zf ba %/E) (4.1) .

in which §= Ao A

Therefore, the pressure p which is R (w) can be expressed

as
v 2 s
p="K 1In [-23B _A__*_ Sinh B_ - 4,2
& ( sin2 C + Sinh'2 B ' ( )
in which
P 1 A
57 g g2 o (4.3)
2, 4%
r= (o) =3l (4.4)
' - I )
: B = o arg. (3) (4.5)
. 18 s
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We note that the scale constant K is introduced in Eq.(4.2)
simply to satisfy the condition Eq.(2.4b) .

Substituting P = Pg for r =,£ = ¥ amimqar 0 , the
value of the constant K is given by

| SR e 7
in which
a = L Lo £ (E-%)[5? (4.8)
Cq = 2 L (£-13)/1 (4.9)

Case II. Elliptic Bearing :

We consider the elliptic thrust

collar bearing shown in Fig.(3).

The collar boundary*le is
given by :

k1 . »
2 (5+77)  —2(*++) 33
+ 42212 =0 (4.10)
in which 2a and 2b are the

major and minor-axes of the
collar respectively.

Fig.(3) Elliptic Bearing.

f 1is the focal distance and it is equal to Ya*-b? .
The asterisk denotes the conjugate of a complex quantity.

The bearing outer edge -aiD2 takes the form :
. ‘ 2
£ 2(}"4—}*2) —2(c+dY) 33 +4cd =0 (4.12)

in which 2c¢ and 2d are the major and minor-axes of

the outer edge. The pressure source is situated at A as
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| shown in Fig.(3) at a distance Z from O in which /g

satisfies the inequalities a £ Z <{c .

To determine the pressure distribution in the domain D of
the bearing via the theory of Sec.3 , we must map the domain
D in the % - plane onto the annulus B in the 4 - plane.
This mapping can be accomplished in two steps. Firstly, we map
D conformally onto an infinite strip in the intermediate

t - plane by the relation

t = ccsh—l(% rEL‘_‘;’L) (4.12)

Setting t =u + i v , then from Eq.(4.12) we obtain

A = Ver-d? Coshu cos Vv (4.133)
Y= Ye*-d* Sinhu sinv (4.13b)

Further, the transformation

& = /—9—:-&-— exp (t) (4.14)

C+d

maps the strip in the 1 -~ plane onto the annulus B in the
4 - plane such that its outer radius is unity and its inner
radius ) 1is equal¥to -‘-‘—f—%’— . Now, the pressure source lies

C +d
on the horizontal axis £ 1in the Z - plane at a distance from

O given by )
_ L+V2-c2yd?

Substituting for § from Eq.(4.14) into Eq.(4.1) - note
that 5 is now replaced byz" in Eq.(4.l) -, we get

sin I (¢ +¢)

. ' w = 1n : _ (4..16)
: Sin .E%(f"fh)
in which the constants e and h are
= L c-d . pa _ a+b
e = phgty b -2 In gy (3
_ i c-d
ho= Ll ed ) (4.18)

.
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Thus, the pressure p which is R(w) can be written

2
P = K n _219 _P__i__g%g‘.}_l _.]5._._ (4.19)
sin® ¥ + Sinh E
in which
- E (w49 (4.20)
E = T (4.21)
29
F= T (uth) (4.22)
28
The scale constant K 1is evaluated by substituting uq =
Cosh™t .Q_:E_ , v; =0 for p=p_ inEq.(4.19) .
Ver Zd= L =

This gives
7

b — (4.23)
.Ln[snfg%(u,fQJ -_Lw[;m-f?(u,fuj

5. CONCLUSICLS.

Methods of potential theory have been applied for the analysis ’
of externally pressurized thrust collar bearings, The pressure
distribution has been determined for circular and elliptic
bearings for a pressure source that communicates directly with
the lubricant film without feeding into recesses. Also, the
results obtained can be directly utilized in the design of
bearings with lubricants that are compressible fluids. Naturally,
this can be achieved by simply supplementing the polytropic

exponent uyﬂof the compressible lubricant and then substitutiné
for the pressure by P = p Y1y
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NOMENCLATURE

semi-major and minor axes of the elliptic collar
semi-major and minor axes of the outer elliptic
bearing edge

focal distance

film thickness

distance of the source from the bearing centre
pressure

volume flow rate per unit length vector

radii of the collar and the outer circular bearing
edge

radius of the source

complex potential function

hyper-potential function

polytropic exponent

mapping modulus

absolute coefficient of viscosity

likewise stream function
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