

Plant Protection Research

http://www.journals.zu.edu.eg/journalDisplay.aspx?Journalld=1&queryType=Master

EFFICACY AND VIRULENCE OF Spodoptera littoralis NUCLEOPOLYHEDROVIRUS on S. littoralis LARVAL FEEDING AND SUSCEPTIBILITY

Lamiaa E. Abdel-Khalik^{*}, E.A. El-Sheikh, D.A. Ragheb and M-B.A. Ashour

Plant Prot. Dept., Fac. Agric., Zagazig Univ., Egypt

Received: 06/11/2016 ; Accepted: 04/12/2016

ABSTRACT: Entomopathogenic baculoviruses have long been recognized as vital environmentally safe alternatives to chemical pesticides. A study for investigating the virulence and susceptibility of *Spodoptera littoralis* larvae to *S. littoralis* nucleopolyhedrovirus (SpliNPV) isolate was carried out. Bioassay experiments on the 1st and 2nd larval instars using droplet feeding method revealed that polyhedral for 50% or 90% mortality of the 2nd larval instar of *S. littoralis* was significantly lower compared with the 1st instar. While, the 1st instar was killed faster than the 2nd one especially with the higher concentration. The susceptibility of the infected 2nd instar when feeding on different hosts showed that larvae were more susceptible when feeding on eggplant leaves followed by lettuce leaves, artificial diet and tomato leaves as shown by larval weight and reduction in feeding. The reduction in both larval weight and feeding were significantly higher with 1x10⁷ PIB/ml than 1x10⁴ PIB/ml in the majority of cases. *S. littoralis* larvae showed more than 2 times of tolerant to the 3rd passage of SpliNPV on the level of LC₅₀ and more than 18 times tolerant on the level of LC₉₀. The tolerant levels of *S. littoralis* larvae for the 3rd passage of virus was associated with more than 20% increase in time taken for kill with no changes in DNA patterns regarding subsequent passages in *S. littoralis* larvae using a restriction enzyme *Eco*RI.

Key words: S. littoralis, SpliNPV, susceptibility, plant hosts, DNA profile.

INTRODUCTION

Baculoviruses insect specific are family entomopathogens belonging to Baculoviridae. Their occlusion bodies (OBs) contain rod-shaped virions which have circular double stranded DNA. Baculovirus genomes are ranging from 90 to 160 kbp (Blissard and Rohrman, 1990). All baculoviruses composed of the genera nucleopolyhedrovirus (NPV) and granulovirus (GV) (Volkman et al., 1995; Theilmann et al. 2005) that infect lepidopteran species. Jehle et al. (2006) classified baculoviruses into four genera on the basis of hosts. Lepidopteran-specific NPV and GV named Betabaculovirus. Alphabaculovirus and Hymenopteran-specific respectively. NPV named Gammabaculovirus and dipteran-specific baculovirus named Deltabaculovirus. Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) is an

alphabaculovirus that has been isolated from populations of *S. littoralis* in Egypt, Morocco, France, the Azores islands, Tunisia, and Turkey (Abul Nasr, 1956; Cherry and Summers, 1985; Croizier *et al.*, 1989; Toprak and Gurkan, 2004; Martins *et al.*, 2005; Laarif *et al.*, 2011). Baculoviruses occur naturally and are relatively host-specific. They showed safe to non-target organisms and the mammals (Ashour *et al.*, 2007; Cheng and Lynn, 2009).

The successful application of baculoviruses was initiated from the application of *Anticarsia gemmatalis* (Hübner) nucleopolyhedrovirus (AgNPV) for controlling *A. gemmatalis* in soybean (Moscardi, 1999 and 2007). The initial field experiments indicated that AgNPV has a potential as a biopesticide in soybean IPM programs. One reason for AgNPV success in controlling velvetbean caterpillar in Brazil is the collaborative work of researchers and extension

^{*} Corresponding author: Tel. : +201289925667 E-mail address: elsayed.lamiaa@yahoo.com

workers to get farmers familiar and convinced with the benefits of using AgMNPV as a major part in the biological control of the pest in field (Moscardi, 2007; Moscardi *et al.*, 2011).

Field and vegetable crops in Egypt are infested by the Egyptian cotton leafworm Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). It is an important and widespread pest not only in Egypt but also in tropical and subtropical regions (Brown and Dewhurst, 1975). According to its many plant hosts, S. littoralis named as a polyphgous insect that primarily causes economical yield losses on several crops (Carter, 1984). Examples of economically important crops attacked by S. littoralis are cotton, spinach, alfalfa, pepper, eggplant, tomato, lettuce, bean, strawberry, and some ornamental crops throughout the year in Africa, Asia and Europe (Bayoumi et al., 1998; Pineda et al., 2007). Accordingly, more than 40 insecticide formulations belonging to different groups have been registered and used for its control in Egypt (El-Sheikh, 2015a). Because this insect developed high levels of resistance different groups of conventional against insecticides (Smagghe et al., 1999; Aydin and Gürkan, 2006), application of specific programs such as biopesticides would be useful. To focus on the probability of change in the susceptibility, this study aims to test the effects of SpliNPV on reducing growth of S. littoralis larvae and accordingly reduce plant feeding damage. Differ in S. littoralis susceptibility to SpliNPV was also studied against the first and third viral passes in S. littoralis. For confirming the stability of viral genome during infection cycles, DNA analysis using EcoRI was carried out.

MATERIALS AND METHODS

Insect and Rearing

A laboratory colony of the cotton leafworm, S. *littoralis*, was obtained from Agricultural Research Center (ARC), Dokki, Giza, Egypt. S. *littoralis* larvae were reared on a modified version of artificial diet (Gelernter *et al.*, 1986) in the laboratory at $27 \pm 2^{\circ}$ C and $65 \pm 5\%$ RH, with a photoperiod of 16:8 hr., (light:dark). The composition of artificial diet used for preparation was 220 g white beans, 14 g agar powder, 4.8 g ascorbic acid, 0.9 g sorbic acid, 2.4 g methyl-p-hydroxybenzoate, 40 g brewer's yeast, and 700 ml distilled water. Egg masses were obtained by rearing larvae on the diet and allowing emerged adults to feed on 10% (W/V) of honey solution in wide glass jars provided with clean white papers for oviposition. Egg masses were collected daily and transferred into clean plastic containers provided with artificial diet or plant leaves for continuous rearing or experiments.

Virus and Propagation

An isolate of *S. littoralis* nucleopolyhedrovirus (SpliNPV) from infected *S. littoralis* larvae was used. Surface contamination method of artificial diet was used for virus propagation in the 3^{rd} and 4^{th} larval instars of *S. littoralis*. The diet was prepared as mentioned above and purified viral particles were spread on the diet surface in a rate of 1×10^4 polyhedral inclusion bodies (PIBs)/mm². Thirty 3^{rd} and 4^{th} instar larvae were transferred into each plastic container ($15 \times 10 \times 5$ cm) containing the contaminated diet. Dead larvae were collected and virus was isolated and purified as mentioned in Breitenbach *et al.* (2013).

Droplet Feeding Bioassay

Droplet feeding method (Hughes et al., 1986) was used for testing the virulence of SpliNPV on both 1st and 2nd larval instars of *S. littoralis*. Five concentrations of SpliNPV ranging from 1×10^4 to 1×10^8 PIBs/ml were prepared by mixing viral suspension with 10% sucrose and 5% blue food dye (El-Sheikh et al., 2011) to give the required concentrations. New 1st and 2^{nd} instar larvae (within 12 hr.) of *S. littoralis* were exposed to concentrations of SpliNPV in the form of droplets for ~10 min. Thirty larvae showed drinking from virus concentrations were individually transferred for each concentration into 1 OZ cups (Frontier Agricultural Services, Newark, DE) supplied with fresh clean diet and kept on the above mentioned conditions. Treatments were observed daily and the number of dead larvae was recorded for 10 days post infection (d.p.i.). Larvae dead in the initial 24 hr., were excluded from final larval mortality and considered injured during transfer. Control

experiments were done by exposing larvae (1st or 2nd) to droplets without virus. All treatment or control experiments were repeated three times.

Surface Contamination Bioassay

The propagated and purified virus in littoralis larvae at the beginning S. of experiments was considered the 1st passage. The 1st passed polyhedra was used for second infection of larvae to get the purified particles of the 2nd passage. The 2nd passed polyhedra was used for third infection of larvae to get the purified particles of the 3rd passage. The 1st and 3rd viral passes of SpliNPV were used in surface contamination bioassay on the 2nd larval instar. Six concentrations ranging from 1.6 to 5000 PIB/ mm² were prepared in dH₂O and used. Concentrations were spread on the surface of artificial diet prepared in plastic containers (15 \times 10×5 cm). Containers were left for 15 min at room temperature for air dry. Thirty larvae of the 2nd instar larvae were transferred into each contaminated diet. Larvae were allowed to feed on the contaminated diet for 24 hr., before transferring individually into clean diet in 1 OZ cups. Times of transferring larvae on clean diet were considered as time zero for calculating mortality percentage. Larval mortality was recorded daily for 10 d.p.i. on the previous conditions. Control was used for comparison and done by feeding larvae on clean diet only. Experiments of the treatments and control were repeated three times as reported in El-Sheikh (2006).

Time-Mortality Response Determination

Time required for 50% (LT₅₀) or 90% (LT₉₀) mortality was calculated for droplet feeding experiments on the 1st and 2nd instar larvae of *S. littoralis* using concentrations of 1x10⁶ and 1×10^{8} PIB/ml. For surface contamination experiments on the 2nd instar, LT₅₀ was calculated using concentrations of 200 and 5000 PIB/mm². The same procedures mentioned above were used except that mortality was recorded 12 hr., intervals. All experiments were repeated three times.

Effect of Infection on Larval Weight and Feeding Damage

The effect of SpliNPV on larval weight and feeding damage was examined by infecting the 2^{nd} larval instar of *S. littoralis* using two

concentrations of 1×10^4 and 1×10^7 PIB/ml through droplet feeding method. Preparation of virus concentrations and infection were done as mentioned above. After infection, 30 larvae were individually transferred into 1 OZ cups containing enough amounts of diet, tomato leaves, lettuce leaves or eggplant leaves for each concentration. Larval weight was recorded in the beginning of experiments (day 0) and at days 3, 6 and 9 post infection (p.i.). Diet and plant leaves were replaced each day with fresh ones and their weights were recoded before feeding and after 24 hr., of feeding. Decrease in weight of diet or plant leaves due to feeding of infected or un-infected control larvae were recorded at days 1, 4, 7 and 10. A piece of diet or plant leaves were used as control without any feed for subtracting the percentage of normal decrease from those recorded due to larval feeding.

DNA Extraction and Analysis

Infected larvae from the 1st and 3rd passages were collected separately in 50 ml conical tubes. Occlusion bodies (OBs) were released from infected larvae, suspended in 30 ml of PBS, and filtered twice through cheesecloth. OBs were incubated in 15 ml of 0.1 M sodium bicarbonate for 30 min at 37°C for releasing virions. DNA was obtained from virus particles by incubating virions overnight at 37°C in the presence of proteinase K (200 µg/ml). Viral DNA was subsequently phenol:chloroform extracted and re-suspended in dH₂O as described in Breitenbach et al. (2013). For analyses, DNA was digested for 1 hr., at 37°C with a restriction enzyme EcoRI (Invitrogen Corp., CA, USA). Digested DNA was electrophoresed on 1% agarose gel and stained with ethidium bromide solution according to standard techniques of Sambrook et al. (1989).

Statistical Analysis

Probit analysis program version 3.1 (Finney, 1971) was used to calculate lethal concentrations (LCs) and their corresponding 95% confidence limits (CLs). ViStat 2.1 program (Hughes, 1990) was used for calculating the lethal time (LT) values. Values of LC_{50} and LC_{90} were considered significantly different when their respective CLs did not overlap. Larval and leaf/diet weights were analyzed using SPSS 14 for Windows by least significant difference (LSD) of one-way ANOVA.

RESULTS AND DISCUSSION

Susceptibility of the 1st and 2nd larval instars of S. littoralis to SpliNPV was tested using different concentrations by droplet feeding method (Tables 1 and 2). Data presented in Table 1 show lethal concentrations of 50 and 90% of SpliNPV against 1^{st} and 2^{nd} instars of S. littoralis which indicate that number of polyhedra used to kill 50% or 90% of the 2nd instar is less than that used to kill the same percentage of the 1st instar (Table 1). This difference may be attributed to the difference in consumed amounts of viral solution by each instar that is higher with older instar larvae compared with early instar larvae. The high amounts consumed by the 2nd instar compared with the 1st instar might reflect high numbers of viral polyhedra consumed and causing high mortality.

To show the effect of viral concentration in reducing time taken for killing *S. littoralis* larvae, two concentrations of 1×10^6 and 1×10^8 PIB/ml were used (Table 2). When 1×10^6 PIB/ml was tested, the time taken for killing 50 and 90% of the 1st larval instar was longer than that of the 2nd instar, while it was opposite when 1×10^8 PIB/ml was the infection concentration through droplet feeding method. Percentage of decreasing time by increasing concentration was higher in the 1st instar comparing with the 2nd instar larvae (Table 2).

Several characteristics should exist in baculoviruses to make them ideal candidates as pest control agents. Efficacy and biosafety are major parameters in their use. Wild type and genetically modified baculoviruses tested on non-target organisms showed no direct effects on beneficial insects and rats (McNitt et al., 1995; Ashour et al., 2007). Also, they showed high virulent effects on lepidopteran insects (El-Sheikh et al., 2011; El-Sheikh, 2014). Efficacy of SpliNPV was studied on S. littoralis under field (Topper et al., 1984; Jones et al., 1994) and laboratory (Grzywacz et al., 1998; Ashour et al., 2007) conditions as well as other spodopteran species (El-Sheikh, 2015b). This virus showed successful control of S. littoralis in the field as reported by Topper et al. (1984) and showed high effectiveness against other species of S. frugiperda and S. exigua (El-Sheikh, 2015b) in a

rate similar to what reported in the current study. Time taken for mortality was higher in late instars compared with early instars especially with higher concentrations as showed in the current study. In agreement, Abbas and Young (1991) found that LT_{50} values were higher in late instars of the soybean looper, *Pseudoplus includes* than in early instars.

The effect of infection on the weight of the 2nd instar larvae was investigated using different feeding hosts to show the effect of host on larval growth of infected larvae compared with control (Fig. 1). Also, it was showed that larval growth was depending on the type of the host. Control larvae of S. littoralis showed the highest increase in weight when fed on artificial diet followed by feeding on lettuce, tomato and eggplant leaves. Larval weight of infected larvae, with 1×10^4 and 1×10^7 PIB/ml, was affected started from day three when fed on diet, lettuce or eggplant leaves. Significant decrease in weight of larvae fed continuously for 9 days p.i on diet, tomato and lettuce leaves compared with control. All larvae infected with both concentrations and fed on eggplant leaves dead before day 6 p.i. probably because eggplant is un-favorite host for S. littoralis comparing with other plant hosts tested in this study. Larvae infected with 1×10^7 PIB/ml showed significant decrease in weight compared with 1×10^4 PIB/ml and control in different time points in all hosts except with tomato leaves (Fig. 1).

Significant reduction in leaf weight started in the 1st day with non-infected control larvae especially with lettuce and eggplant. Higher concentration of 1×10^7 PIB/ml was more effective in reducing leaves and artificial diet weight. The lower concentration of 1×10^4 PIB/ ml was effective in reducing leaves damage before day 10 as it showed significant reduction in diet/leaf weights as much as in control experiments (Fig. 2).

The reduction in larval weight and growth is a critical parameter for minimizing plant damage by insect hosts. In this study, higher concentration of SpliNPV was effective in reducing *S. littoralis* larval weight and subsequently reduced larval feeding damage comparing with the lower viral concentration and un-infected control larvae.

Table 1. Lethal concentrations of Spodoptera littorais nucleopolyhedrovirus (SpliNPV) on the 1 st and 2 nd instars of S. littoralis after exposure into virus concentrations by droplet feeding	
method	

Instar [*]	No.**	Lethal concentrations	Slope ± SE	$X^{2^{***}}$	
		LC ₅₀	LC ₉₀	-	
1 st	120	2.5×10^{5A} (1.3×10 ⁵ -4.5×10 ⁵)	1.2×10 ^{8A} (4.5×10 ⁷ -4.9×10 ⁸)	0.5±0.04	5.3
2 nd	120	$\frac{1.4 \text{x} 10^{5\text{B}}}{(8.7 \times 10^4 \text{-} 2.3 \times 10^5)}$	1.2x10 ^{7B} (6.2×10 ⁶ -2.8×10 ⁷)	0.6±0.05	4.8

- Values of lethal concentrations (LC₅₀ or LC₉₀) between 1^{st} and 2^{nd} instars are considered significantly different when their confidence limits (CL) did not overlap and showed with different uppercase letters.

*New emergence 1st and 2nd instars were used in experiments which repeated 3 times.

** No. is the total number of larvae used for each experiment.

 $^{***}X^2$ means chi-square heterogeneity.

Table 2. Lethal-time (LT) of the 1st and 2nd instars of Spodptera littoralis due to feeding on S.littoraisnucleopolyhedrovirus(SpliNPV)dropletsconcentrations of 1×106 or 1×108 PIB/ml

Instar [*]	No.**	Lethal times (hr.)			Decrease		
	-	1×10 ⁶ PIB/ml		1×10 ⁸	PIB/ml	- (%)	
	-	LT ₅₀	LT ₉₀	LT ₅₀	LT ₉₀	LT ₅₀	LT ₉₀
1^{st}	120	168.0	357.6	55.2	132.0	67.1	63.1
2^{nd}	120	151.2	328.8	84.0	141.6	44.4	56.9

*New emergence 1st and 2nd instars were used in experiments which repeated 3 times.

**No. is the total number of larvae used for each experiment.

Abdel-Khalik, et al.

266

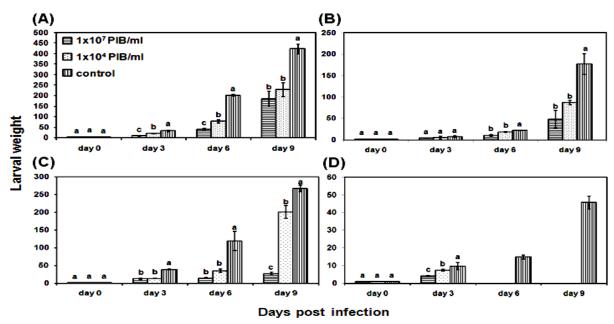


Fig. 1. Increase in individual larval weight of the 2^{nd} instar of *Spodoptera littoralis* after infection with 1×10^4 or 1×10^7 PIB/ml then transferred on artificial diet (A), tomato leaves (B), lettuce leaves (C), or eggplant leaves (D) for 10 days. Mean weight of alive larvae was recorded immediately before infection (day 0) and after 3, 6, and 9 days of infection. Differences between treatments and control were analyzed by SPSS 14 using LSD of oneway ANOVA for each time point. Bars holding different letters are statistically different at P<0.05

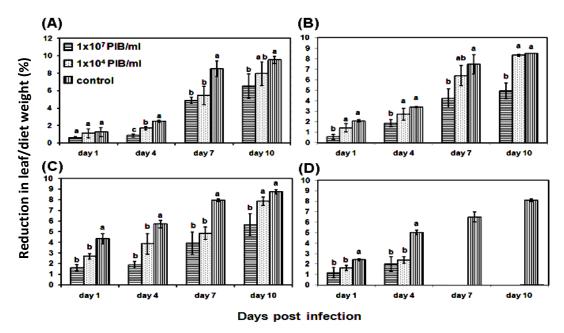


Fig. 2. Mean percentage of reduction in artificial diet (A), tomato leaves (B), lettuce leaves (C), and eggplant leaves (D) due to feeding of *Spodoptera littoralis* 2^{nd} instar larvae for 10 days after exposure to droplets containing 1×10^4 or 1×10^7 PIB of SpliNPV/ml (treated) or free virus droplets (control). Differences between treatments and control were analyzed by SPSS 14 using LSD of one-way ANOVA for each time point. Bars holding different letters are statistically different at P<0.05

The effects of continuous exposure of *S. littoralis* larvae to SpliNPV on the susceptibility of the 2nd instar of *S. littoralis* to different virus passages are presented in Tables 3 and 4. First and 3rd passages were examined on the 2nd larval instar of *S. littoralis* to show the virulent effect of the virus (Table 3) and time for 50% mortality (Table 4). Obtained data showed that concentrations of the tested virus caused 50% and 90% mortality of the 1st passage are 0.5×10^2 PIB/mm² and 1.7×10^4 PIB/mm², respectively. While, mortality data of the 3rd passage of SpliNPV showed that concentrations caused 50% and 90% mortality increased comparing with 1st viral pass and recorded 1.4×10^2 and 3.2×10^5 PIB/mm², respectively. Increase in the number of viral polyhedra used to kill 50% and 90% of *S. littoralis* larvae in the 3rd passage comparing to 1st passage are 2.8 and 18.8 times, respectively (Table 3).

When the 2^{nd} instar larvae of *S. littoralis* was exposed to the concentration of 200 PIB/mm², time to kill 50% was increased from 206.4 hr., in the 1st viral pass to 254.4 hr., in the 3rd viral pass with 23.3% increase. While, time increased by 30% in the 3rd passage comparing with the 1st passage when larvae exposed to 5000 PIB/mm². Times to kill 50% were decreased by increasing concentration which recorded 206.4 and 120 hr., in the 1st viral pass for 200 and 5000 PIB/mm², respectively with 14.9% decrease in time. Although that isolate of the 3rd viral pass takes more time for killing 50%, using high concentrations (5000 PIB/mm²) decreases time taken for 50% mortality by 38.7% comparing to 14.9% in the 1st pass (Table 4).

Continuous exposure of S. littoralis larvae to a strain of SpliNPV has resulted in low mortality as indicated by higher number of polyhedra required for killing 50 or 90% in the 3rd passage comparing to the 1st passage. Also, time for 50% mortality increased by increasing number of virus passages inside S. littoralis larvae. The decrease in larval susceptibility due to continuous exposure to NPV was reported in S. frugiperda as indicated in the 1st larval instar that showed high levels of tolerance to a selected S. frugiperda nucleopolyhedrovirus (SfNPV) strain comparing to a wild type strain (Fuxa and Richter, 1992). In an experiment for measuring relative susceptibilities to NPV, Briese et al. (1980) showed that a strain of lightbrown apple moth, Epiphyas postvittana, exposed several times to NPV are more than 50 times resistant to NPV than a laboratory strain and even more than 100 times resistant compared with a field strain.

Analysis of SpliNPV genome using a restriction endonuclease EcoRI for the 1st and 3rd passages (Fig. 3) revealed no differences in the patterns of DNA fragments. The similarity in DNA patterns indicates that SpliNPV genome did not change during subsequent infection of the insect host in the laboratory, which its stability previously reported in the semi field experiments (Ashour *et al.*, 2007).

Replications/passes*	No.**	Lethal concentrations	Slope±SE	$X^{2^{***}}$	
		LC ₅₀	LC ₉₀		
1 st replication/pass	40	0.5×10^{2A} (0.07×10 ² -3×10 ²)	1.7×10^{4A} (1.6×10 ⁴ -2.6×10 ⁶)	0.5±0.1	1.2
3 rd replication/pass	60	1.4×10^{2A} (0.7×10 ² -3×10 ²)	3.2×10 ^{5A} (4.9×10 ⁴ -7.6×10 ⁶)	0.8±0.1	6.9
DT (times) ^{****}		2.8	18.8		

Table 3. Susceptibility of the 2nd instar larvae of Spodoptera littoralis when exposed to
subsequent passes/ replications of S. littoralis nucleopolyhedrovirus (SpliNPV)

- Values of lethal concentrations (LC₅₀ or LC₉₀) between 1^{st} and 2^{nd} instars are considered significantly different when their confidence limits (CL) did not overlap and showed with different uppercase letters.

* 1st pass obtained from infected larvae with SpliNPV, and then the 1st pass was used for insect infection and obtaining the 2nd pass. While, the 3rd pass obtained from infected larvae with the 2nd pass.

** No. is the total number of larvae used for each experiment.

*** X^2 means chi-square heterogeneity.

***** DT= degree of tolerant which calculated by dividing LC_{50} or LC_{90} of the 3rd pass/LC₅₀ or LC_{90} of the 1st pass.

Abdel-Khalik, et al.

Table 4. The effect of increase in <i>Spodoptera littoralis</i> nucleopolyhedrovirus (SpliNPV) polyhedra
and increase in viral passes on the time taken for 50% mortality (LT ₅₀) in the 2 nd larval
instar of <i>S. littoralis</i>

Replications/Passes*	No.**	Median let	Decrease in	
	-	200 (PIB/mm ²)	5000 (PIB/mm ²)	- time (%)
1 st replication/pass	120	206.4	120.0	14.9
3 rd replication/pass	120	254.4	156.0	38.7
Increase in time (hr.) ***		1.23	1.3	
Increase in time (%)		23.3	30	

1st pass obtained from infected larvae with SpliNPV, and then the 1st pass was used for insect infection and obtaining the 2nd pass. While, the 3rd pass obtained from infected larvae with the 2nd pass.

** No. is the total number of larvae used for each experiment.

Increase in time was calculated by subtracting LT_{50} value of the 1st pass from 3rd pass for 200 or 5000

PIB/mm². (%) decrease in time was calculated between viral concentrations used for 1st or 3rd pass by [(LT_{50} value of 200 PIB ml⁻¹ – LT_{50} value of 5000 PIB ml⁻¹) × 100/ LT_{50} value of 200 PIB ml⁻¹].

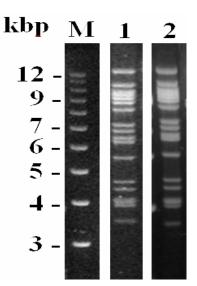


Fig. 3. Spodoptera littoralis nucleopolyhedrovirus genome for 1st pass (lane 1) and 3rd pass (lane 2) cut with EcoRI restriction enzyme and run on 1% Agarose gel. Lane M represents the 1 kbp plus DNA ladder with standard fragments visable in this figure from 3000 bp to 12000 bp

268

In conclusion, SpliNPV is a valuable biopesticide against the Egyptian cotton leaf worm. It is effective against early instars in killing and reducing both larval weight and feeding damage when a reasonable concentration is used. In the opposite way, continuous exposure of *S. littoralis* larvae to virus particles might change insect susceptibility toward resistance in a very few generations. This phenomenon requires using SpliNPV within integrated pest management programs.

REFERENCES

- Abbas, A. and S.Y. Young (1991). Influence of larval age and temperature on effectiveness of a nuclear polyhedrosis virus in the soybean looper, *Pseudoplus includens* (Lepidoptera: Noctuidae) on soybean. Biol. Cont., 1: 334-338.
- Abul Nasr, S. (1956). Polyhedrosis virus disease on cotton leafworm *Prodenia litura* F. Bulletien of the Entomol. Soc. Egypt, 40: 321-332.
- Ashour, M.B., D.A. Ragheb, E.A. El-Sheikh, E.A. Gomaa, S.G. Kamita and B.D. Hammock (2007). Biosafety of recombinant and wild type nucleopolyhedroviruses as bioinsecticides. Int. J. Environ. Res. Publ. Health, 4 (2): 111-125.
- Aydin, M.H. and M.O. Gürkan (2006). The efficacy of spinosad on different strains of *Spodoptera littoralis* (Boisduval) (Lepidoptera: Noctuidae). Turk. J. Biol., 30 : 5-9.
- Bayoumi, A.E., R. Balana-Fouce, A.K. Sobeiha and E.M.K. Hussein (1998). The biological activity of some chitin synthesis inhibitors against the cotton leafworm *Spodoptera littoralis* (Boisduval), (Lepidoptera: Noctuidae). Bol. Sanid. Vegetal. Plagas., 24: 499-506.
- Blissard, G.W. and G.F. Rohrman (1990). Baculovirus diversity and molecular biology. Annu. Rev. Entomol., 35: 127-155.
- Breitenbach, J.E., E.A. El-Sheikh, R.L. Harrison, D.L. Rowley, M.E. Sparks, D.E. Gundersenrindal and H.J. Popham (2013).
 Determination and analysis of the genome sequence of *Spodoptera littoralis* multiple nucleopolyhedrovirus. Virus Res., 171: 194-208.

- Briese, D.T., H.A. Mende, T.D.C. Grace and P.W. Geier (1980). Resistance to a nuclear polyhedrosis virus in the light-brown apple moth *Epiphyas postvittana* (Lepidoptera: Tortricidae). J. Invert. Pathol., 36: 21 1-215.
- Brown, E.S. and C.F. Dewhurst (1975). The genus *Spodoptera* in Africa and the near east. Bull. Entomol. Res., 65: 221-262.
- Carter, D. (1984). Pest Lepidoptera of Europe with Special Reference to the British Isles. Junk Publishers, Dordrecht, The Netherlands.
- Cheng, X.W. and D.E. Lynn (2009). Baculovirus interactions *in vitro* and *in vivo*. Adv. Appl. Microbiol., 68 : 217-239.
- Cherry, C.L. and M.D. Summers (1985). Genotypic variation among wild isolates of two nuclear polyhedrosis viruses isolated from *Spodoptera littoralis*. J. Invert. Pathol., 46 : 289-295.
- Croizier, G., K. Boukhoudmi-Amiri and L. Croizier (1989). A physical map of *Spodoptera littoralis* B-type nuclear polyhedrosis virus genome. Arch. Virol., 104: 145-151.
- El-Sheikh, E.A. (2006). Biosafety of a pest control biotechnology agent. Ph.D. Thesis, Zagazig Univ., 167.
- El-Sheikh, E.A. (2014). Virulence and pathogenicity of recombinant nucleopolyhedroviruses expressing a scorpion toxin and an insect enzyme on *Agrotis ipsilon* (Lepidoptera: Noctuidae) larvae. Afr. Entomol., 22 (3): 512-518.
- El-Sheikh, E.A. (2015a). Comparative toxicity and sublethal effects of emamectin benzoate, lufenuron and spinosad on *Spodoptera littoralis* Boisd. (Lepidoptera: Noctuidae). Crop Prot., 67: 228-234.
- El-Sheikh, E.A. (2015b). Efficacy of Spodoptera littoralis nucleopolyherdovirus on Spodoptera frugiperda (J.E. Smith) and Spodoptera exigua (Hübner): virulence, biological effects, and inhibition of juvenile hormone esterase. Egypt. J. Biol. Pest. Cont., 25 (3): 587-595.
- El-Sheikh, E.A., S.G. Kamita, K. Vu and B.D. Hammock (2011). Improved insecticidal

efficacy of a recombinant baculovirus expressing stabilized JH esterase from *Manduca sexta*. Biol. Cont., 58: 354–361.

- Finney, D.J. (1971). Probit Analysis. Cambridge University Press, London, U.K.
- Fuxa, J.R. and A.R. Richter (1992). Virulence and multi-generation passage of a nuclear polyhedrosis virus selected for an increased rate of vertical transmission. Bio. Cont., 2: 171-175.
- Gelernter, W.D., N.C. Toscano, K. Kido and B.A. Federici (1986). Comparison of a nuclear polyhedrosis virus and chemical insecticides of the beet armyworm (Lepidoptera: Noctuidae) on head lettuce. J. Econ. Entomol., 79 : 714-717.
- Grzywacz, D., K.A. Jones, G. Moawad and A. Cherry (1998). The *in vivo* production of *Spodoptera littoralis* nuclear polyhedrosis virus. J. Virological Methods, 71: 115-122.
- Hughes, P.R. (1990). ViStat: statistical package for the analysis of baculovirus bioassay data: version 2.1. Boyce Thompson Inst. at Cornell Univ., Ithaca, USA.
- Hughes, P.R., N.A.M. Vanbeek and H.A. Wood (1986). A modified droplet feeding method for rapid assay of *Bacillus thuringiensis* and baculoviruses in noctuid larvae. J. Invert. Pathol., 48: 187-192.
- Jehle, J.A., G.W. Blissard, B.C. Bonning, J.S. Cory, E.A. Herniou, G.F. Rohrmann, D.A. Theilmann, S.M. Thiem and J.M. Vlak (2006). On the classification and nomenclature of baculoviruses: a proposal for revision. Arch. Virol., 151: 1257-1266.
- Jones, K.A., N.S. Irving, D. Grzywacz, G.M. Moawad, A.H. Hussein and A. Fargahly (1994). Application rate trials with a nuclear polyhedrosis virus to control *Spodoptera littoralis* (Boisd.) on cotton in Egypt. Crop Prot., 13: 337-340.
- Laarif, A., E. Salhi, S. Fattouch and M.H.B. Hammouda (2011). Molecular detection and biological characterization of a nucleopolyhedrovirus isolate (Tun-SINPV) from *Spodoptera littoralis* in Tunisian tomato greenhouses. Annal. Biol. Res., 2 : 180-191.

- Martins, T., R. Montiel, J. Medeiros, L. Oliveira and N. Simes (2005). Occurrence and characterization of a nucleopolyhedrovirus from *Spodoptera littoralis* (Lepidoptera: Noctuidae) isolated in the azores. J. Invert. Pathol., 89 : 185-192.
- McNitt, L., K.E. Espelie and L.K. Miller (1995). Assessing the safety of toxin-producing baculovirus biopesticides to a non-target predator, the social wasp *Polistes metricus* Say. Biol. Cont., 5: 267-278.
- Moscardi, F. (1999). Assessment of the application of baculoviruses for the control of Lepidoptera. Ann. Rev. Entomol., 44: 257-289.
- Moscardi, F. (2007). A nucleopolyhedrovirus for control of the velvetbean caterpillar in Brazilian soybeans. In Biological Control: A Global Perspective; Vincent, C., Goethel, M.S., Lazarovits, G., Eds.; CAB Int.: Oxford, UK, 344-352.
- Moscardi, F., M. de Souza Lobo, M.E. de Castro Batista, L.M. Moscardi and B. Szewczyk (2011). Baculovirus pesticides: Present state and future perspectives. In Microbes and Microbial Technology; Ahmad, I., Ahmad, F., Pichtel, P., Eds.; Springer: New York, NY, USA, 415-445.
- Pineda, S., M.S. Chneider, G. Smagghe, A. Martinez, P.D. Stal, E. Vinuela, J. Valle and F. Budia (2007). Lethal and sublethal effects of Methoxyfenozide and spinosad on *Spodoptera littoralis* (Lepidoptera: Noctuidae). J. Econ. Entomol., 100 : 773-780.
- Sambrook, J., E.F. Fritsch and T. Maniatis (1989). Molecular Cloning: a Lab. Manual. Vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
- Smagghe, G., B. Carton, W. Wesemael, I. Ishaaya and L. Tirry (1999). Ecdysone agonists mechanism of action and application on *Spodoptera* species. Pestic. Sci., 55: 343-389.
- Theilmann, D.A., G.W. Blissard, B. Bonning, J.A. Jehle, D.R. O'Reilly, G.F. Rohrmann, S. Thiem and J.M. Vlak (2005). Baculoviridae. In: Fauquet, C.X., Mayo, M.A., Maniloff, J., Desselberger, U. and Ball, L.A. (Eds), Virus

Taxonomy-Classification and Nomenclature of Viruses, 177-185. 8th Report of the Int. Committee on the Taxonomy of Viruses. Elsevier, Amsterdam, Holland.

- Topper, C.P., G. Moawad, D.J. McKinley, M. Hosny, K.A. Jones, S. El-Nagar and M. El-Sheikh (1984). Field trials with a nuclear polyhedrosis virus against *Spodoptera littoralis* on cotton in Egypt. Trop. Pest Manag., 30: 372–378.
- Toprak, U. and M.O. Gurkan (2004). First record of a NPV isolated from *Spodoptera littoralis* (Boisd.) (Lepidoptera: Noctuidae) in Turkey and its molecular identification according to the partial lef-8 gene. Turk. J. Biol., 28 : 71-77.
- Volkman, L.E., G.W. Blissard, P.D. Friesen, B.A. Keddie, R.D. Possee and D.A. Theilmann (1995). Baculoviridae. In Virus Taxonomy, (Murphy FA, Ed.), Springer Verlag, 104-113.

الفعالية والقدرة الإبادية للفيروس البوليهيدري النووي SpliNPV على تغذية وحساسية يرقات دودة ورق القطن الكبرى

لمياء السيد عبد الخالق - السيد عبد المالك الشيخ - ديدير أحمد راغب - محمد باسم علي عاشور قسم وقاية النبات - كلية الزراعة - جامعة الزقازيق - مصر

عُرفت الفيروسات العصوية الممرضة للحشرات بأنها بدائل آمنة بيئيا للمبيدات الكيميائية، تم دراسة القدرة الإبادية وحساسية يرقات دودة ورق القطن الكبرى للفيروس البوليهيدري النووي (SpliNPV) لهذه الحشرة، أظهرت تجارب التقييم الحيوي على العمرين اليرقيين الأول والثاني باستخدام طريقة droplet feeding أن عدد البوليهيدرا التي أدت إلى قتل ٥٠% أو ٩٠% من يرقات العمر الثاني لدودة ورق القطن الكبرى كانت أقل معنوياً مقارنة بيرقات العمر الأول والثاني لدودة ورق القطن الكبرى كانت أقل معنوياً مقارنة بيرقات العمر الأول، في قتل ٥٠% أو ٩٠% من يرقات العمر الثاني لدودة ورق القطن الكبرى كانت أقل معنوياً مقارنة بيرقات العمر الأول، في لعين أن يرقات العمر الثاني لدودة ورق القطن الكبرى كانت أقل معنوياً مقارنة بيرقات العمر الأول، في حين أن يرقات العمر الأول، في أوراق الممر الثاني المعداة بلغيرة الأعلى، وعند دراسة حساسية يرقات العمر الثاني المعر الثاني خاصة مع التركيز الأعلى، وعند دراسة حساسية عند التغذية علي أوراق الماحلة بالفيروس نتيجة للتغذية علي عوائل مختلفة، أظهرت النتائج أن اليرقات كانت أكثر حساسية عند التغذية علي أوراق الباذنجان، يليه التغذية على أوراق الخس، البيئة الغذائية وأوراق الطماطم، وذلك من خلال التأثير على أوزان اليرقات والخفض في معدل التغذية، كما وجد أن تأثير التركيز الفيروسي ١× ١٠ بوليهيدرا/مل على الخفض في الوزن اليرقات والخفض في معدل التغذية، كما وجد أن تأثير من مرة علي مستوى وراق الطماطم، وذلك من خلال التأثير على أوزان اليرقات والخفض في معدل التغذية، كما وجد أن تأثير التركيز الفيروسي ١× ١٠ أ بوليهيدرا/مل، أظهرت يرقات دودة ورق القطن تحمل للفيروس اليرقي والتغذية كان أعلي معنوياً مقارنة بالتركيز الاركن أ مرة علي مستوى ورام ورائل من خلالية كان أوزان والتغذية كان أعلي معنوياً مقارنة بالتركيز الخير من ١٨ مرة علي مستوى ورقال قدة والقلن تحمل للفيروس ورائل قلم منوى ورائل من مر ٢٠ أوران والتغذية كان من ما من مرة علي مستوى ورائل وران وران والترقن مر ٢٠ أرم، أ ظهرت يرقات دودة ورق القلن تحمل للفيروس ورائلة والتغر والتغذية كانت مرقان مروات وروني ورائلة واليروس ورائلة كانت مرقات دورة ورائم من مرتين علي معانووسية الثالثة كانت مرقان موالي ورائلة والتفروسية الثلثة كانت مرقات مومى ما ٢٠% وران ما ٢٠% ورائلة واليرور ما ٢٠% وريات ما ٢٠% ورائلة الغرري

المحكمون :

۱ ـ أ.د. محمد حلم ي بلال
 ۲ ـ أ.د. عطا على مرسى شلبى

أستاذ المبيدات المتفرغ – كلية الزراعة – جامعة القاهرة. أستاذ المبيدات المتفرغ – كلية الزراعة – جامعة الزقازيق.