PHYSIOCHEMICAL, MINERALOGICAL AND MORPHOLOGICAL STUDIES OF COASTAL SOILS NORTH -WEST OF EGYPT.

Abbas, H. H.; M. E. Ali; A. H. Abdel Hameed; * A. A. Ramadan and * M. E. M. Dayed

Fac. of Agric., Banha University, Egypt.

* Nuclear and Radiological Regulatory Authority (NRRN), Egypt

ABSTRACT

The northwestern coast is located in the western desert of Egypt. The whole region is under hot arid conditions. Four landforms were identified and soils the area is sufficient for initiated cultivation of figs and the associated industrial and economic activities. Abundant runoff, and water shed practices the lands are promising for agricultural expansion. Sixteen soil profiles representing the four landforms of coastal plain, windblown formation, piedmont like plains and plateau formation were taken to study the morphological, chemical, physical and mineralogical characteristics of the area. and explore possible .

Keywords: Landforms, plains, Egypt

INTRODUCTION

Agricultural expansion requires exploring suitable land and water resources to meet needs for food to the growing population. The northwestern coast of Egypt represents a potential land for such objective The transport of Nile water through El-Hamam Canal until El-Dabaa City would allow potenial development in this region. Soils parent materials differ in composition from one place to another because of the variations in their geological origin and their position in the landforms. These materials reflect their characters on the formed soils. As a consequence of the rapid rate of evaporation, salts sometimes do not penetrate deep but accumulate on the surface forming crust or just accumulate below the surface. According to Hammad *et al.* (1977) soils of Natrun - Maryout areas have formation, of evaporate horizons. And soils of the old deltaic plain, have high calcium carbonate and gypsum. They also they noticed that anhydrites found in the soils of depressions and plains indicate precipitation of in a hyper saline solution rather than as accumations in a horizons.

Hammad and Abdel - Salam (1968) stated that the only prominent feature of development of calcareous soils of the western coast of Egypt is the formation of calcium carbonate accumulations as (calcic horizon) which vary in position, thickness and other properties depending on their position.

Hammad (1976) concluded that aridity of Natron – maryut area resulted in a degradation of its old surface; and that Maryout lake environment is responsible for the presence of evaporates in the old deltaic plain.

Vieillefon (1976) mentioned that, gypsum can be transported by water or wind and re-deposited in locations forming gypsum dunes or be incorporated in the soil. Metwally (1987)

Metwally, (1987).noticed that soils of this area very from sand to clay, non – saline, to extremely saline, calcareous (18 to 95% CaCO₃) with

polygorskite being the dominant clay mineral (Abdel Latif, 2003 and Abdel – Razik 2005) reported that most soils of the north – west coast of Egypt are marine sediments and fluvio-lacustrine dominated with playgorskite followed by kaolinite with occurence smectite, illite, vermiculite, chlorite and interstrifed minerals.Clay mineralology suggests their inheritance from parent materials, except of palgorskite which is either inherited or neo-genetically, formed stimulated by presence of high $CaCO_3$ and soluble salts. (Abdel Razik, 2005) The current study area covers four landforms, the north – west coastal area of Eygpt with an objective of assessing the physiochemical, mineralogical and morphological properties.

MATERIALS AND METHODS

The investigated area in the northwestern coast of Egypt is stretched between longitudes $27^{\circ} \ 00^{\prime\prime} \ 29^{\circ} \ 30^{\prime\prime}$ east and latitudes $31^{\circ} \ 30^{\prime\prime} \ -30^{\circ} \ 30^{\prime\prime}$ north Fig. 1 shows a location map of the area. LANSAT - ETM images of 2001 and digital elevation model CDEM were used in ENV1 4.5 software to produce the geomrphological map of the studied area (Fig. 2)

Sixteen soil profiles were made to represent the identified landforms of. The profiles were dug to a depth of 150 .cm except for profile. 16 which was dug to a depth of 60 cm due to a presence of Table 1 shows the studied landforms and the profiles representing them

Figure 1:- Location map of the studied area and the dug soil profiles.

Figure 2. The geomorphological map of the mediterranean coastal zone.

Landform unit	Sub units	profile No.
	Moderate to limited depth sand to sandy clay soils.	3,5,6,7,9,16
Coastal plain	Shallow soils of coarse texture with rock outcross.	1
	Consolidated rocky ridges sloping and dissected	8 , 13 , 14
	Soil of the lagoonal depressions	10
Windhlown Formation	Quartzitic inlanddunes and sheets.	12
WINDDOWN FORMALION	Oolitic inladdunes and sheet	11
Piedmont	Denuded shallow rocky soils.	2
Plateau formation	Shallow rocky soils.	4 , 15

Table 1: The main landforms of the investigated area

1- Laboratory analysis:

- Soil colour in was assessed using the Munsell soil color charts (Anon. 1975).
- Mechanical analysis was carried using the pipette method (piper 1950)
- Calcium carbonate using the calcimeter , the following detrmintions were done according to methods cited in Black et al(1965).
- Gypsum content by precipitation with aceton
- Bulk density this was done using the core methods (Black et al, 1965).
- Organic matter content was determined using the Walkley and Black method.
- Soil pH in the soil past .
- The following analyses were carried out on the saturation extract:
- Soil salinity and soluble ions in the past extract, with, with the soluble sulphate anions being by calculated subtraction.
- Soil bulk density using soil cores.

2- Mineralogical analysis of the clay fraction:

The X - ray diffraction analysis was carried out (using 1 PHILIPS 1 apparels examining: on the clay fraction representation layers which showed high contents of clay

a- Mg - satrated, arid - dried.

b- Mg - saturated, glycerol - solvated.

c- K – saturated, heated at 550 °C for 4 hours.

This method depends basically on the presence of characteristic diffraction peaks for each mineral. The intensity of the sharpness of these peaks are not only dependent on the number and the corresponding diffraction plains present in the examined sample, but also on the size of particles, chemical composition, crystal imperfection, crystal orientation and the pretreatments of the clay separates (Whittig 1965).Identification of clay minerals by x-ray diffraction follows essential principals established by Whittig and Jackson (1955), Brown (1961), Black (1965) and Dixin and Weeds (1977). Semi – quantitative mineralogical determinations were estimated by measuring the area under peaks (Gjems 1967).

RESULTS AND DISCUSSION

1- Landforms of the area:

Geological maps showing landforms in the northwestern coast together with the generated digital elevation modal were used. Field work verified presence of these the units and enabled the description of these units. Location of soil profiles were pre- determined to characterize the soils occupying the surfaces of these landforms. The field conditions decided their locations (Fig.1).The identified landforms are given in Table 1, they are as follws:

1- Coastal Plains. Their elevation is lower than their surroundings impeded natural drainage and hence shallow water table . Aeolian sand deposits cover more than half of the surface as sand sheets, dunes and hummocks. Lower parts of the coastal plains are practically suitable for construction of tourist resorts.

2- Windblown formations. According to the elevations, two submits were recognized. Those are (a) Quartzitic inland dunes and sheets, and (b) Oolitic inland dunes and sheet. The topography is generally undulated , locally hilly. The general prominent features in these are is salinity. Water table is shallow. Due to excessive evaporation, high salinity prevails and salts are noticed on the surface of the low and the relatively moderately high lands.

3- Piedmonts. Denuded shallow rocky soils with exposed. Salinity and calcite formations are secondary accumulations.

4- Plateaus. Shallow rocky soils at the foot of scarps of the highlands. They are generally rocky covered with a desert pavement of rock fragments. These fragments are silicified, calcite and dolomite at the surface

2- Soils in the area.

Using the digital elevation model (DEM Fig 1) generated from topographic and contour maps merged with the unsupervised LANDSAT image of 2010, a soil map was elaborated (Fig 1). Soil mapping units, presented Table 3 and 4, are as follows:

Soils of the coastal plains. The soils are generally sandy to sandy loam, occasionally sandy clay loam and layer rock in profile 9 (Table2). With regard to the surrounding limestone of the plateau, the soils contain calcium carbonate of 25.5 to 98.5% Gypsum is not found. Calcic horizons are in the soils developed probably on plateau rock formation. (Table3)

Soils of the windblown formations. These are soils developed from windblown formations. Sandstone and siliceous dolostone. Soils are rich in ironstone concretions, hence their to calcareousness. The soils are yellowish brown (Table 2), mainly sandy loams. Most soils are saline, with low elevation (Table 4).

Soils of the Piedmont plains. These are soils are generally sandy loams, originated from denuded shallow rocky formations salinity decrease, while gypsum increase with depth, (Table 3).

Soils of the Plateau formations. Texture range between sand to sandy loam with slight salinity, shallow rocky with hard pans in two profiles after at 40 cm depth in profile 4 and 28 cm depth in profile 15 after 28 cm. (Table 4). **3-Mineralogy**.

Mineralogical identification in ten clay samples representing soils for different Landforms containing appreciable amounts of clay. Using X-ray diffraction reveals dominance of kaolinite followed by Illite and montmorillonite in soils of coastal plain. Montmorillonite was dominant in the wind-blowen formations followed by kaolinite and Illite. Montmorillonite was dominant followed by kaolinite and Illite in soils of the piedmont landforms. The dominance of Kaolinite in the plateau landform is relatively abundant in limestone. Generally, the identified accessory minerals are dominated by quartz and feldspars. (Table 5 and Fig 4)

T2

t2

Landfom	Sub	Profile	Depth	Particle	size dist	ribution	-		Density	/ Mgm ⁻³
unit	units	No	(cm)	Sand %	Silt %	Clay %	Texture	Gkg ⁻¹	Real	Bulk
	Shallow soils		0-40	77.72	17.09	5.19	SL	467.5	2.64	1.33
	of coarse	1	40-90	78.72	14.08	7.20	SL	573.7	2.59	1.41
	texture with rock outcross.	•	90-150	73.72	17.08	9.20	SL	552.5	2.68	1.43
			0 – 30	70.48	18.26	11.26	SL	765.0	2.59	1.29
Ļ		3	30 – 70	63.55	19.15	17.30	SCL	616.2	2.62	1.32
	oils		70 – 150	67.57	20.17	12.26	SL	658.7	2.64	1.34
	/ S(0 – 20	79.75	10.04	10.21	SL	510.0	2.69	1.35
	day	5	20 – 70	78.70	11.09	10.23	SL	637.5	2.58	1.43
	م کل	0	70 – 110	68.61	18.13	13.26	SL	595.0	2.67	1.41
	anc		110-150	84.78	8.03	7.19	LS	913.7	2.58	1.50
	is c		0 - 20	84.77	3.02	12.12	LS	833.0	2.59	1.30
	d to		20 - 30	68.55	17.73	13.72	SL	671.5	2.67	1.33
pla	an	6	30 - 70	64.62	17.10	18.28	SCL	113.5	2.57	1.35
a	h s		10 - 120	91.83	2.00	0.18	5	969.0	2.68	1.49
ast	ept		0 45	90.03	2.01	2.10	5	900.Z	2.69	1.52
Ö	p d	7	45 100	50.20	19.27	22.40	SOL	425.0	2.09	1.20
	iteo	'	45 - 100	56 12	10.27	23.50	SCL	340.0 199.75	2.07	1.30
	<u>E</u>		0 - 40	63 30	20.25	16.36		701 25	2.00	1.32
	to	٩	40 - 80	57 29	19.24	23.47	SCI	255.0	2.45	1.34
	ate	3	80-120	87.32	8.51	4 17	15	985.0	2.00	1.55
	era		120 -150	87.80	10.03	2.17	S	969.0	2.40	1.59
	lod		0 - 20	82.53	12.31	5.16	15	985.0	2.55	1.59
	≥	16	20 - 60	68 56	15.28	16 16	SCI	361.2	2.60	1.00
			60+	00.00	10.20	10.10	ROCK	001.2	2.00	1.12
		10	0 - 30	74.62	14.12	11.26	SL	488.7	2.44	1.39
	Soil of the lagoonal		30 - 60	72.93	14.13	12.94	SL	552.5	1.59	1.41
			60 - 110	79.64	14.14	6.22	LS	573.7	2.63	1.59
	depressions		110 -150	62.53	14.12	23.35	SCL	658.7	2.54	1.29
	ted rocky ridges and dissected		0 – 30	64.49	21.21	14.30	SL	552.5	2.59	1.32
		8	30 – 80	58.44	24.23	17.33	SL	595.0	2.54	1.33
c			80 – 150	59.85	23.58	16.57	SL	318.7	2.61	1.33
lai			0 – 15	93.71	3.02	3.27	S	357.0	2.59	1.52
<u>a</u>		13	15 – 45	74.57	13.19	12.24	SL	493.0	2.48	1.46
ast		10	45 – 110	76.49	13.14	10.37	SL	646.0	2.54	1.50
ö	ida		110 – 150	82.67	9.05	8.28	LS	446.2	2.54	1.54
U	iso opi		0 - 15	76.62	14.08	9.30	SL	646.0	2.54	1.50
	sl	14	15 - 70	93.74	3.01	3.25	S	403.7	2.58	1.62
	0		70 - 150	76.60	13.08	10.32	SL	36.125	2.52	1.55
Ч Ч	Quartzitic inlandduns	12	<u> </u>	74.59	12.11	13.30	SL	488.7	2.63	1.43
atic	and sheets.		0 15	70.05	10.00	10.00	01	E10.0	0.50	4 47
<u> </u>	Oolitic		15 25	70.00	12.92	12.23	SL	510.0	2.52	1.47
Air Fo	inladdunes	11	15 - 35	68.40	12.07	19.23	SL	7/2 7	2.56	1.49
_	and sheet		<u>35 – 90</u> 00 150	50.40	14 15	26.44	S CI	616.2	2.50	1.30
0 (0	e > 3		90 - 100	76 17	13/3	10.23	S 0L	207.5	2.34	1.40
ike tins	uollov ∺ sollov	2	50 - 100	70.62	15.43	14 27	SI	382.5	2.70	1.43
Pla Pla	ber hal	~	100 - 150	66.6	18 13	15.27	SI	403.7	2.63	1.50
	100200		0 - 20	60.38	26.30	13.32	SI	345.0	2.00	1.30
		4	20 - 40	59.48	27.24	13.28	SI	403.7	2.62	1 43
atio		Ŧ	40+	00.40	-1.27	10.20	Rock	100.1	2.02	1.40
ate m	Shallow rocky		0 – 8	91.73	6.02	2.25	S	318.7	2.59	1.64
For Lo	soils.	15	8 - 28	69.41	17.19	13.40	SL.	467.5	2.54	1.59
			28 +	-	-		Rock		-	

 Table (3): Physical properties of the studied soils of the North-western coast of Egypt.

Notes: (1) Texture : SL: sandy loam; S: Sand; LS: loamy sand ; SCL: sandy clay loam ; CL: clay loam

	Soluble cation						So						
Profile	Depth	S.P	pH in	EC	Gypsum		(mmolcL ⁻¹)			(r	nmolcL	-1)	O.M
No.	Cm	%	past	dSm ⁻¹	G kg ⁻¹	Ca ⁺⁺	Mg ⁺⁺	Na⁺	K⁺	HCO	Cl	SO4	%
	0 – 40cm	30	7.75	1.94	Nil	2.5	7.5	10.56	0.4	2.50	17.0	1.46	0.05
1	40 -90cm	45	8.74	0.64	Nil	0.5	1.5	5.13	0.07	3.50	3.0	0.7	0.10
	90 – 150cm	37	8.45	0.83	Nil	1.5	2.0	6.04	0.13	2.0	6.5	1.17	0,12
	0 – 30cm	29	6.95	11.98	Nil	18.0	22.0	77.13	12.6	3.5	118.0	9.4	0.07
3	30 –70cm	30	7.02	16.62	Nil	39.0	31.0	92.43	10.51	2.0	160.0	15.23	0.29
	70- 150cm	29	7.12	12.86	Nil	28.0	19.0	78.33	8.67	2.0	125.0	7.43	0.30
	0 – 20cm	28.5	8.25	0.73	Nil	2.50	1.65	3.24	0.22	1.3	5.0	1.03	0.11
5	20 – 70cm	31	7.93	8.91	Nil	15.0	10.50	66.09	5.75	2.0	90.75	4.25	0.19
•	70 – 110cm	31	8.21	1.91	Nil	1.0	2.0	16.3	0.29	4.0	13.0	2.35	0.20
	110 – 150cm	28	7.78	5.54	Nil	20.0	18.0	42.43	4.42	2.0	80.0	3.5	0.27
	0 – 20cm	25	7.55	5.80	Nil	12.0	9.0	38.43	1.95	2.5	58.0	0.88	0.08
	20 – 30cm	35	7.44	64.9	Nil	22.0	32.0	621.74	21.51	4.5	655.0	25.5	0.15
6	30 – 70cm	38	7.65	12.75	Nil	15.0	6.0	108.78	2.7	3.0	128.0	1.48	0.17
	70 – 120cm	37	7.67	5.65	NI	13.0	2.0	42.78	0.36	1.5	53.0	3.64	0.11
	120 – 150cm	33	7.60	5.95	NI	12.0	8.0	41.35	0.81	3.0	51.0	8.16	0.28
7	0 – 45cm	37	8.36	0.8	INII	0.5	0.4	7.33	0.27	2.0	5.0	1.5	0.15
'	45 – 100cm	40	8.30	1.19	INII	2.0	1.0	9.77	0.37	1.5	11.0	0.46	0.22
	100 – 150cm	42	8.02 7.60	0.14	INII	2.0	15.0	10.22	0.30	0.4	00.0	2.0	0.41
	0 – 400m	42	7.09	9.14	INII	10.9	15.0	07.00 12.5	3.51	1.5	90.0	3.40	0.22
9	40-600111 80.120cm	42	0.10	11.30	INII Nii	22.0	10.4	72 44	2.47	2.0	112.0	1.1	0.17
	120 150cm	20	7.54	11.30	Nil	23.0	25.0	202.0	1 70	2.0	113.0	6.0	0.25
	0 - 20 cm	30	8 30	0.72	Nil	10	3.0	36	0.35	1.6	5 15	1.2	0.33
16	20 - 60 cm	34	7.96	8 4 4	Nil	10 10	11 9	639.96	6.84	5.0	80.9	6.9	0.03
	60+	04	7.50	0.44	1.411	10.10	Rock	000.00	0.04	0.0	00.0	0.5	0.21
10	0 - 30 cm	31	8.03	39.4	Nil	16.0	24.0	327 59	3.03	20	390.0	34	0.02
	30 – 60cm	28	7 71	68.7	Nil	28.0	45.0	626.20	4 61	2.5	693.0	8.31	0.02
	60 – 110cm	27	7.95	58.6	Nil	24.0	41.0	546.3	4.23	2.0	590.0	9.42	0.24
	110 -150cm	40	7.90	115.0	Nil	25.0	8.0	11458.	6.64	4.0	1152.	28.46	0.27
	0 – 30cm	37	7.66	49.0	Nil	22.0	63.0	433.0	2.95	3.0	505.0	31.0	0.03
8	30 – 80cm	41	7.67	16.36	Nil	26.0	23.0	128.8	1.76	2.0	170.0	7.5	0.17
	80 – 150cm	42	7.77	14.33	Nil	35.0	25.0	89.2	8.1	1.0	130.0	26.3	0.23
	0 – 15cm	25	7.91	1.30	Nil	1.5	3.6	8.2	0.45	2.0	10.0	1.77	0.06
12	15 – 45cm	26	8.56	1.29	Nil	1.0	1.78	11.01	0.4	0.5	12.9	0.79	0.27
15	45 – 110cm	29	8.52	1.85	Nil	3.0	1.0	16.3	0.31	2.5	15.0	3.0	0.25
	110 –150cm	32	8.50	2.14	Nil	2.0	0.6	20.7	0.24	2.2	18.6	2.73	0.34
	0 – 15cm	26	8.22	2.29	Nil	1.0	2.0	20.7	0.56	3.0	20.0	1.3	0.13
14	15– 70cm	24	7.85	4.47	Nil	8.0	9.16	30.22	0.61	3.0	40.0	4.99	0.16
	70 – 150cm	30	8.04	1.57	Nil	9.0	1.0	12.87	0.33	2.0	13.09	1.9	0.23
	0 – 30cm	24	7.65	18.53	NIL	20.0	33.02	148.4	2.41	4.0	190.0	9.83	0.01
12	30 +	24	8.12	5.26	NIL	7.5	6.0	44.03	0.57	2.0	55.0	1.28	0.02
	0 – 15cm	37	7.62	31.3	NIL	35.0	26.0	280.74	1.56	3.0	324.0	17.39	0.09
11	15 –35cm	38	7.52	43.4	NIL	20.0	27.0	429.0	1.31	2.5	580.0	15.67	0.21
	35 –90cm	46	7.29	50.5	NIL	25.0	45.0	451.0	1.18	4.0	523.0	10.0	0.23
	90- 150cm	42	7.33	44.2	NIL	25.0	10.0	448.50	0.87	1.9	470.0	12.47	0.12
	0 – 50cm	27	7.77	11.60	0.75	20.0	11.0	91.74	3.26	4.0	118.0	5.24	0.01
2	50-100cm	42	8.07	2.61	2.6	5.0	6.0	14.63	1.73	3.0	22.0	2.56	0.08
	100 – 150cm	49	7.75	3.60	7.47	15.0	5.0	15.04	1.7	8.36	15.50	12.74	0.14
	0 – 20cm	31	8.12	0.56	NIL	2.0	1.0	3.06	0.09	.95	4.0	1.2	0.01
4	20 –40cm	42	8.45	0.47	NIL	1.68	1.2	2.22	0.07	1.50	3.0	0.67	0.02
	+40			a · -			Rock	(a =-	0.77		10-		
4-	0 – 8cm	23	7.99	2.15	NIL	5.0	4.3	13.78	0.53	3.0	19.0	1.3	0.03
15	8 – 28cm	36	8.01	1.10	NIL	2.0	3.0	6.48	0.24	3.0	10.0	1.72	0.02
1	28+						Rock						

Table (4): Chemical properties of the studied soils

Table (5): Semi – quantitative determination of the mineralogical composition of the clay fraction (<0.002mm) separated from some layers of the studied profiles.

Landforms	Ρ.	Depth	Clay minerals				Accessory minerals								
unit	No	(cm)	Mont	Illite	Kaol	Chl	Quartz	Feld	Dolo	Apat	gyps	Poly	Cal		
Coastal	4	40 - 90	Mod	Few	Com		Com	Tra							
	1	90 -150	Mod	Com	Few	Few	Few			Mod					
plain	9	40 - 70	Tra	Tra	Dom	Tra	Few	Tra							
		70 -110	Mod	Few	Com	Few	Mod	Few					1		
Wind- blown formation	12	0 - 30	Dom	Few	Mod	Few	Few	Tra	Tra						
		30 - 80	Mod	Few	Com	Mod	Few	Tra							
Didmont	2	50 -100	Mod	Few	Com	Few	Few	Tra							
Fightion		100150	Dom	Few	Few	Tra	Few	Tra			Tra	Mod			
Distant	4	0 - 20	Tra	Few	Dom	Tra	Mod	Tra	Tra						
Flateau	4	20 - 40	Mod	Few	Com	Few	Mod	Tra					Tra		
Dom = doi	nina	nt (>40%)	Tra	Tra = trace (<5%)					= absent						
Com = cor	nmoi	n (25-40 %)) Mo	Mod =moderate (15-25%)					Few = (5-15%) 1`q						

Fig (4): X-ray diffraction patterns of the clay fractions separated from some layers of soil profiles

REFERENCES

- Abdel Razik, F.S. (2005). Origin mode of formation and uniformity of some soils in the north western coast of Egypt. Egypt. J. of App. Sci. 20 (7): 377 – 388.
- Abdel-Latif, M.M.(2003). Diagnosis and evaluation of some soils in the Northwest coast of EGYPT" Ph.D. thesis, Fac. Agric., Zagazig Univ. Benha Branch, EGYPT.

- Amon, (1975). Munsell soil color charts. Macbeth Division of kollmorgen corp., 2441 North calvert street, Baltimore, Maryland 21218
- Black, C.A., Evans D. D, Ensmingar L. E., White, j. L., Clark, F. T. (1965): Methods of soil analysis . Agronomy Series No 9, Am. Soc. Agronomy, Inc. Medsion wiscnsin, USA
- Brown, G. (1961): The X–ray indentification and crystal structures of clay minerals, Min. Soc. of Great Britain, Monograph, London.
- Dixin, j.B. and Weeds, S.B. (1977): Minerals in soil environments Soil Sci Soc. Amer. Med. Wisc USA.
- Gjems, O. (1967): Studies on clay minerals and clay minerals formation in soil profile in Scandinavia. Jaurdunder Sokelsns Sertykk. 128 :305 407.
- Hammad, m. A. and Abdel salam, M. A. (1968). The genesis and formation of calcic horizons of the soils of the western coast of U A R Egypt. J. Soil Sci.
- Hammad, M. A. Hassan, S. and Hamdi, H. (1977). Soil formation and pedological features of the soils of the Natrun-Maryout area. Egypt J. Soil Sci., 17: 11 21.
- Hammad, M.M.,(1976) Preliminary study of the soil landscapes and sedimentary history of the Natrun –Maryut Area, Egypt., Fac. Agric./ Al Azher Agric. Res. Bul. NO 1 Jan. 1976.
- Metwally, M. A. (1987). Capability classification of the calcareous soil at the North-wester coast of Egypt as related to pedogenet classification. Ph.D. Thesis soil Sci. Fac. of Agric. Zagazig Univ. Benha Branch.
- piper, C. S.(1950): "Soil and plant analysis: Inter. Science. Publisher, New York.
- Whittig, L. D. (1965): X-ray diffraction technique for mineral identification and minerlogical composition. In method of soil analysis. Black, C.A.ced American Society of Agronomy. Inc. publishr Madison Wisconsin, USA.
- Whittig, L. D. and Jackson, M.L. (1955). Interstratified layer silicate in some soils of the Northern Wisconsin clay and clay minerals 3rd, Nat Conf. 1954 322-336.
- Vieillefon, J. (1976). Inventaive critique de sols gypseux de Tunisie. ORSTOM, Divison des sols, Tunisie, ES 98 ORES, Cited by FAO (19

دراسة الخصائص الفيزوكيميائية و المنرلوجية و المورفولوجية لاراضى الساحل الشمالى الغربى – مصر حسن حمزة عباس ، محمد السيد على ، ابوالنصر هاشم عبد الحميد ، ابوبكر عبد المنعم رمضان و * ميمونة السيد محمد دياب قسم الاراضى - كلية الزراعة بمشتهر - جامعة بنها *هيئة الرقابة النووية والاشعاعية - بمصر

اجريت هذه الدراسة على بعض اراضى الساحل الشمالى الغربى بمصر والواقعة تحت اربع وحدات جيمورفولوجية رئيسة مختلفة حيث تتميز بوجود تغيرات فى ظروف تكوين هذه الأراضى وغالباً ما تعزى الى المناخ. وقد اوضحت الدراسات المورفولوجية والطبيعية والكيميائية والمعدنية ان هذه الأراضى تحتوى على افاق تشخيصية وخاصة افق ال Salic & calcic horizons وايضاً وجود Hard pan فى بعض القطاعات الأرضية وتبين من التحليل المنرولوجى ان الكاولينيت يسود فى المواتي وايت ثم الكاولينيت فى plateau formation ثم الأليت فى Piedmont like plains & widblowen formation .

> قام بتحکیم البحث أ.د / أحمد عبد القادر طه أ.د / على احمد عبد السلام

كلية الزراعة – جامعة المنصورة كلية الزراعة – جامعة بنها

J. Soil Sci. and Agric. Eng., Mansoura Univ., Vol. 3 (9): 885 - 898, 2012

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} coarse texture with \\ rock outcross. \end{array} & 1 \end{array} & \begin{array}{c} 31^{\circ} 10^{\circ} 40.00 \ R \\ 27^{\circ} 20^{\prime} 12.36^{\prime\prime\prime} E \end{array} & \begin{array}{c} \begin{array}{c} 40.90 \ 10YR 8/2 \ 10YR 7/1 \end{array} & SL \end{array} & MA & SO & SST & SPL & AS \\ \hline 90.150 \ 10YR 8/4 \ 10YR 7/4 \end{array} & SL & MA & SHA & NST & NPL \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} s \\ s \\ \end{array} & \begin{array}{c} 31^{\circ} 11^{\prime} 43.62^{\prime\prime\prime} N \\ 27^{\circ} 47^{\prime} 59.94^{\prime\prime\prime} E \end{array} & \begin{array}{c} \begin{array}{c} 0.30 \ 7.5YR 7/4 \ 7.5YR 6/4 \end{array} & SL & MA & SHA & SST & SPL & AS \\ \hline 30.70 \ 10YR 8/2 \ 10YR 7/1 \end{array} & SL & MA & SHA & SST & SPL & AS \\ \hline 30.70 \ 10YR 8/2 \ 10YR 7/1 \end{array} & \begin{array}{c} SL & MA & SHA & SST & SPL & AS \\ \hline 30.70 \ 10YR 8/2 \ 10YR 7/1 \end{array} & \begin{array}{c} SL & MA & SHA & SST & SPL & AS \\ \hline 70.150 \ 7.5YR 7/4 \ 7.5YR 6/4 \end{array} & \begin{array}{c} SL & MA & SHA & SST & SPL & AS \\ \hline 70.150 \ 7.5YR 7/4 \ 7.5YR 6/4 \end{array} & \begin{array}{c} SL & MA & HA & ST & PL & AS \\ \hline 70.150 \ 7.5YR 8/2 \ 7.5YR 7/1 \ SL & SG \ LO & NST \ NPL \end{array} & \begin{array}{c} AS \\ \end{array} & \begin{array}{c} ST & 31^{\circ} 03^{\prime} 11 \ 57^{\prime\prime} N \end{array} & \begin{array}{c} 0.20 \ 7.5YR 8/2 \ 7.5YR 7/1 \ SL & SL & MA \end{array} & \begin{array}{c} MA & HA \ SST \ SPL \end{array} & \begin{array}{c} ST & SPL \ AS \end{array} & \begin{array}{c} AS \\ \end{array} & \begin{array}{c} AS \\ \end{array} & \begin{array}{c} 31^{\circ} 03^{\prime} 11 \ 57^{\prime\prime} N \end{array} & \begin{array}{c} 0.20 \ 7.5YR 8/2 \ 7.5YR 7/1 \ 7.5YR 7/1 \ SL \ SL \ SL \end{array} & \begin{array}{c} MA \ SL & ST \ SPL \end{array} & \begin{array}{c} AS \\ \end{array} & \begin{array}{c} AS \\ \end{array} & \begin{array}{c} AS \end{array} & \begin{array}{c} 31^{\circ} 03^{\prime} 11 \ 57^{\prime\prime} N \end{array} & \begin{array}{c} 31^{\circ} 0.20 \ 7.5YR 8/2 \ 7.5YR 7/1 \ SL \ SL \ SL \end{array} & \begin{array}{c} AS \ AS \ AS \ AS \end{array} & \begin{array}{c} AS \\ \end{array} & \begin{array}{c} AS \ AS \end{array} & \begin{array}{c} AS \ AS $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
3 31° 11′ 43.62″ N 27° 47′ 59.94″ E 0-30 7.5YR 7/4 7.5YR 6/4 SL MA SHA SST SPL AS 30 31° 11′ 43.62″ N 27° 47′ 59.94″ E 30-70 10YR 8/2 10YR 7/1 SCL MA HA ST PL AS 30 70.150 7.5YR 7/4 7.5YR 6/4 SL MA HA ST PL AS 30 0.20 7.5YR 7/4 7.5YR 7/1 SL SG LO NST NPL AS 31° 03′ 11 57″ N 20.70 10YR 8/3 10YR 7/4 SL MA HA SST SPL AS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
21 47 33.34 L 70-150 7.5YR 7/4 7.5YR 6/4 SL MA HA SST SPL 0 0 0.20 7.5YR 8/2 7.5YR 7/1 SL SG LO NST NPL AS 31° 03' 11 57" N 20-70 10YR 8/3 10YR 7/4 SL MA HA SST SPL
δ 0-20 7.5YR 8/2 7.5YR 7/1 SL SG LO NST NPL AS δ 31° 03′ 11 57″ N 20.70 10YR 8/3 10YR 7/4 SL MA HA SST SD AS
S 28° 00′ 05.10″ E 70-110 7.5YR 8/2 7.5YR 7/4 SL MA HA SST SPL AS
면 110-150 10YR 7/1 10YR 8/3 LS MA SO SST SST
δ 0-20 10YR 8/2 10YR 7/4 LS MA SO SST SPL AS
9 20-30 10YR 8/2 10YR 7/1 SL MA HA SST SPL AS
6 31 04 00.75 M 30-70 10YR 8/2 10YR 7/3 SCL MA SO ST PL AS
70-120 10YR 8/2 10YR 7/1 S SG LO NST NPL AS
5 120-150 10YR 8/2 10YR 7/1 S SG LO NST NPL
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 31 04 06.68 M 45-100 7.5YR 7/3 7.5YR 6/4 SLC MA HA ST PL CS
.= 28 14 00.78 E 100-150 10YR 8/3 10YR 7/4 SCL SMA HA ST PL
8
Ξ
₩ 9 28°28′16.1″ E 80-120 7.5YR 7/4 7.5YR 6/4 SL MA HA SST SPL AS
Δ 9 120+ 10YR 8/3 10YR 8/3 S SG LO NST NPL
S 200 to/ ot to// N 0-20 10YR 8/4 10YR 6/6 LS MA SO NST NPL AS
16 30° 48' 04.15° N 20-60 10YR 8/4 10YR 7/6 SCL MA SO SST SPL AS
28 56 06.55 E 60+ ROCK
Soil of the lagoonal 0-30 10YR 8/4 10YR 7/4 SL MA SO SST SPL AS
depressions 30° 57′ 07.93″ N 30-6010YR 8/310YR 7/2 SL MASHASSTAS
10 28° 45′ 07.70″ E 60-110 10YR 8/3 10YR 7/2 SL MA SHA SST SPL AS
110+150 10YR 7/2 10YR 6/1 SCL MA HA ST PL
9 0.0 col active 0.30 10YR 8/4 10YR 7/3 SL MA SO SST SSP AS
8 31° 02' 08.48" N 30-80 10YR 8/2 10YR 7/4 CL MA SO SST SSP AS
28° 22° 13.05° E 80+150 10YR 8/3 10YR 7/2 CL MA SO SST SSP
0-15 10YR 8/4 10YR 7/1 S MA SO SST SPL AS
2 5 30° 56′ 12.78″ N 15-45 10YR 8/3 10YR 6/4 LS MA HA ST PL AW
13 28° 18' 10.48" E 45-110 10YR 8/3 10YR 7/2 SL MA SO SST SPL AS
110-150 10YR 8/2 10YR 7/2 LS MA SO SST SPI
Image: Second state
2 0 14 30° 57′ 16.56″ N 15-70 10YR 8/4 10YR 6/6 S SG LO NST NPL AS
0 " 27 °08' 15.83" E 70-150 10YR 8/3 10YR 7/2 SL MA SHA SST SPL

Table (2): Landform unit morphological, characteristics of soil of the North- western coast of Egypt.

Table cont:-

Landforn Sub unit . units		Drofilo		Donth	col	our	Field		Co	onsistend	ce"	Pour
		No.	location	Cm	Dry	Moist	texture	Structure	Dry	Stick	Plasti c	dary
Quartzitic inlanddunes and sheets.	Quartzitic		30° 52 [/] 772 ^{//} N 28° 31 [/] 724 ^{//} E	0-30	10YR 8/4	10YR 7/6	SL	MA	SO	SST	SPL	AS
	inlanddunes and sheets.	12		30+	10YR 8/4	10YR 7/3	SL	MA	HA	SST	SPL	
dbl	Oplitia		30° 50 [′] 404 ^{′′} N 28° 47′ 602 ^{′′} E	0-15	10YR 8/2	10YR 7/2	SL	MA	SO	SST	SPL	AS
	inloddunos	11		15-35	10YR 8/2	10YR 7/3	SL	MA	SHA	SST	SPL	AS
	and sheet	11		35-90	10YR 8/2	10YR 7/7	SCL	WE CV AB	FI	ST	PL	AS
	and sheet			90-150	10YR 8/1	10YR 7/2	SCL	WE MV AB	FI	ST	PL	
Dend biedmontl shallow Sha Sha	Denuded		31° 11′ 904″ N	0-50	7.5YR 7/4	7.5YR 5/4	SL	MA	SO	SST	SPL	CS
	shallow rocky	2		50-110	10YR 8/2	10YR 7/1	SL	MA	SO	SST	SPL	AS
	soils. Shallow	2	27° 26′ 208″ E	100-150	7.5YR 8/2	7.5YR 7/2	SCL	MA	FI	ST	PL	
			31° 17′ 388″ N 27° 17′ 936″ E	0-20	7.5YR 7/4	7.5YR 6/4	L	MA	FI	ST	PL	AS
n u		4		20-40	7.5YR 7/3	7.5YR 6/3	L	MA	HA	ST	PL	AS
ati	Shallow rooky			40+				ROCK				
lat	Shallow TOCKy		20° 57' 754"N	0-8	10YR 8/4	10YR 6/6	S	SG	LO	NST	NPL	AS
<u> </u>	30115.	15	30 37 754 N $27^{\circ} 59^{\circ} 699^{\circ \circ} \text{E}$	8-28	10YR 8/3	10YR 7/6	L	MA	SHA	ST	PL	AS
			21 38 688 E	28+				ROCK				

Notes: (1) Texture : SL: sandy loam; S: Sand; LS: loamy sand ; SCL: sandy clay loam ; CL: clay loam