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Abstract 
Assessment and understanding of soil available phosphorus (P) and potas-

sium (K) content distribution is an important part of deciding whether or not the 
fertilization is appropriate or even necessary for a soil. So, the main objective of 
this study is to evaluate and map the spatial variability of the available soil P and 
K using the geostatistical technique. Georeferencing surface soil samples (0-25 
cm) were collected from four sites representing course-textured soils in El-
Kharga and El-Dakhla oases. Ordinary Kriging (OK) technique was applied for 
the spatial interpolation of available soil P and K contents. The spatial distribu-
tion of available P and K was analyzed and mapped by Arc GIS (version 10.2.2). 
The results showed that concentrations of the available soil P and K ranged from 
0.35 to 85.02 mg/kg and from 11 to 6204 mg/kg, respectively. The nugget-to-sill 
ratio suggested a strong spatial dependence for both available soil P and K in all 
sites of the study area, indicating that the available soil P and K were mainly con-
trolled by intrinsic factors. The interpolation models varied for both P and K as 
well as from site to another site across the study area. Cross-validation proved 
that the chosen models were the best fitted semivariogram models to map spatial 
distribution of the available soil P and K. The produced maps of spatial distribu-
tions for soil P and K availability were characterized by high accuracy. So, site 
specific management can be planned and considered to be applied for this study 
area. Also, these maps can facilitate and help in making decisions for choose ap-
propriate fertilization policies for these soils as well as to avoid adding fertilizers 
for sites which do not need to be fertilized. Our results confirmed that the inte-
gration of statistics, geostatistics and GIS provides a powerful tool to assess, de-
scribe and map the spatial variability of the available soil phosphorus and potas-
sium. As well as to develop high resolution maps that may aid variable rate man-
agement (e.g. fertilization). 
Keywords: Mapping, Geostatistics, Phosphorus, Kriging, Potassium, GIS, New valley.  
 

1. Introduction 
New Valley governorate is a 

part of the western desert and lies in 
the south-western part of Egypt. It 
covers an area of about 440,098 
km² and represents about 44% of 
the total area of Egypt. It includes 
three big oases namely El-Kharga, 

El-Dakhla and El-Farafra. The main 
occupation for inhabitants in this 
governorate is agriculture. The cli-
mate of New Valley governorate is 
extremely arid with long hot and 
rainless weather in summer and mild 
with rare precipitation in winter. The 
groundwater is the only water re-
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source for all activities in these oa-
ses. New Valley governorate is con-
sidered one of most promising areas 
for the agricultural development in 
Egypt. So, it is important to quantify 
the variability in soil nutrient stocks 
of this area.  

The soil phosphorus (P) and po-
tassium (K) contents play an impor-
tant role in plant growth and crop 
yield. They can limit or co-limit the 
plant growth (Tripler et al., 2006; Li 
et al., 2016). Human activities such 
as fertilization, reclamation and 
weeding have effects on biogeo-
chemical cycling of P and K. 
Thereby, it alters the pattern, magni-
tude and extent of nutrient limitation 
on land (Marklein and Houlton, 
2012). Also, soil P distribution is in-
fluenced by water movement, as dis-
solved P is carried by runoff and 
bound P can be associated with sus-
pended sediment (Lin, et al., 2009; 
Elrashidi et al., 2012). 

In most cases, soils in the same 
area are characterized by a highly 
spatial and temporal variability. So, 
the spatial distribution of soil nutri-
ents under agricultural systems is af-
fected by natural conditions  of the 
soil formation  such as parent  mate-
rial,  topography,  climate, biological 
activities and natural soil properties 
(Brady and Weil, 2000; Tang and 
Yang, 2006) as well as management 
practices (Huang, 2000; Barton et al., 
2004; Atreya et al., 2008). 

The geostatistical analysis is an 
important tool of accurately predict-
ing soil nutrient distributions at dif-
ferent spatial scales. According to 
Goovaerts (1999), geostatistics is 
used to estimate and map soils in un-
sampled areas. It provides a means of 

interpolating values for points that 
are not physically sampled using 
knowledge about the underlying spa-
tial relationships in a data set; it is 
based on regionalized variable theory 
of an optimal interpolation estimate 
for a given coordinate location; it 
provides high confidence in the in-
terpolated values. The approach re-
quires a fairly dense sampling net-
work and thus incurs a relatively 
high cost (Wu et al., 2003; Sauer et 
al., 2006; Robertson, 2008; Fu et al., 
2013, Liu et al., 2013). 

Kriging is a group of estima-
tors used to interpolate spatial data. 
It includes ordinary kriging, univer-
sal kriging, indicator kriging, co-
kriging and others. The choice of 
which kriging to be used depends on 
data characteristics and the type of 
spatial model desired. The most 
commonly used method is the ordi-
nary kriging (OK), which was se-
lected for this study because of its 
simplicity and prediction accuracy in 
a comparison with other kriging 
methods (Isaaks and Srivastava, 
1989). The ordinary kriging (OK) is 
a spatial estimation method where the 
error variance is minimized (Yama-
moto, 2005). The main objective of 
this study is to determine and map 
the soil available contents of P and 
K and their spatial variability in the 
study area using the geostatistical 
technique. 
2. Materials and Methods 

2.1 Study Area 
The study area involved four 

sites which were selected from El-
Kharga and El-Dakhla oases, New 
Valley, Egypt (Figure 1) to evaluate 
and map the spatial variability of the 
available P and K using geostatistical 
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technique. Two sites were located in 
El-Kharga oasis (El- Mounira and 
Bolaq) and the other ones were 
found in El-Dakhla oasis (Zakhera 
and Mut). El- Monira site (A) is lo-
cated between latitudes of 
25°37'11.34" and 25°37'19.32" N 
and longitudes of  30°38'21.66"  and  
30°38'40.02" E, while Bolaq site  (B) 
is located between latitudes of 
25°11'14.40" and 25°12'56.22" N and 
longitudes of 30°31'9.18" and 
30°32'8.52" E. Moreover, Zakhera 
site (C) is situated between latitudes 
of 25°30'39.00" and 25°31'11.64" N 
and longitudes of 29°16'50.04" and 
29°17'56.58" E. In addition, Mut site 
(D) lies between latitudes of 
25°25'39.24" and 25°26'59.34" N and 
longitudes of 28°58'5.70" and 
28°58'54.96" E. 

2.2 Soil Sampling and Labo-
ratory Analysis 

Soil samples were collected 
from cultivated areas in the chosen 
sites in the first week of August 2015. 
Locations of these soil samples were 
recorded in the field by the Global 
Positioning System “Garmin GPS� 
and plotted on the location maps 

(Figure 2). One hundred and thirty–
seven soil samples (50, 25, 30 and 32 
samples) were collected from sites A, 
B, C and D, respectively to represent 
the study area. The samples were col-
lected from the surface layer (0-25 
cm) of the soil. They were taken using 
the systematically sampling grid 
within a distance between two conse-
quent samples of 200m in sites A, B 
and C and 50m in site D. 

The collected soil samples 
were air-dried, crushed,  sieved 
through a 2-mm sieve and then ana-
lyzed. Some physical and chemical 
properties of these soil samples (soil 
texture, SP, pH, ECe, OM and 
CaCO3) were determined according 
to Jackson (1973) and Page et al., 
(1984), (Table 1). The available soil 
phosphorus (P) was extracted by 0.5 
M NaHCO3 at pH 8.5 (Olsen et al., 
1954) and determined using spectro-
photometer at wavelength 660 nm. 
The available potassium (K) was 
extracted from the soil samples 
by1M ammonium acetate at pH 7.0 
(Jackson, 1973) and then measured 
using the flame photometer. 
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Figure (1): The location map of the study area.
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Figure (2): Locations of the soil samples collected from sites A, B, C and D. 
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Table 1. Descriptive statistics of some soil properties and soil texture of the study 
sites. 

property Site Minimum Maximum Mean SD 
SP (%) A 34.3 40.8 37.7 1.7 
 B 15.8 27.0 20.0 3.1 
 C 17.9 42.5 31.9 7.7 
 D 18.0 36.9 24.7 5.4 
pH (1:1) A 7.6 8.2 7.9 0.2 
 B 7.9 9.1 8.5 0.3 
 C 7.2 8.7 8.0 0.4 
 D 7.6 9.1 8.5 0.3 
ECe (dSm-1) A 2.7 19.0 9.3 4.9 
 B 1.3 29.3 4.9 8.4 
 C 1.6 64.5 8.7 14.1 
 D 0.6 34.7 8.4 6.7 
CaCO3 (%) A 8.7 20.4 14.7 3.7 
 B 2.6 41.2 21.4 8.5 
 C 2.2 66.0 18.0 14.1 
 D 0.9 79.9 26.9 16.5 
OM (%) A 0.10 0.82 0.42 0.2 
 B 0.10 0.88 0.25 0.2 
 C 0.00 0.73 0.27 0.2 
 D 0.00 0.94 0.36 0.3 
Texture A Sandy loam 
 B Sand, Loamy sand 
 C Sand, Loamy sand, Sandy loam 

 D Sand, Loamy sand, Sandy loam 
SP=Saturation Percentage, SD= Standard Deviation.  
 
2.3. Statistical and Geostatistical 
Analyses 

The statistical analysis includ-
ing minimum, maximum, range, 
mean, standard deviation, coefficient 
of variation, skewness and kurtosis, 
which are generally accepted as indi-
cators of the central tendency, were 
estimated by using SAS software ver-
sion 11. Geostatistical analyses and 
the distribution maps of the available 
soil P and K contents were produced 
by ArcGIS (10.2.2). 

Geostatistical analysis first to 
fully explored the data in which the 
histogram, normality, trend of data, 
semivariogram cloud and cross co-
variance cloud of the raw data were 

observed (Sarangi et al., 2005). In 
ArcGIS geostatistical analyst, the his-
togram and normal QQPlots tools 
were used to see what transforma-
tions were needed to make the data 
more normally distributed. Histogram 
and normal QQPlots analysis were 
applied for both available P and K of 
the investigated soil samples to check 
its data to see if it have normal distri-
bution or not. Logarithmic transfor-
mation had been used for P and K 
content data to normalize too highly 
skewed and outlier data sets because 
kriging methods work best if the data 
is approximately normally distributed 
(Johnston et al., 2001). The 
semivariogram models were chosen 
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from a set of mathematical functions 
that describe spatial relationships and 
usually fitted by weighted lost 
squares, range, nugget and sill and 
then used in the spatial interpolation 
method of kriging (Krige, 1951; 
Matheron, 1971). Ordinary Kriging 
(OK) method was used in the present 
study as interpolation method be-
cause it is simple and has high accu-
racy for prediction in comparison to 
other kriging methods. 

According to Journel and Hui-
jbregts (1978), the semivariance func-
tion γ(h) was computed as the half of 
the expected squared difference be-
tween values at locations separated 
by a given lag and was used to ex-
press spatial variations. 
Semivariograms were calculated us-
ing the following equations 1 and 2:  

                                   (1) 
Where: N(h) is the number of 

sample pairs points that are located 
by a particular distance (h) from each 
other; Z(xi) and Z(xi+h) are the val-
ues of regionalized variable at loca-
tion xi and (xi+ h), respectively.   

                       (2) 
Where, Z*(Xo) is the estimated 

variable at Xo location, Z*(Xo) is 
values of investigated variable at Xi 
location and λi is the statistical 
weight that is given to Z(Xi) sample 
located near Xo. N is the number of 
observations in the neighborhood of 
estimated point. Accuracy assessment 
of interpolation was done by using 
Cross-validation methods (Goovaerts, 
1999). 

In this study, spatial parameters 
such as nugget, sill and range were 
calculated by using the 
semivariogram model, which pro-
vides information about the structure 
as well as the input parameters for the 
kriging interpolation. Nugget (C0) is 
the variance at zero distance, sill 
(C+C0) is the lag distance between 
measurements at which one value for 
a variable does not influence 
neighboring values and range (a) is 
the distance at which values for one 
variable becomes spatially dependent 
of another (Figure 3). 

 

 
Figure (3): A variogram illustrating the relationship between variogram parameters (nugget, 

partial sill, and sill) and sample separation distance. 
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Eleven semivariogram models 

(circular, spherical, tetraspherical, 
pentaspherical, exponential, gaussian, 
rational quadratic, hole effect, k-
bessel, j-bessel and stable) were 
tested for both available soil P and K 
in all study sites data set. Prediction 
performances were assessed by cross 
validation, which examines the accu-
racy of the generated surfaces. For a 
model that provides accurate predic-
tions, the standardized mean error 
(MSE) should be close to zero, the 
root-mean-square error (RMSE) and 
average standard error (ASE) should 
be as small as possible (useful when 
comparing models), and the root 
mean square standardized error 
(RMSS) should be close to one 
(Johnston et al., 2001). 
3. Results and Discussion 

3.1 Descriptive Statistics 
The descriptive statistics 

showed considerable variations in 
soil contents of available phosphorus 
and potassium in all studied sites as 
shown in Table (2). The data revealed 
that the available P soil content var-
ied in the range of 4.4 to 85.0 mg/kg 
with mean of 18.6mg/kg, from 2.2 to 
41.0 mg/kg with mean of 16.8 mg/kg, 
from 0.4 to 25.5 mg/kg with mean of 

6.1 mg/kg and from 5.5 to 29.6 
mg/kg with mean of 16.4 mg/kg, in 
these respective sites A, B, C and D, 
respectively. While, the soil available 
K ranged from 52 to 1883 with mean 
of 359, from 217 to 6204 with mean 
1050, from 268 to 1986 with mean of 
721 and from 11 to 762 with mean of 
168 mg/kg in the studied sites A, B, 
C and D. The available soil phospho-
rus and potassium of the studied soils 
have very high differences between 
their minimum and maximum values, 
which indicate that they have a lack 
of homogeneous distribution in all 
studied sites (Table 2).  

The standard deviation (SD) is a 
measure that is used to quantify the 
amount of variation or dispersion of a 
set of data values. In this study, the 
results showed that the standard de-
viation (SD) values for the available 
soil P ranged from 4.6 to 13.2 mg/kg 
and varied from 170.5 to 1357.9 
mg/kg for the available soil K. A low 
standard deviation indicates that the 
data points tend to be close to the 
mean of the set, while a high standard 
deviation means that the data points 
are spread out over a wide range of 
values.  

 
Table 2. Descriptive statistics of available soil phosphorus (P) and potassium (K) of the 

study sites. 
 

Nutrient Site Min. Max. Mean SD CV (%) Kurtosis Skewness 
P (mg/kg) A 4.4 85.0 18.6 13.2 70.9 12.5 2.9 

 B 2.2 41.0 16.8 9.0 53.4 1.2 0.9 
 C 0.4 25.5 6.1 4.6 76.5 10.3 2.6 
 D 5.5 29.6 16.4 6.1 37.3 -0.3 0.6 

K (mg/kg) A 52 1883 359 290.2 80.8 14.8 3.1 
 B 217 6204 1050 1357.9 129.4 9.9 3.1 
 C 268 1986 721 280.4 38.9 14.6 3.2 
 D 11 762 168 170.5 101.6 4.1 2.0  

   SD = Standard Deviation; CV = Coefficient of Variance 
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The coefficient of variation 
(CV) is a useful statistic for compar-
ing the degree of variation from one 
data series to another, even if the 
means are drastically different from 
one to another. The coefficient of 
variation (CV) that is less than 10% 
indicates a low variability, 10%-90% 
has a moderate variability, and CV 
greater than 90% shows high variabil-
ity (Fang et al., 2012). In this study, 
the CV of the available soil P varied 
from 37.3 to 76.5 % which indicated 
that the studied soil samples had 
moderate variability of the available 
P in all studied sites. However, the 
available soil K had a moderate to a 
high variability where the CV values 
ranged between 38.9 and 129.4% 
among all the study sites. On the 
other hand, the moderate variability 
of the available soil K occurred in the 
studied soil samples of sites A and C, 
while the high variability was found 
in soils of sites B and D. The moder-
ate and high variability of the avail-
able soil P and K may be due to the 
human activities and natural condi-
tions such as agricultural manage-
ment practices and soil characteris-
tics. 

Skewness is a term in statistics 
used to describe the asymmetry from 
the normal distribution in a set of sta-
tistical data. Skewness can come in 
the form of a negative or positive 
value, depending on whether data 
points are skewed to the left, nega-
tive, or to the right, positive of the 
data average. A data set that shows 
this characteristic differs from a nor-
mal bell curve. The data of the avail-
able soil P and K contents of this 
study were skewed and needed to 
transform to be close to the normal 

distribution. The skewness values 
were positive and ranged between 0.6 
and 2.9 for the available soil P con-
tent and between 2.0 and 3.2 for the 
available soil K content. Similar to 
skewness, kurtosis is a descriptor of 
the shape of a probability distribu-
tion. All values of kurtosis were posi-
tive except the value for the available 
soil P in site D which was negative 
(Table 2). It ranged between -0.3 and 
12.5 for soil P content, while the kur-
tosis value of the available soil K var-
ied from 4.1 to 14.9. Estimating both 
skewness and kurtosis values, the 
data of the available soil P and K 
needed to be normally distributed by 
using the geostatistical analysis. 
Therefore, a log-transformation was 
applied. 

3.2 Availability Assessment of 
Soil P and K in the Studied Sites 

According to Horneck et al., 
(2011), the P and K availability in 
soils can be classified as shown in 
Table (3). Generally, according to 
this classification, that these soils 
have a moderate soil available P con-
tent in all sites except site C which 
has a low available soil P. Moreover, 
these soils have moderate, high and 
very high available K levels in sites 
D, A, C and B, respectively. Based on 
the mean available P and K values 
(Table 2), the studied sites were in 
the order of A> B> D> C in  their 
richness in the available soil P, while 
they were in the order of B> C> A> 
D in their contents of available soil 
K.  

The high values of soil available 
P and K contents of these soils may 
be related to the high P and K fertili-
zation rates and to the soil parent ma-
terial richness in some sources of 
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them such as phosphate rock and 
shale, as well as the low leaching 
processes in the studied sites. Site (A) 
has the highest availability of the soil 
P because the soils of this site have 

more suitable properties such as low 
CaCO3 and pH, high SP and OM, as 
well as suitable texture for P avail-
ability than other sites (Table 1).  

 
Table 3. Classification of P and K availability in soils. 

Classification 
 Low Moderate High Very high 

P (mg/kg) <10 10–25 25–50 >50 
K (mg/kg) <150 150–250 250–800 >800 

 (Adopter from Horneck et al., 2011) 
 

3.3. Geostatistical Analyses of 
Available Soil P and K Contents. 

3.3.1 Exploratory statistics 
and data analysis 

Available soil P and K in all 
study sites were checked by histo-
gram and normal QQPlots to see if 
they show a normal distribution pat-
tern or not. Normal QQPlots provide 
an indication of unvaried normality. 
If the data are asymmetric (i.e., far 
from normal), the points will deviate 
from the line. According to the 
QQPlots and histogram analysis, it 
was clear that both available soil 
phosphorus and potassium contents 
deviated from the normal distribution 
except the available soil P in site B 
which showed a normal distribution. 
Therefore, a log-transformation was 
carried out to the data of all sites to 
normalize their distribution except 
data of site B in case the available P.  

Figure (4) showed some exam-
ples of the normal QQPlots and the 
histogram analysis for the available 
soil P and K data. The histogram il-
lustrated a unimodle shape for the 
original data of the available soil P in 
site B and logarithmic transformed 
data of the other sites for both avail-
able P and K. By the same way 
QQPlots showed that the points were 
approximately on the line for the 
original data of the available soil P in 
site B but logarithmic transformed 
data were done the other sites. The 
skewness values which close to zero 
and kurtosis values which close to 3.0 
indicated that the original data of the 
available soil P in site B and loga-
rithmic transformed data of the other 
sites did not deviate from the normal 
distribution (Figure 4). 
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Dataset  10
-1

Frequency

0.22 0.61 0.99 1.38 1.77 2.16 2.55 2.94 3.32 3.71 4.1
0

1.6

3.2

4.8

6.4

8
Count
Min
Max
Mean
Std. Dev.

 : 25
 : 2.17
 : 41
 : 16.789
 : 8.9566

Skewness
Kurtosis
1-st Quartile
Median
3-rd Quartile

 : 0.79635
 : 3.7565
 : 11.03
 : 16.12
 : 21.208

Histogram
Transformation: None

Dataset : point_3 Attribute: availabl_1
Standard Normal Value

Dataset  10
-1

-2.05 -1.64 -1.23 -0.82 -0.41 0 0.41 0.82 1.23 1.64 2.05
0.22

0.99

1.77

2.55

3.32

4.1

Normal QQPlot
Transformation: None

Dataset : point_3 Attribute: availabl_1  
Original data of the available soil P in site B as an example of normally distributed data. 

Dataset  10
-2

Frequency  10
-1

0.11 0.86 1.61 2.36 3.11 3.87 4.62 5.37 6.12 6.87 7.62
0

0.28

0.56

0.84

1.12

1.4
Count
Min
Max
Mean
Std. Dev.

 : 32
 : 11
 : 762
 : 167.72
 : 170.45

Skewness
Kurtosis
1-st Quartile
Median
3-rd Quartile

 : 1.8957
 : 6.3003
 : 62
 : 98.5
 : 196.5

Histogram
Transformation: None

Dataset : point_2 Attribute: availabl_2  
Standard Normal Value

Dataset  10
-2

-2.15 -1.72 -1.29 -0.86 -0.43 0 0.43 0.86 1.29 1.72 2.15
0.11

1.61

3.11

4.62

6.12

7.62

Normal QQPlot
Transformation: None

Dataset : point_2 Attribute: availabl_2  
Original data of the available soil K in site D as an example of deviated data from normal distribution. 

Dataset

Frequency

2.4 2.82 3.25 3.67 4.09 4.52 4.94 5.36 5.79 6.21 6.64
0

1.8

3.6

5.4

7.2

9
Count
Min
Max
Mean
Std. Dev.

 : 32
 : 2.3979
 : 6.6359
 : 4.6932
 : 0.96983

Skewness
Kurtosis
1-st Quartile
Median
3-rd Quartile

 : -0.15717
 : 2.9708
 : 4.1271
 : 4.5885
 : 5.2752

Histogram
Transformation: Log

Dataset : point_2 Attribute: availabl_2  
Standard Normal Value

Dataset

-2.15 -1.72 -1.29 -0.86 -0.43 0 0.43 0.86 1.29 1.72 2.15
2.4

3.25

4.09

4.94

5.79

6.64

Normal QQPlot
Transformation: Log

Dataset : point_2 Attribute: availabl_2  
Logarithmic transformed data of the available soil K in site D after applying log-transformation. 

Figure (4): Examples of histograms and QQPlots for available soil P and K data in some study sites. 

3.3.2 Semivariogram spatial 
dependency 

The semivariogram spatial de-
pendency of the available soil P and 

K contents of the study area is illus-
trated in Figure (5). The models and 
their parameters are also present in 
Table (4). Semivariograms and the 
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spatial variability of available soil P 
and K contents and their relation to 
lag of the samples and semivariance 
were produced from geostatistical 
software, ArcGIS, version (10.2.2). 
There were three variables which 
used in calculating the spatial de-
pendency. They were nugget, sill and 
range (a). Nugget variance represents 
the experimental error and field varia-
tion within the minimum sampling 
spacing and inherent variability 
(Cambardella et al., 1994). In the cur-

rent study, nugget values were the 
lowest and positive for P and K sug-
gesting a positive nugget effect that 
may be due to the sampling error or a 
random and inherent variability of the 
available soil P and K contents 
(Wang et al., 2009). Sill values repre-
sent the total spatial variation (Liu et 
al., 2013), in all study sites, and 
ranged from 0.174 to 85.73 and from 
0.106 to1810365 for the soil available 
P and K contents, respectively. 

 
Table 4. Fitted models and their parameters for the semivariograms of available 

soil P and K contents. 
Prediction Error 

Nutrient Site Model Nugget (C0) Sill(C0+C) Nugget / Sill Range 
(a) 

Spatial 
Class 

P A K-bessel 0.0001 0.430 0.023 0.005 S 
 B Exponential 0.01 85.73 0.012 0.006 S 
 C Spherical 0.001 0.7998 0.125 0.004 S 
 D K-bessel 0.0001 0.174 0.0574 0.006 S 
        
K A Spherical 0.001 0.621 0.161 0.001 S 
 B Rational Quadratic 9600 1810365 0.530 0.007 S 
 C Rational Quadratic 0.0001 0.106 0.094 0.003 S 
 D Pentaspherical 0.00002 1.095 0.0018 0.007 S 
S = Strong spatial dependency, Nugget/Sill =Nugget/Sill*100 =Spatial class ratio, Range (a) = spatial rang 
 
 

The spatial dependency (nug-
get/sill ratio, expressed as percentage) 
that is similar to those presented by 
Cambardella et al.(1994) was adopted 
to define the distinctive classes of 
spatial dependence. A variable is 
considered to have a strong spatial 
dependency if the nugget/sill ratio is 
less than 25 percent, a moderate spa-
tial dependency if the ratio is between 
25 - 75 percent and a weak spatial 
dependency if the nugget/sill ratio is 
greater than 75 percent. Cambardella 
et al. (1994) also reported that a 
strong spatial dependency of soil 
characteristics can be attributed to the 
intrinsic factors (soil formation fac-
tors such as parent materials), and a 

weak spatial dependency can be at-
tributed to the extrinsic factors (soil 
management practices such as fertili-
zation).  

In this study, the nugget/sill ra-
tio was less than 25% for the avail-
able P and K contents in all sites, 
which indicate a strong spatial de-
pendency for the soil available P and 
K contents. Strongly spatially de-
pendent properties may be controlled 
by an intrinsic variation in soil char-
acteristics such as the texture and the 
mineralogy (Cambardella et al., 
1994). The stronger the spatial corre-
lation, the more accurate is the soil 
property map that could be obtained 
using kriging. K-bessel, exponential 
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and spherical models were best per-
formed for the available soil P con-
tent while spherical, pentaspherical 

and rational quadratic models were 
the best for the available soil K con-
tent (Table 4). 

 

 
(a) 

  

  

(b) 

  

  
 

Figure (5): Semivariograms of the available soil P (a) and K (b) contents of the study 
sites. 
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3.3.3 Cross-validation and 
comparison of interpolation model 
performance 

The current study used the ordi-
nary kriging (OK) technique to pro-
duce the patterns of available soil P 
and K distributions. Prediction per-
formances are assessed by the cross-
validation, which examines the accu-
racy of the generated surfaces. After 
applying different models (eleven 
models) for the available soil P and K 
that were examined in this study, the 
error was calculated using the cross-
validation technique to identify the 
most accurate predictions such as the 
mean standardized error (MSE) and 
the root mean square standardized 
error (RMSS). The lowest mean stan-
dardized error values close to zero 
and the root mean square standard-
ized values close to one indicate that 
kriging predictions values are closer 
to the measured values. The models 

that gave the best results were cho-
sen. 

Prediction error values for both 
investigated available soil P and K 
are present in Table (5). The root 
mean square standardized error 
(RMSS) values for the chosen models 
varied from 0.8618 to 1.1305 for the 
available soil P and from1.0434 
to1.3108 for the available soil K 
(close to one). The mean standardized 
error (MSE) values for available soil 
P and K data ranged from -0.0784 to -
0.0020 and from -0.1230 to -0.0152, 
respectively, which were close to 
zero, indicating that the ordinary 
kriging (OK) produced relatively un-
biased values for spatial interpolation. 
These findings proved that the chosen 
models were the best fitted 
semivariogram models to map spatial 
distribution of the available soil P and 
K in this study.   

 
Table 5. The prediction errors of  the available soil P and K of the study sites. 

Prediction Errors Property Sit
e Mean RMS ASE MSE RMSS Skewness Kurtosis 

Available P A 0.201 9.549 8.579 -0.0060 1.0384 0.30 3.24 
 B -0.030 9.930 8.884 -0.0026 1.1305 0.80 3.76 
 C 0.358 4.891 7.639 -0.0784 0.8618 -0.32 3.21 
 D 0.231 5.577 5.871 -0.0020 1.0002 -1.03 4.62 

Available K A 22.930 284.862 308.245 -0.1199 1.0434 -0.24 2.88 
 B -24.597 1352.744 1270.216 -0.0152 1.0471 1.14 4.57 
 C -8.534 310.116 246.558 -0.1136 1.3108 0.44 7.50 
 D -0.049 163.785 202.932 -0.1230 1.0840 -0.16 2.97 

RMS = Root Mean Square; ASE = Average Standard Error; MS = Mean Standardized and RMSS = Root 
Mean Square Standardized. 
 

3.3.4 Spatial distribution 
mapping of soil available P and K 
contents  

Maps of the spatial distribution 
were produced using previously the 
chosen models with applying Ar-
cGIS. Figures (6) and (7) illustrate 

the spatial distribution maps of the 
available soil P and K in the studied 
sites of the study area. With respect 
to the spatial distributions of the 
available soil P, the maps showed that 
the soils of all investigated sites have 
the levels of 10-25 mg/kg except 
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these of site C which had available 
soil P levels of less than 10 mg/kg. 
The highest levels available P were 
found in the eastern part of site A, the 
northern third part of site B and few 
spots in the southern half part of site 
D. However, the lowest levels oc-
curred in separate spots in the west-
ern half part of site A and few sepa-
rate spots in the southern half part of 
sites B and D (Figure 6).  

On the other hand, the spatial 
distribution maps of the available soil 
K revealed that the dominant level in 
the soils of all sites was 250-800 
mg/kg, except these of site D that had 
less than 150 mg/kg as a predominant 
level. Also, maps of the spatial distri-
butions of the available soil K 

showed highest levels of available K 
occurred in separate spots in site A, 
in the southern third part of site B, in 
the western north and eastern south 
part for site C and in western north 
part of site D (Figure 7).  

Based on the spatial distribution 
of soil P and K availability, specific 
site management can be planned and 
considered to be applied for each site 
of this study area. Therefore, the 
maps of the spatial distributions of 
available soil P and K can give realis-
tic information about nutrient status. 
Also, these maps can facilitate the 
estimation of the fertilization policies 
of P and K for different crops in these 
investigated sites. 
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Figure (6): Spatial distribution maps of the available soil P in the study sites. 
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Figure (7): Spatial distribution maps of the available soil K in the study sites. 
 
 

4. Conclusion 
The current study showed that 

the studied coarse-texture soils have a 
moderate level of available P in all 
sites, except site C which had a low 
level. Also, these soils have high and 
very high levels of available K in all 
sites. The available soil K content of 
the studied samples in all sites was 
higher than the available soil P.  

The spatial interpolation of the 
available soil P and K contents in the 
surface soil samples (0-25 cm) of the 
study area showed that k-bessel, ex-
ponential, spherical, pentaspherical 
and rational quadratic models were 
the best performed in describing the 
spatial dependency of both nutrients. 
The cross-validation demonstrated 
that the ordinary kriging technique 
was the best in describing the spatial 
interpolation of these nutrients. Both 
available soil P and K stocks showed 
a strong spatial dependence, indicat-

ing that both available soil P and K 
contents were mainly controlled by 
intrinsic factors. Geostatistical analy-
sis integrated with GIS provided an 
opportunity to assess the variability in 
the distribution of these nutrients. 

This study also revealed that us-
ing the produced spatial distributions 
maps for the soil P and K availability, 
site specific management can be 
planned and considered to be applied 
for this study area. These maps can 
facilitate and help in make decisions 
for choosing appropriate fertilization 
policies for soils as well as to avoid 
adding too high fertilizer levels to get 
aclean environment. On the other 
hand, the study proved that statistics 
and geostatistics analyses are power-
ful tools to assess, understand and 
map the spatial variability of the 
available soil phosphorus and potas-
sium.  
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 في م الميسروي التربة من الفسفور والبوتاسيولتباين المكاني لمحتاتقييم ورسم خرائط 
الجيولوجي حصاءالا بأستخدم تقنية مصر، الجديد بالوادي  القوامالأراضي خشنة  

أحمد جلال الغرابلي،٢سلمان عبداالله حسن سلمي ،٢صلاح حسانين عبد العزيز ،١فرغلي سويفي سمر  

٢راغب علي محمدحسين و٢  
   جامعة أسيوط–الوادي الجديد ب كلية الزراعة – قسم الأراضي والمياه ١

  جامعة أسيوط– كلية الزراعة –قسم الأراضي والمياه ٢

  الملخص
 توزيع محتوى التربة من الفسفور والبوتاسيوم يعتبر جزء مهم في تقرير ما اذا              تقييم وفهم 

 تقيـيم  هـو  الدراسة ذه لذلك كان الهدف الرئيسي من ه      .كان التسميد مناسب أو ضروري للتربة     
باسـتخدام    الفسفور والبوتاسيوم الميـسر    من التربة محتوى لتوزيع المكاني التباين خرائط ورسم
أربع مواقع تم   من  )  سم ٢٥-صفر(سطحية  فقد تم جمع عينات تربة      . لجيولوجي الاحصاء ا  تقنية

خلة والخارجة بمحافظة الوادي الجديـد،      خشنة القوام في الواحات الدا    أختيارها  لتمثل الأراضي     
 القيم المتوقعة للمواقع البينية التـى  على للحصول Ordinary Kriging تطبيق طريقةمت. مصر

 ورسـم خـرائط التوزيـع      تحليل تم كما. عينات لتغطية كامل سطح المساحة المدروسة     لم تمثل ب  
  .ArcGIS برنامج استخدامالمكاني لمحتوى التربة من الفسفور والبوتاسيوم ب

 ٨٥,٠ الى   ٠,٣٥أظهرت النتائج أن محتوى التربة من الفوسفور والبوتاسيوم تراوحت من           
 القـدرة  مقـاييس أوضـحت  . التـوالي  علـى كجم /ملليجرام ٦٢٠٤ الى   ١١كجم ومن   /مللجرام

 عالي المكاني لكل من الفوسفور والبوتاسيوم الميسر في التربة كان           التوزيع أن المكانية التوزيعية
 الرئيسي فى هذا التوزيع هى العوامل       المتحكم ان الى اشارت في جميع مواقع الدراسة كما       الدقة

 الاحصائية المناسبة لرسم    النماذج الى ان    أيضا نتائجال اشارت). التربةخصائص   (لتربةالداخلية ل 
  .وكذلك من موقع لاخرالميسر  للفسفور والبوتاسيوم من لكل اختلفت المكاني التوزيع ئطخرا

تميزت خرائط التوزيع المكاني المتحصل عليها في هذه الدراسة بالدقة والقدرة التمييزيـة             
 يمكـن  كمـا .  فى منطقة الدراسة   موقع لكل محددة ادارة تخطيطالعالية ، لذلك يمكن من خلالها       

 التربة لهذه المناسبة التسميد سياسات لاختيار القرارات اتخاذ في وتساعد تسهل أن الخرائط لهذه
 أن الدراسـة  هذه نتائج وأكدت. التسميد إلى تحتاج لا التي للمواقع الأسمدة إضافة لتجنب وكذلك
 أداة يـوفر  الجغرافيـة  المعلومات ونظم الجيولوجية ءاتوالإحصا الاحصائي، التحليل بين   الدمج
 فـي  الميـسر  والبوتاسـيوم  الفوسفور من لكل المكاني التباين خرائط ورسم ووصف لتقييم قوية

  .التربة
نظم المعلومات  ،البوتاسيوم، الكريغينج ،الفسفور ،الاحصاء الجيولوجيرسم الخرائط،  :الدالة الكلمات

   .يدالوادي الجد، الجغرافية

 


