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Family Carangidae is widely distributed in the Atlantic, Indian and 

pacific Oceans. Two morphologically similar species, Trachurus indicus 

and Decapterus maruadsi, were collected and recognized from the Gulf of 

Suez. The two species have no distinct differences morphologically. 

Microsatellite DNA markers revealed that the populations of the two species 

represented distinct genetic divergence. This genetic diversity study showed 

that the populations of the two species are not related to each other. Overall, 

this study reveals high genetic diversity of T. indicus and D. maruadsi 

populations. Further studies on the genetic structure of these two species, 

are needed not only to understand the evolutionary history of the species, 

but also to improve the knowledge-based fishery management programs of 

this important biological resources.  

 

INTRODUCTION  

 

Carangids are found in all tropical and subtropical marine waters of the world, 

and some occur in temperate regions (Smith, 1986). Family Carangidae are the most 

dominant fish group in the Gulf of Suez, Red Sea fisheries. Trachurus indicus and 

Decapterus maruadsi are pelagic marine species constituting the most commercially-

important Carangidae in the Suez Gulf (Sabrah, 2015). Kijima et al. (1986, 1988) 

stated that the subfamily Caranginae could be divided into two large group on the 

basis of genetic variation by analyzing the relationship within a certain taxonomic 

level. The species in family Carangidae is morphologically somewhat highly 

specialized, adapting to long migration around offshore water (Vergara, 1972). 

Although a lot of morphological and ecological studies among species were published 

(Gushiken, 1983), taxonomic relationships among species have not yet been 

thoroughly estimated. Very little information is available concerning fish genetic 

identification. The identification process through DNA barcoding was under taken by 

many authors (ex. Kijima et al. 1988; Mat Jaafar et al. 2012; Mat Jaafar, 2014; 

Ahmad et al. 2016). It would be necessary to analyze relationships among them by 

using genetic markers such as microsatellites. The Wahlund effect was first described 

by (Wahlund, 1928).  

http://researcharchive.calacademy.org/research/ichthyology/catalog/getref.asp?id=9048
http://en.wikipedia.org/wiki/Coenraad_Jacob_Temminck
http://en.wikipedia.org/wiki/Hermann_Schlegel
http://en.wikipedia.org/wiki/Hermann_Schlegel
mailto:manal_sabrah@yahoo.co.uk
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It is an explanation for the observation of a deficit of heterozygotes or excess of 

homozygotes at the majority of loci in a sample from a naturally occurring population. 

If heterozygote deficit occurs in the minority of loci, other explanations are more 

likely (e.g. natural selection, null alleles, and inbreeding). Heterozygote deficit occurs 

at nuclear markers such as allozymes and microsatellite loci. When there are two 

alleles at a locus, the robust Hardy-Weinberg principle allows to calculate expected 

frequency of heterozygous individuals, as Hardy-Weinberg equilibrium postulates 

balanced frequencies of different populations in equally-mixed alleles.  

The objectives of the present study are to estimate the degrees of genetic 

divergence and richness among and within T. indicus and D. maruadsi populations in 

the Gulf of Suez on the basis of Microsatellites markers. 

 

MATERIALS AND METHODS 

 

Sample collection and DNA extraction 
Trachurus indicus and Decapterus maruadsi samples were randomly collected 

from the commercial purse seine boats adopted in the Gulf of Suez (Fig. 1) during the 

period from September 2018 to April 2019. In this study, 12 specimens of T. indicus 

and 12 of D. maruadsi were selected for comparison of their molecular data. The fin 

clips from each specimen were preserved in 95% ethanol immediately after collection 

from the landing site of Gulf of Suez, Attaka fishing port landing site at the Gulf of 

Suez. 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Gulf of Suez, showing the fishery ground of T. indicus and D.  maruadsi. 

 

Total genomic DNA was extracted using two extraction methods: CTAB 

extraction method (Mirimin and Roodt-Wilding, 2015) and using a commercial 

PureLink Genomic DNA Mini Kit (ThermoFisher Scientific, USA), from fin clips 

(10-15 mg) of the preserved fin clips. The extracted DNA was kept at -20°C for 

further analyses. The reason to use two methods for DNA extraction is to find out the 

cheapest methods for DNA extraction in routine work in fisheries population genetics. 

The quality and quantity of the extracted DNA was checked using agarose gel 

electrophoresis and UV spectrophotometer (Beckman, USA) by taking the optical 

density (OD) at 260 nm and 280 nm. The value between 1.7 - 1.8 indicates good 

quality DNA without protein/RNA contamination. DNA quantification was done 

according to the following calculation: sample showing 1 OD at 260 nm is equivalent 
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to 50 μg of DNA/ml. The OD of each DNA sample at 260 nm was measured and 

quantified accordingly. 

Microsatellite analysis 
Two microsatellite loci, TmurA115 TG(28) Genbank (FJ668658)  F: 

GTCACTGGAGCAATCAATAGAC R: TGCAATGTTACATGACTCAGAG and 

TmurB104 F: TGAAGCACAAGTTTCCAAATC ATC(14) Genbnk (FJ668661) R: 

AAAGGTCAGAGAGAGAACAACG developed by Cristian et al. (2009) were used 

in this study. Mendelian inheritance mode of these loci in all families was studied. 

PCR amplifications used with the following parameters: 94
o
C for 3 min, followed by 

35 cycles of 94
o
C for 40 s, 57

o
C for 30 s, 72

o
C for 30 s, and a final extension at 72

o
C 

for 5 min. All loci successfully amplified under the same conditions. Amplified 

samples were run on a polyacrylamide gel with 7.6% acrylamide/bis acrylamide 

(19:1), 7.6 M urea, lxTBE (89 mM tris, 89 mM boric acid, 2.5 mM EDTA). The gel 

was pre-run for 30 min and followed by electrophoresis for 45-60 min in a BioRad 

Sequi-Gen GT DNA sequencing cell at 50°C and 110 W. The bands were visualized 

using the silver staining technique modified from Merril et al. (1979) and the 

fragment sizes were estimated using the Gel Imaging Analyzing System (Kodak 

Digital Science, EDAS-120) with a standard 30-330 bp DNA ladder (Invitrogen). A 

single set of stutter bands was regarded as a single allele and the strongest band was 

consistently scored for size determination (Tautz, 1989; Xu et al. 2001).  

A double-band pattern was treated as a heterozygous pair, while a single band or 

a single set of stutter bands was considered as a homozygous (or null) allele. Genetic 

diversity in each locality was estimated from the average and effective number of 

alleles, the allelic and genotypic frequencies, and the expected and observed 

heterozygosities. Departure from Hardy-Weinberg equilibrium was detected using an 

exact test (Guo and Thompson, 1992) with the Markov chain algorithm with 3000 

dememorization steps and 100000 randomizations using Arlequin (Schneider et al. 

2000). FIS values were estimated to determine the genetic variation within population 

(Weir and Cockerham, 1984). Probabilities of significance for these values were 

tested based on 480 permutations by using FSTAT version 2.9.3.2 software (Goudet, 

1995). Genetic differentiation was determined by performing exact test on allelic 

frequency and distribution between population pairs (Raymond and Rousset, 1995a) 

using GENEPOP version 3.4 (Raymond and Rousset, 1995b). FST values were 

estimated from the pairwise distance based on an infinite-alleles model (Reynold, et 

al. 1983; Weir and Cockerham 1984; Slatkin, 1985) and the analogous RST values 

were calculated from the sum of squared size differences based on a stepwise-

mutation model (Slatkin, 1985; Michalakis and Excoffier, 1996; Rousset, 1996). The 

significance of each estimate was tested by performing 10 000 permutations with 

Arlequin and RST CALC (Goodman, 1997). Mantel test (Mantel, 1967; Sokal and 

Rohlf, 1995) was performed using Arlequin to test genetic isolation by distance. An 

assignment test was also performed to clarify the identity of specimens from the 

sympatric zone by using the software Whichrun version 4.1 (Banks and Eichert, 

2000). 

 

RESULTS  

 

Morphological comparison 
The morphological comparison between D. Maruadsi and T. Indicus was 

illustrated in Table (1). Most of the morphological characters are shared by the two 

species to the degree that is could be difficult to distinguish between them visually. 
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Table 1: Morphological comparison between D. Maruadsi and T. Indicus according to Dalyan and Eryilmaz (2009). 

Items D. maruadsi T. indicus 

Photo  

 

 

 

 

 

 

 

 

 

Body Body elongate, fusiform, and moderately compressed Body elongate, slightly compressed, with upper and 

lower profiles similar. 

Eye Moderate eye with adipose eyelid well developed 

usually covering most of eye except for a vertical oval 

centered on pupil. 

Moderate eye with adipose eyelid well developed 

usually covering most of eye except for a vertical oval 

centered on pupil. 

Jaw Upper Jaw reaching to just below front margin eye. Upper jaw moderately broad and extending to below 

anterior margin of eye. 

Teeth In single series, those in upper jaw confined to anterior Teeth small, in a single row in upper and lower jaws. 

Dorsal Fin First dorsal fin: 7-8 spines; second dorsal fin: one 

spine and 30-33 soft rays. 

First dorsal fin: 7-8 spines; second dorsal fin: one 

spine and 30-33 soft rays. 

Anal Fin 3 spines, followed by 23-29 soft rays. 3 spines, followed by 23-29 soft rays. 

Caudal Fin Forked Forked 

Finlet A single finlet behind dorsal and anal fins. - 

Lateral Line Lateral line slightly arched, becoming straight. Curved 

portion longer than straight portion; 32 to 38 moderate 

scutes. 

Lateral line  arched , the scutes on the anterior to the 

curved part of the lateral line not shorter than those on 

the posterior part of the line 

Scutes On Curved Part Of Lateral Line 38:40 38:40 

Scutes On Straight Part Of Lateral Line 36:39 36:39 

Color Body: Colour green to blue-green above, silvery white 

below. Fins: dorsal, pectoral and caudal fins pale 

yellow, anterior apex of 2
nd

 dorsal fin with a black spot 

on edge of operculum, pupil black. 

Black opercular spot on edge near upper margin; body 

and head dorsally dusky to nearly black or grey to 

bluish green; lower two-thirds of body and head 

usually paler, whitish to silvery; posterior margin of 

caudal fin blackish. 
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Microsatellites analyses 

Allelic distribution and population differentiation  
DNA quality was assessed using two extraction methods (Fig. 2). The two 

methods, CTAB and commercial PureLink Genomic DNA Mini Kit (ThermoFisher 

Scientific, USA), gave high quality DNA templates for the microsatellites PCR 

reaction.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: DNA extraction gel electrophoresis of T. indicus and D. maruadsi using two DNA extraction 

methods. A) M, molecular markers; lane 6, sterilized water, lanes 1-5 DNA extraction from T. 

indicus and Lanes 7-11, DNA extraction from D.maruadsi using CTAB extraction method. B) 

M, molecular markers; lanes 1-2 DNA extraction from T. indicus and Lanes 3-4, DNA 

extraction from D. maruadsi using  PureLink Genomic DNA Mini Kit (ThermoFisher Scientific, 

USA).  

 

The two microsatellite loci used in this study were highly polymorphic. A total 

number of 139 and 126 Alleles were obtained from T. indicus and D. maruadsi using 

microsatellite marker TmurA115, respectively (Table 2). Allele sizes ranged from118-

199 and 118-180 in T. indicus and D. maruadsi using microsatellite marker 

TmurA115, respectively (Table 2). Using microsatellite marker TmurB104, a total of 

124 and 105 alleles were obtained from T. indicus and D. maruadsi, respectively. 

Alleles sized ranged from 99 – 200 and 105-198 in T. indicus and D. maruadsi, 

respectively (Table 2). 

Average gene diversity over the two loci of the T. indicus population (0.875-

0.967) was greater than that of the D. maruadsi (0.835-0.975), (P<0.05). For 

TmurA115, alleles with sizes 199 were found only in the T. indicus population. The 

most frequent allele was 119 which only accounted for 41.66% of the alleles in the T. 

indicus and D. maruadsi population. For TmurB104, alleles with sizes <200 were 

observed only in the T. indicus populations and absent in D. maruadsi populations. 

The most abundant allele (99) accounted for 25% of the alleles in the two populations. 

Across the two loci, observed heterozygosity (H0) for each population ranged from 

0.854 to 0.953 and 0.785 to 0.975 in T. indicus and D. maruadsi populations, 

respectively. The expected heterozygosity (Hs) ranged from 0.934 to 0.993 and from 

0.933 to 0.977 in T. indicus and D. maruadsi populations, respectively. The Fis values 

indicated significant reduction in the average proportion of homozygous genotypes in 

T. indicus and D. maruadsi populations from Gulfs of Suez for the combined loci. 

Allelic distribution revealed significant difference in the alleles found in T. indicus 

was also found in D. maruadsi (Table 2). Pairwise Fst and Rst revealed that the T. 

indicus populations were genetically distinct from D. maruadsi (Fst = 0.001-0.077; Fst 

=0.001- 0.063, P<0.05) (Table 3). 
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Table 2: Allelic variability of two microsatellite loci of T. indicus and D. maruadsi populations.  
Loci  T. indicus D. maruadsi 
Tmur A115 Allele size 121-179 118-187 120-199 119-198 119-199 119-199 116-180 116-169 116-169 119-168 119-170 118-170 

 No. of alleles (A) 19 22 23 27 23 25 23 20 22 20 20 21 

 ae 13.0 5.3 16.2 21.2 19.7 19.3 17.8 17.9 13.4 11.4 11.2 11.2 

 H0 0.903 0.953 0.895 0.874 0.831 0.915 0.906 0.963 0.897 0.901 0.908 0.847 

 He 0.946 0.951 0.969 0.974 0.976 0.984 0.957 0.946 0.983 0.978 0.938 0.946 

 D -0.014 0.013 -0.074 -0.119 -0.145 -0.042 0.008 -0.024 -0.158 -0.055 -0.147 -0.235 

  <0.0001 1.000 0.093 <0.0001 0.691 0.166 0.961 1.000 0.083 0.963 0.994 0.091 

 Fis 0.016 -0.015 0.078 0.119 0.165 0.047 -0.013 -0.050 0.175 0.067 0.159 0.559 

Tmur B104  Allele size 101-200 99-197 99-219 95-200 98-198 99-212 105-198 119-195 101-150 115-142 115-142 106-142 

 No. of alleles (A) 17 19 22 26 20 18 19 11 16 19 19 21 

 ae  17.3 18.2 19.3 17.5 17.2 19.8 16.8 17.21 19.3 17.21 17.3 19.7 

 H0 0.879 0.952 0.975 0.898 0.793 0.898 0.897 0.885 0.897 0.818 0.567 0.870 

 He  0.985 0.989 0.993 0.967 0.964 0.986 0.866 0.798 0.834 0.875 0.819 0.857 

 D  -.048 -0.097 0.017 -0.088 -0.184 -0.096 0.015 -0.086 0.055 -0.035 -0.353 0.066 

 P  0.098 0.676 0.855 0.987 <0.0001 0.065 0.169 0.697 0.193 1.000 0.097 0.786 

 Fis 0.053 0.122 -0.018 0.095 0.155 0.88 -0.069 0.064 -0.076 -0.054 0.326 -0.083 

Two loci  Ho  0.923 0.953 0.921 0.854 0.912 0.946 0.957 0.889 0.822 0.864 0.785 0.895 

 He 0.993 0.984 0.934 0.974 0.986 0.958 0.976 0.933 0.995 0.959 0.938 0.997 

 D  -0.074 -0.088 -0.083 -0.127 -0.187 -0.079 -0.046 -0.126 -0.119 -0.097 -0.236 -0.198 

 P  <0.0001 0.762 0.025 <0.0001 <0.001 0.468 0.135 <0.001 0.057 0.239 <0.0001 <0.001 

 Fis 0.0376 0.067 0.074 0.099 0.147 0.064 0.046 0.089 0.069 0.086 0.954 0.089 

 Gene diversity  0.967 0.965 0.965 0.943 0.9474 0.875 0.835 0.856 0.856 0864 0.975 0.876 
1
ae effective number of alleles; H0, observed heterozygosity; He expected heterozygosity; 

2
D, deficit or excess of heterozygosity; P, probability of deviation from Hardy-

Weinberg equilibrium; FIS, genetic variation within population.
1
 ae: Calculated according to the formula: = 1/∑Xi

2
 (Crow and Kimura 1965); and  

2
D = (H0 - He)/ He, 

P<0.05.  
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Table 3: Pairwise comparison of genetic differentiation between T. indicus and D. maruadsi populations based on the combined data of the two microsatellite loci.  
 T. indicus D. maruadsi 

Population 1 2 3 4 5 6 7 8 9 10 11 12 

1  -0.053  0.015  -0.019  0.009 -0.008 0.119  0.170 0.131 0.065  0.097  0.264 

2 0.001  -0.011  0.063 0.006  0.008  0.323 0.393 0.350 0.246 0.241 0.329 

3 -0.004  0.00   0.025   -0.002  -0.006  0.239  0.294  0.236 0.151  0.132  0.275 

4 0.003  0.003  0.004   0.008  0.024  0.079   0.141  0.117 0.025  0.023 0.235 

5 0.005  0.004 0.004 -0.005   0.001 0.164 0.225  0.148 0.055 0.090 0.200 

6 0.009 -0.001  0.002  0.003  0.005   0.215  0.272  0.248  0.130  0.082  0.322 

7 0.062  0.043 0.035  0.022  0.032  0.039   0.009  -0.012  -0.014  0.143  0.363 

8 0.081 0.087  0.061 0.057 0.060  0.077 0.048   0.012 0.055  0.285  0.442 

9 0.065 0.063  0.053 0.042 0.044 0.057 0.008  0.054    0.017  0.201  0.346 

10 0.061 0.052  0.053 0.026  0.020  0.046 0.007  0.021  0.027   0.119  0.467 

11 0.072 0.091 0.094 0.047 0.065 0.075 0.056  0.137 0.068  0.058    0.924 

12 0.058 0.063 0.052  0.038  0.041 0.040 0.063 0.123 0.133 0.096  0.154  

 

P < 0.05  

Fst (below diagonal) and Slatkin’s analogous Rst (above diagonal). Significance of genetic distances tested by 10100 permutations was calculated using Arlequin. 
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Pairwise values among T. indicus populations were generally not greater than 

zero, revealing a high level of gene flow among populations (Fst = 0.001-0.077, 

P<0.05). The D. maruadsi populations was significantly diverged from the T. indicus 

(Fst = 0.007-0.154, Rst = 0.025-0.924; P<0.00001). Genetic heterogeneity was 

observed in comparisons between D.maruadsi and T. indicus (P<0.05), suggesting 

that T. indicus and D. maruadsi populations were not related. The two geographically 

close populations showed unexpected divergence (Fst = 0.001-0.154, Fst = 0.001-

0.924, P<0.05). Exact tests of population differentiation revealed that T. indicus 

population was genetically diverged from D.maruadsi (P<0.005). The test also 

supported genetic divergence of the T. indicus and D. maruadsi population 

(P<0.00001). However, genetic heterogeneity was observed in comparisons between 

the populations of T. indicus and D. maruadsi (P = 0.742 and 0.347, respectively). 

The two geographically distant T. indicus and D.maruadsi populations showed 

unexpected divergence (P=0.017). Mantel tests of geographical distance versus 

genetic divergence were not significant in (P>0.05) except between the D.maruadsi 

populations (P<0.05) (Table 4). 
 

Table  4: Exact test of population differentiation among T. indicus and D. maruadsi populations.  

 T. indicus D. maruadsi 

Population 1 2 3 4 5 6 7 8 9 10 11 12 
1  0.104 0.742 0.209 0.026 0.203 <0.00001 <0.00001 <0.00001 <0.001 <0.00001 <0.00001 

2 0.231 

0.228 

 0.021 

 

0.644 0.012 0.657 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 

3 0.600 

0.352 

0.004 

0.912 

 0.150 

 

0.052 0.253 

 

<0.00001 

 

<0.00001 

 

<0.00001 

 

<0.00001 

 

<0.00001 

 

<0.00001 

 

4 0.079 
0.441 

0.409 
0..342 

0.151 
0.268 

 0.416 
 

0.349 
 

<0.001 
 

<0.001 
 

<0.00001 
 

0.009 
 

<0.00001 
 

<0.00001 
 

5 0.010 

0.319 

0.004 

0.400 

0.035 

0.326 

0.329 

0.796 

 0.079 

 

<0.00001 <0.001 <0.00001 0.008 <0.00001 <0.00001 

6 0.015 

0.524 

0.228 

0.628 

0.102 

0.765 

0.153 

0.713 

0.043 

0.277 

 <0.00001 

 

<0.00001 

 

<0.00001 

 

<0.00001 

 

<0.00001 

 

<0.00001 

 

7 0.001 

<0.00001 

0.014 

<0.00001 

0.002 

< .00001 

0.107 

0.001 

0.008 

< .00001 

0.003 

< .00001 

 0.033 

 

0.029 0.286 <0.00001 <0.00001 

8 0.024 
<.00001 

0.011 
<.00001 

0.011 
< .00001 

0.033 
0.001 

0.053 
< 0.0001 

0.006 
< .00001 

0.224 
0.012 

 0.016 
 

0.347 <0.00001 <0.00001 

9 <0.0001 

<0.00001 

0.005 

<0.00001 

<0.001 

< .00001 

0.006 

< 0.0001 

0.009 

< .00001 

0.001 

<0.00001 

0.123 

0.142 

0.017 

0.058 

 0.015 

 

<0.00001 <0.00001 

10 

 

0.030 

0.0002 

0.023 

<0.00001 

0.007 

< 0.0001 

0.414 

0.022 

0.352 

0.001 

0.003 

< 0.001 

0.135 

0.472 

0.420 

0.138 

0.047 

0.035 

 0.017 

 

<0.00001 

11 0.164 

<0.00001 

 

0.031 

<0.00001 

 

<0.001 

0.012 

0.030 

<.00001 

 

< .00001 

< .00001 

 

0.003 

<0.00001 

 

<0.001 

0.002 

 

0.007 

< .00001 

 

<0.0001 

< 

0.00001 

0.450 

0.003 

 <0.00001 

 

12 <0.00001 

<0.001 

<0.00001 

<0.001 

<0.00001 

<0.001 

<0.00001 

0.002 

<0.00001 

0.001 

 

<0.00001 

<0.00001 
< 

0.00001 

< 0.0001 

0. 003     

< 0.0001 
< 

0.00001 

<0.00001 

0. 006 

<0.00001 

<0.00001 

<0.00001 

 

P<0.05 The results based on 10 000 Markov steps for each locus (TmurA115 and TmurB104) and Fisher’s method 

across the two loci of microsatellite data (below diagonal: TmurA115 in normal font and TmurB104 in italic; 

above diagonal: both loci). 

 

DISCUSSION 

 

Analyses of allelic frequency and distribution of microsatellite loci offer strong 

evidence for insignificant gene flow between the two T. indicus and D. maruadsi 

species. The result shows the presence of a large proportion of shared microsatellite 

alleles among the two species as a result from the retention of ancestral polymorphism 

rather than hybridization. Thus the two microsatellite loci used in this study are 

effective in clarifying the issue of reproductive isolation between T. indicus and D. 

maruadsi. Breeding experiments are needed to elucidate whether the two species are 

reproductively compatible. No significant deviation from Hardy-Weinberg 

equilibrium (HWE) indicates a homogenous deficit in two microsatellite loci in the 12 

population studied. No significant departure from HWE and this was not showing 



Genetic divergence of Trachurus indicus and Decapterus maruadsi  331 

Wahlund effect (Wahlund, 1928). The homogenous deficit in T. indicus and D. 

maruadsi population may be resulting from the non mixing of individuals from the 

two populations homogenous that shows they are genetically different due to their 

occurrence in a single locality (Gulf of Suez) (Johnson and Black, 1984; Dixon et al. 

1993). The Wahlund effect has been suggested as a cause for heterozygous 

deficiency, (Johnson and Black, 1984; Pritchard  et al. 2000; Valles-Jimenez et al. 

2005; Zelenina & Rastorguev, 2010; Buryakova & Glubokov, 2011; Bekkevold et al. 

2011; Afanaziev, et al. 2012 and Ovenden, 2013). The results shows the presence of 

null alleles as indicated by the low Fis values (homozygous deficit) and this is a 

common problem in population studies using microsatellites, (Hauser  et al. 2002; 

Ball and Chapman 1998; Burridge and Smolenski, 2003; Cristian et al. 2009; Tzeng  

et al. 2009; Bekkevold et al. 2011; .Nugroho et al. 2011). Assortative mating and 

reproductive success (Supungul et al. 2000) could lead to inbreeding and HW 

disequilibrium. In this case, all loci are supposed to be significantly correlated 

(linkage disequilibrium) (Ayre et al. 1997; Pritchard  et al. 2000; Castric et al. 2002; 

Burridge and Smolenski, 2003; Cárdenas et al. 2005; Bekkevold et al. 2011) and this 

has not been shown from the present results indicating the two species are separated 

and not mixed. The present study did not show linkage disequilibrium between the 

two microsatellites loci used, except for population from T. indicus and D. maruadsi 

(Pritchard  et al. 2000). Thus there are no inbreeding detected using microsatellites 

markers used in this study. The moderate to high genetic diversity and increase in the 

effective numbers of alleles in the T. indicus and D. maruadsi population may reveal a 

sufficient and high effective population size and shows the reproductive success of the 

two populations (Okazaki  et al., 1996; Ayre et al., 1997; Brooker et al,. 2000; 

Bekkevold et al., 2011). 

This study provides strong evidence for phylogeographic structuring of T. 

indicus and D. maruadsi in the Gulf of Suez. Investigations on seasonal variations in 

population structure and migratory behaviors of the T. indicus and D. maruadsi 

population in the Gulf of Suez are required. The migratory behavior of the two studied 

species may have different habitat preferences (Knowlton, 1993; Okazaki  et al., 

1996). The geographical distribution of the two species may be limited by 

environmental tolerances such as temperature (Okazaki  et al., 1996; Chu et al., 

2005). This also shows that the species might have evolved independently, driven by 

different selective pressure (such as temperature), establishing the two cryptic species. 

T. indicus and D. maruadsi have successfully adapted to the Gulf of Suez 

environment. This may explain the genetic differentiation between the two 

populations. The population genetic structure of the two species observed today in the 

Gulf of Suez is likely attributed to environmental adaptations. Selective forces may 

shift the gene frequencies rapidly and contribute significantly to reproductive isolation 

(Barton, 1989; Ayre et al., 1997; Pritchard  et al., 2000; Bekkevold et al., 2011; 

Ovenden, 2013). Studies of their environmental tolerances and reproductive biology 

can provide us with new insights into the biology and evolutionary history of these 

two species. This study shows that T. indicus and D. maruadsi should not be 

considered as a single taxon. Thus all relevant biological studies of these two species, 

with their implications in fisheries and conservation should be revaluated. Concerning 

microsatellite markers, the existing results shows that there are some differences 

between the two species, as it appears in the genetic differences in the two species 

over the whole distribution area (Cárdenas et al., 2005; Ovenden, 2013). There are no 

discrete borders between the different spawning and population areas in the Gulfs of 

Suez and its shows the existence of at least two separate “groups” of T. indicus and D. 
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maruadsi along the Gulf of Suez. In general, molecular methods have a higher 

reproducibility than morphometrics. These advantages as a result of their ability to 

detect minor genome differences compared with that of phenotypic profiles for some 

species (Tenover et al., 1997).  
 

CONCLUSION 

 

The results elucidate the geographic distribution of the two species (T. indicus 

and D. maruadsi) in the Gulf of Suez with a population structure. The T. indicus and 

D.maruadsi are species complex comprising two morphologically similar but 

genetically distinct species in the Gulf of Suez and they are characterized by 

reproductive isolation and high level of genetic divergence. The two species are 

genetically diverged from the others. This information is crucial for elucidating the 

taxonomy and evolutionary history of these species. The understanding of T. indicus 

and D.maruadsi phylogeography is important in formulating knowledge-based fishery 

management and development programs for these important marine biological 

resources. Further studies on the genetic structure of the Gulf of Suez population and 

the biology of the two species are crucial for elucidating the taxonomy and 

evolutionary history of these species. 
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