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ABSTRACT

Free axisymmetric vibrations of annular stepped plates have been
studied on the basis of the classical theory of plates. Applying

the uniform plate solution to each zone of different thickness;
considering the continuity and boundary conditions,yields a system

of eight equations. Frequency determinants of such plates,with diff-
erent step radii, are derived for various combinations of boundary
conditions. Consequently the values of the resonant frequencies of
the first two symmetric modes are calculated. Different graphs are
included to facilitate the use of this material for design purpose.
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INTRODUCTION

The vibration analysis of circular plates with uniform thickness is a
classical problem which can be found in literature. In a recent pape-
rsyauthers like Kutter [11 ,Kirkhope [2] and others have studied the
vibration of circular plates with variable thickness. Some of these
plates which are of interest to engineers are the annuler plates. The
vibration of these rlates with uniform thickness has been treated by
Vogel (3) and Raju (41 | while the vibration of annular plates with
variable thickness was studied by authers such as Soni [5]1 and Irie [61.

The previous two papers [71 and (8] wers performed to cbtain the modal
analysis of stepped circular plates with different boundary conditions
and stepped plates with elastically built-in boundary condition respe-
ctively., :

In the present work, the modal analysis of symmetric vibration of stees
rped annular plates is developed to describe the effect of the step
radius on the natural frequencies of these plates. The results are
obtained for plates with different combinations of boundary conditions,
Fortunantely the &olution procedure gave good results.

PROBLEM FORMULATION

In this work, the vibration iz sesumed to be governed by small deflectsd
ion , thin-plate theory , in which the effect of rotary inertia and

shear deformation are ignored. The differential equation govering the
transverse vibration of the circular plates in polar coordinate 18I is

v wlr) - B w(r) = 0 (1)

where B 5 . .,
B = 12(1 = v )Pw/Ep (2)

The solution of eqn.(1) is

W(r) =A J (8r) + BY (ar) + C I (pr) + F K (gr) (3)
le] O [o] (8]

The values of the constants A4B,C,F and 8 are determined from the bou-
ndary conditions of the plates.

Figure 1 shows the cross section of two particular forms of annular
plates with stepped thickness. The plate may be described by two zones
I end II in which each gne represents annuler plate with uniform thic-
kness, The common radius r, is called the step radius,

Fer the two annular plates I and II , the solutions are given by eqn.
(3) respectively
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—— W,(r) = A, J,(ar) + B, ¥, (8r) + C,I (8r) + F, K (&r) (%)
Walr) = A,d (ar) + B, Y (gr) + C I (er) + E K (gr) (5)
where '
8 =12(1 - v*)pw’/ En’ (6)
B = 12(1 - v?) oW/ Eh! (7)
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Fig.1 Cross section of two types of stepped annular
plates,

a~ plate with central region raised,
b- plate with central region unraised.

L]

The different coefficients of eqns.(4) and (5) must be chosen to sati-
8fy the continuity conditions at the step radius r, and the boundary
conditions at r=a.

CONTINUITY CONDITIONS

The following are the four continuity conditions for each of deflecti-
on,slope,shear force and bending moment respectively

W.(r) = W(r) (8)

dwW (r, )/dr = dW, (r, )/dr (9)
Q,(r,) =Q/(r,) (10)
HI‘! (1"' ) = H!'Z(r' ) (11)

Where Q and M_ are the expressions for shear force and hending moment
respectively,r (91

The expressions of W, and W, will have the following forms at rar, .

W, (r,) = A'%

Ww . A\ a ‘e @ . B® TR W

(X)) +BY (A)+CI(A)+FKC () (12) .
1 0 1 0 f 0
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Consequently the condition (8) can be expressed as follows:
A gy () + B Yy (n) + C I (%) + F K (2)
-A,4, (A,) = B¥g(»,) = CI(x,) -~ FKa(x) = 0 (14)

Refering to the differentiation of the Bessel's functions [10] ,the cone
ditions (9),(10) and (11) are given respectively as:

A, B J, (x)+BB Y (rn)-C81I(x»)+FB8KI)
-A,8J,(x,) - BB Y (»)+CA8I () -FBKI(x) =0, (15)
Al qlJ' ()“) - B'q|Y,()\|) o C.q'I1()\|) - qu.ixi()'i)

-Azanl ()\2) - quzY'()\z) C2q211 (}\.) + Faqzl{‘(a\!) = o [ (16)

AmI-BJy(x) +LJ(»x)] -Bmt BY() LN

+C om, [ B I (A) = LL (A1 + Fom, [ BEK (x)

1

+

LK, (A, )]

A m, [-BJy(A) + LJ (A,)] - Bom, [-8,Y(5,) + LY (A, N

~C,m, L 8T (A) = LI ()] = Fym, [ B K (4,) + LK (2,)1 = 0 (17)
where
'\t=8r| 4 Az=81rl
3
aq, = 8’ h} 1, = 8; h,
; . (18)
m = B, h, ’ m, = B, h,

L=(1=%)/r

BOUNDARY CONDITIONS

The boundaries of the annular plate either at r=a or r=b may be clamped,
simply supported or free. By using the expressions of the deflection
described in eqns.(12) and (13) and their derivatives we can obtain the
following forms of the boundary conditions for each case.
Clamped Supported Conditions
a- W =0, or

A d () + BiY (n) + G I (N) + EK (X)) =0 (19)
b- dW/dr = 0 , or

“A:J,(n) = BiY,(a:) + CL(x) - F;K (M) =0 (20)
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a- W = 0, see eqn.(19)
. b= M =0, or
A =80 (2) + PJ, (%) + B (=8, (x ) + PY, (% )]
#C;i 0 BT (%) = PL ()] + KL AK (n) + PK (%)) =0 (21)
Free Supported Conditicns
a= Q =0 , or
Ady () + BY, (%) +CI(n)-FK(x)=0 (22)

b- M = 0 , see eqn.(21)

where )
Aio= Bir ,
{1 for the inner boundary
i=
2 for the outer boundary ,
(23)
b for 1 =1 r 3
r =
a for i =2,
P=(1 -9)/a J

Hence,it is clear that for an annular plate,there are four continuity
conditions and four boundary conditions. This system of equations can
be arranged in a matrix form in order to obtain the frequency determim
nant as follows:

(Yl (Cl = toJ (24)

where

[Y] is 8x8 square matrix
[Cl 1is the column matrix containing the coefficients described before
in eqns,(4) and (5).

The natural frequencies of the symmetric modes of such piates can be
obtained by equating the determinant of the matrix [Y] by zero.

COMPUTED RESULTS AND DISCUSSIONS

The numerical computation for the natural frequencies are obtained for
annular plates with different combinations of the boundary conditions.
Figure 2 shows such plates in which the inner radius b=45 mm and the
outer radius a=150 mm. In the case of plates with central region rais
sed,the thicknesses h, and h, are 1.0 and 0.75 mm respectively,vwhile
in the case of plates with central region unraised h, and h, are 0.75
and 1.0 mm respectively. :
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- Annular plates with b~ Annular plates with
central region raised. central region unraised.

Fig.2 Stepped annular plates with different
boundary conditions.

v -1
These models are made of Pirespex with Young's modglus of 262 x10 Nem,
Poisson's ratio v= 0.38 and a density of 1.237 x10° Kg.m'.

The results obtained by one of the computer methods are expressed in
dimensionless form,therefore there are eight step radius ratios r/a
vary from 0.3 to 1.0 which are corresponding to the step radii r, = 45,
60,75,90,105,120,135 and 150 mm. Also the natural frequencies,f are
expressed in dimensionless form f/f swWhere f represents the natural
frequency of uniform annular plate with the aﬁgllest thickness 0.75 mm
either in the case of central region raised or unraised.

Figure 3 shows the results of natural frequencies of C-F, C-S and C-C
stepped annular plates, while Fig. 4 shows the results for S~-F, 8-S and
S-C stepped annular plates. The two figures show the effect of the
variation of step radius on the natural frequencies of the different
plates at the first symmetric mode 00, Similarly, Figs. 5 and 6 show
the same Telationships at the second symmetric mode 01,
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Fig.3 Natural frequencies of C-F, C-S and C-C stepped annular
plates at the first symmetric mode 00,
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Fig.4 Natural frequencies of S-F, S-S and S-C stepped annular
plates at the first symmetric mode 00,

a- plates with central region raised.
b- plates with central region unraised.
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Fige5 Natural frequencies of C-F, C-8 and C-C stepped annular
plates at the second symmetric mode 01,
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Fig.6 Natural frequencies of S-F, 8-S and 5-C stepped annular
- plates at the second symmetric mode 01,

a- plates with central region raised,
b~ plates with central region unraised.
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In the case of central region raised, when the step radius r, equal to

the inner radius b, the plate will be with uniform thickness of 0.75 mm
while when the step radius equal to the outer radius a, the plate will

be with uniform thickness of 1.0 mm. Consequently the vice-versa will

be in the case of central region unraised. Table 1 shows the frequency
results for these annular plates of uniform thicknesses and its compare
ison with those obtained by Raju [4]. The results were convenient and

useful for the application of this process in a large scale.

Table 1, Natural Frequencies of Uniform Thicknese Annular Plates,

Natural Frequencies (Hz) by
Type of Mode
Boundaries mn Raju [47 Given Method
h=0.75 mm h=1.00 mm h=0.75 mm h=1.00 mm
C o F { 00 27,45 36.60 27.00 36.00
01 124,50 166,00 122.00 163.00
S {oo 81.07 108.10 80.00 107.00
- 01 250.50 334,00 246,00 329.00
cC.-c {oo 109.26 145.69 107.20 144,12
01 301,05 Lo1.40 296,00 395,00
S - F {oo 11.17 14,90 11.00 14,60 .
ﬁ 01 89.10 118.80 87.00 117,00
5 S -8 {oo 50.77 67.80 50.00 67.00
| 01 197.02 262,70 194,00 260,00
| s - {00 71.92 95.90 71.00 95.00
g 01 240,82 321.10 237,50 317,50
CONCLUSIONS

The analysis of the axisymmetric vibrations of stepped annular plates
are presented for plates with different combinations of boundary con-
ditions. It is seen that in the case of plates with central region
raised, the value of the natural frequency usually increases as the .
s#tep radius increases. In the case of plates with central regien unraiae
sed the vice-versa will happened excpet that there are some of the adja-
cent step radii at which the corresponding frequencies can be consid-
¢red equal , Also the given charts show the effect of the boundary co-
nditione on the results from the design point of view.
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NOMENCLATURE

Outer radius of the annular plate
Modulus of elasticity.
Inner radius of the annular plate.
NMatural frequency.
Plate thickness.
Modified Bessel functions of the firet kind of order O,and 1,
Bessel functions of the first kind of order O and 1,
Modified Bessel functions of the second kind of order O and 1.
No. of nodal diameters,
Radial bending moment,
No, of nodal circles.
Transverse shear force.
Flate radius,
Plate deflection.
" 4 Hodified Bessel functions of the second kind of order O and 1.
Ligenvalue of the frequency equation.,
Density of the plate.
Poisson's ratio.
Angular displacement.,
Natural frequency,
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