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IP° 	ABSTRACT 

Free axisymmetric vibrations of annular stepped plates have been 
studied on the basis of the classical theory of plates. Applying 
the uniform plate solution to each zone of different thickness; 
considering the continuity and boundary conditions l yielda a system 
of eight equations. Frequency determinants of such plates,with diff-
erent step radii, are derived for various combinations of boundary 
conditions. Consequently the values of the resonant frequencies of 
the first two symmetric modes are calculated. Different graphs are 
included to facilitate the use of this material for design purpose. 
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INTRODUCTION 

The vibration analysis of circular plates with uniform thickness is a 
classical problem which can be found in literature. In a recent pape. 
rs,authers like Kutter E1),Kirkhope (2] and others have studied the 
vibration of circular plates with variable thickness. Some of these 
plates which are of interest to engineers are the annular plates. The 
vibration of these plates with uniform thickness has been treated by 
Vogel 133 and Raju CLO , while the vibration of annular plates with 
variable thickness was studied by anthers such as Soni [5] and Irie 161. 

The previous two papers [7] and [8] were performed to obtain the modal 
analysis of stepped circular plates with different boundary conditions 
and stepped plates with elastically built-in boundary condition respe-
ctively. 

In the present work, the modal analysis of symmetric vibration of steo. 
pped annular plates is developed to describe the effect of the step 
radius on the natural frequencies of these plates. 	The results are 
obtained for plates with different combinations of boundary conditions. 
Fortunantely the solution procedure gave good results. 

PROBLEM FORMULATION 

In this work, the vibration is assumed to be governed by small deflect4 
ion , thin-plate theory , in which the effect of rotary inertia and 
shear deformation are ignored. The differential equation govering the 
transverse vibration of the circular plates in polar coordinate 181 is 

w(r) - 134  w(r) = 0 	 (1) 
where 

B * 12(1 ■ v2 ) p (132/E hi 
(2) 

T113 solution of eqn.(1) is 

W(r) = A J (Sr) 4 B y)(Br) 	C I0(er) + F K
o(00 	(3) 0

The values of the constants A,B,C 7F and 0 are determined from the bou-
ndary conditions of the plates. 

Figure 1 shows the cross section of two particular forms of annular 
plates with stepped thickness. The plate may be described by two zones 
I and II in which each sne represents annular plate with uniform thic-
kness. The common radius r i  is called the step radius. 

For the two annular plates I and II , the solutions are given by eqn. 
(3) respectively 
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+ Ci I0(s,r) 	+ F, Ko(Rr) (4)  

+ C, 0(8r) + F., K 
- 	0 

(0 r) (5)  

(6)  

(7)  

W,(r) = A , Jo  (Ar) + B, Yo(eV) 

W2(r) = A2 J0  (ear) + B2  Yo  (02r) 
where 

= 12(1 - Va ) P 02/ Eh: 

13: = 12(1 - ..)2 ) 0 Loa/ Eh: 

Fig.1 Cross section of two types of stepped annular 
plates. 

a- plate with central region raised. 
b- plate with central region unraised. 

The different coefficients of eqns.(4) and (5) must be chosen to sati. 
sfy the continuity conditions at the step radius 2., and the boundary 
conditions at r=a. 

CONTINUITY CONDITIONS 

The following are the four continuity conditions for each of deflecti. 
onolope,shear force and bending moment respectively 

W, (r4  ) = W2(r, ) 	 (8) 

• dW (r, )/dr = (512  (r1 )/dr 	 (9) : 

Q i(ri  ) = Q2(r, ) 	 (10) 

Mr, (r,) = M
r2 
(r ) 	 (11) 

Where Q and M are the expressions for shear force and bonding moment 
respectively, r  (91 

The expressions of Wand Wa  will have the following forms at rer, 

W, (r, ) = A J ( 	+ B Y ( 	+ C I ( A1) + F K ( Al) 	 (12) 0 	 0 	 I 0 	 I 0 
• .1. 	. 	• 
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Consequently the condition (8) can be expressed as follows: 

A, Jo (M,) 	+ 	13, Yo (A) 	+ 	Ci  lo  ( 	) 	+ Fi  Ko  ( 	) 

..A 2%.1) (As) 	(A,) 	Cz  Io  (Ai  ) 	F2  1(0 (A1) 	= 0 (14)  

Refering to the differentiation of the Bessel' s functions [101,the 
ditions (9) ,(10) and (11) are given respectively as: 

con- 

A, 8, J, (A, ) 	+ 	B, B, 	Y, (A, ) 	- 	C, 8, I, 	 ) 	+ 	F d 	K, (A l  ) 

	

-Aa  01 J, (A,) 	Ba  62  Y, (As ) 	+ 	C2  02  I, (A 2 ) 	.• F2  02  K, (A„) 0 (15)  

A, q, J, 	(A,) 	a 	B, q, Y, (A, ) 	a 	C, q, 	( 	) 	••• 	F, q, K i  ( h i  ) 

-A2  q 2J, ( A2 ) 	- 	cl ay, (A 2 ) 	- Ca  q 2I, ( Xs ) 	+ F2  %IC I  (Xi ) = 0 , (16)  

A, m, t - 13, Jo  (x,) + LJ, (A, )3 	B, m i  I 0, Yo  (A, ) 	LY, (A, ), 

+C, m, I 13,10  ( A, ) - LI, (A, )3 + F, m, E f3, K0  ( A ) + 	( 	)3 

-A2m 2 C-13,,J0  (A2 ) + 1.,J (A 2  )3 •• B2 m2 E- kY0  (Ai ) + LT. (Ai )] 

-C2  m2  C 6.10  ( AL) - LI (A 2 )3 	F2  111 2 	0,K0  ( 	+ LK, (x 2 )3 a 0 

where 
A , = 8 r 	A I  = B, r, 

q, = B: 11: 	, 	q a  = 8, h, 
a m = 0, h: , 	m, = 8, h, 

L = (1 - .0)/r, 

BOUNDARY CONDITIONS 

The boundaries of the annular plate either at r=a or r=b may be clamped, 
simply supported or free. By using the expressions of the deflection 
described in eqns.(12) and (13) and their derivatives we can obtain the 
following forms of the boundary conditions for each case. 

Clamped Supported Conditions 

a- W = 0 or 

	

A;  Jo  (AO + B; Yo  ( A; ) + C;  Io  (A ;  ) + F;  Ko (N ; ) a 0 
	

(19) 

b- dW/dr = 0 , or 

-A; J, ( A; ) 	B; Y, (A; ) + C; 	( x; ) - F; K i  (X;) = 0 
	

(20) 

(17)  

(18)  
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+ 	(-0i Io(AC ) + PY ( x; )1 

+ F; 	13;  K ( At ) + PK
1  ( 
	)] is 0 	(21) 
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Simply Supported Conditions 

a- W = 0 	see eqn.(19) 

b- M = 0 $ or 

A,E-R;jo  (Ai ) 	PJ, (xi)] 

+Ci 	13;  7b  ( 	) - PI, ( A. )] 

Free Supported Conditions 

a. Q = 0 1  or 

A i tT,(xi ) 

b- M = 0 , see 

where 

6 

(22) + Bi  Y i  (x; ) + C i  I t  (A; ) - F. K 1  (xi ) = 0 

eqn.(21) 

(23) 

A; 	B; r 

1 for the inner boundary 
i = 

2 for the outer boundary 

lb for i = 1 
= 

a for i = 2 , 

P = (1 - )/a 

Hence lit is clear that for an annular plateithere are four continuity 
conditions and four boundary conditions. This system of equations can 
be arranged in a matrix form in order to obtain the frequency determin 
nant as follows: 

where 
[C] = [0] (24) 

CY] is 8x8 square matrix 
CC] is the column matrix containing the coefficients described before 

in eqns.(4) and (5). 

The natural frequencies of the symmetric modes of such plates can be 
obtained by equating the determinant of the matrix [Y] by zero. 

COMPUTED RESULTS AND DISCUSSIONS 

The numerical computation for the natural frequencies are obtained for 
annular plates with different combinations of the boundary conditions. 
Figure 2 shows such plates in which the inner radius b=45 mm and the 
outer radius a=150 mm. In the case of plates with central region rails 
sed,the thicknesses h, and h2  are 1.0 and 0.75 mm reepectively,while 
in the case of plates with central region unraised,h, and hi  are 0.75 
and 1.0 mm respectively. 
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A- Annular plates with 	b- Annular plates with 
central region raised. 	central region unraised. 

Fig.2 Stepped annular plates with different 
boundary conditions. 

These models are made of Pirespex with Young's modulus of 262 x10 N,m, 
Poisson's ratio v= 0.38 and a density of 1.237 x103  Kg,014. 

The results obtained by one of the computer methods are expressed in 
dimensionless formI thereforethere are eight step radius ratios g/a vary from 0.3 to 1.0 which are corresponding to the step radii r,= 45, 
60,75,90,105,120,135 and 150 mm. Also the natural frequenciesa are 
expressed in dimensionless form f/fs  ,where fs  represents the natural 
frequency of uniform annular plate wYth the sanest thickness 0.75 mm 
either in the case of central region raised or unraised. 

Figure 3 shows the results of natural frequencies of C-F, C-S and C-C 
stepped annular plates, while Fig. 4 shows the results for S-F, S-S and S-C stepped annular plates. The 

two figures show the effect of the 
variation of step radius on the natural frequencies of the different 
plates at the first symmetric mode 00. 

Similarly, Figs. 5 and 6 show the same relationships at the second symmetric mode 01. 

79; 
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Fig.3 Natural frequencies of C-F, C-S and C-C stepped annular 

plates at the first symmetric mode 00. 
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Fig.4 Natural frequencies of S-F, S-S and S-C stepped annular 

plates at the first symmetric mode 00. 

a- plates with central region raised. 
b- plates with central region unraised. 
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Fig.5 Natural frequencies of C-F, C-S and C-C stepped annular 

plates at the second symmetric mode 01. 

(a) 	 (b) 
Fig.6 Natural frequencies of S-F, S.S and S-C stepped annular 

plates at the second symmetric mode 01. 

a- plates with central region raised. 
b- plates with central region unraised. 
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In the case of central region raised, when the step radius r, equal to 
the inner radius b, the plate will be with uniform thickness of 0.75 mm 
while when the step radius equal to the outer radius a, the plate will 
be with uniform thickness of 1.0 mm. Consequently the vice-versa will 
be in the case of central region unraised. Table 1 shows the frequency 
results for these annular plates of uniform thicknesses and its compare 
ison with those obtained by Raju t47. The results were convenient and 
useful for the application of this process in a large scale. 

Table 1. Natural Frequencies of Uniform Thickness Annular Plates. 

Type of 	Mode 

Boundaries 	mn 

Natural Frequencies (Hz) by 

Raju ILO Given Method 

h=0.75 mm h=1.00 mm h=0.75 mm h=1.00 mm 

C
I
 0
 
0
  

1 	
1 	

1 	
1  

'g
i
 
0
  

to
  

■x
l  

. 	
_  

27,45 36.60 27.00 36.00 
124.50 166.00 122.00 163.00 
81.07 108.10 80.00 107.00 

250.50 334.00 246.00 329.00 
109.26 145.69 107.20 144.12 
301.05 401.40 296.0o 395.00 
11.17 14.90 11.00 14.60 
89.10 118.80 87.00 117.00 
50.77 67.8o 50.0o 67.00 
197.02 262.70 194.00 260.00 71.92 95.90 71.0o 95.00 240.82 321.10 237.50 317.50 

CONCLUSIONS 

The analysis of the axisymmetric vibrations of stepped annular plates 
are presented for plates with different combinations of boundary con-
ditions. It is seen that in the case of plates with central region 
raised, the value of the natural frequency usually increases as the 
step radius increases. In the case of plates with central region unralle 
sed the vice-versa will happened excpet that there are some of the adja-
cent step radii at which the corresponding frequencies can be consid-
ered equal . Also the given charts show the effect of the boundary co-
nditions on the results from the design point of view. 
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NOMENCLATURE 

4. no J.Aeron. Sor:. India, 

11 Axisymmetric Vibrations of Annular 
Journal of Sound and Vibration, 

a 
E 
b 
f 
h 
I0 II, 
Jo 9J,  
Ko ,K, 

M 
n 
Q 
r 
w 
xo tY1 
0 
p 

0 

L_ 

Outer radius of the annular plate 
Modulus of elasticity. 
Inner radius of the annular plate. 
Natural frequency. 
Plate thickness. 
Modified Bessel functions of the first kind of order Oland 1. 
Bessel functions of the first kind of order 0 and 1. 
Modified Bessel functions of the second kind of order 0 and 1. 
No. of nodal diameters. 
Radial bending moment. 
No. of nodal circles. 
Transverse shear force. 
Plate radius. 
Plate deflection. 
Modified Bessel functions of the second kind of order 0 and 
Eigenvalue of the frequency equation. 
Density of the plate. 
Poisson's ratio. 
Angular displacement. 
Natural frequency. 
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