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ABSTRACT 

The singular perturbations method is used to find a simplified solution of 

the longitudinal aircraft dynamics. The variables are devided into slow 

and fast. Then the steady state fast variables are used as input to the 

slow subsystem. The obtained simplified solution of the short period mode 

is the same as previously known solution of this mode. The obtained solu-

tion of the phugoid mode is basically different from the well known appro-

ximate solution of this mode. Calculations proved that the obtained appro-

ximate solution is very near to the exact one. 
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NOMENCLATURE 

C
L 	lift coefficient 

Cm 	pitching moment coefficient 

Cx 	drag coefficient 

Cz 	force coefficient in the direction of z axis 

differential operator 

. i 	nondimensional moment of inertia around y axis 

• Kn 	static stability margin 

q 

•  

perturbation pitching velocity 

u 	perturbation velocity in x axis direction 

oG 	perturbation angle of attack 

8 	perturbation pitch angle 

/L4' 	nondimensional mass of the airplane 

SUBSCRIPTS 

o reference steady state 

q 	derivative of the coefficient with respect to q 

u derivative of the coefficient with respect to u 

oc, 	derivative of the coefficient with respect to 06 
0(.. 	 derivative of the coefficient with respect to .c:6 

INTRODUCTION 

Singular perturbations method is recently used in many works 
concerning 

order reduction, separationl of time scales and control system, analysis 

and design. In Ref [1] an excellent review of the method of 
singular 

perturbations and its applications in different areas is giveri. The the-

oritical bases of the method could he found in Ref [2]. In Ref [3] the 

method is used to find the optimum flight path angle using separate time 

scales. Here the method of singular perturbations will be used to reduce 

the order of the dynamic system. The application will be directed towards 

getting a new simplified solution of the phugoid mode of an airplane. 
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ORDER REDUCTION 

The order of any dynamic system could be reduced if the state vector is 

composed from a group of slow variables and another one of fast variables. 

The order reduction could be performed if the following assumptions are 
satisfied: 

a) The frequency of the fast variables must be at least ten times higher 

•than that of the slow variables. 

•3) At least the fast variables are stable. 

Assuming that the system model has the following form: 

x = Ax + By 
	

(1) 

E y = Cx + Dy 
	

(2) 

where A,B,C and D are matrices of proper dimensions, x is an n dimen-
sions vector, y is an m dimensions vector, E is a small number. The 
order of the system is m + n.Equations (1) and (2) represent a lineari-
zed model of a dynamic system. It is clear that the vector x represents 

.the slow variables and the vector y represents Lhe fast variables. In 
•order to apply the singular perturbation method the system must be cast 
in the above given form. If the system is exited then at the begining 
the slow variables will not change and the system will be gevorned by 

E y • = Dy 

The corresponding modes are stable if the real part of the m eigenvalues 
of the matrix D are negative. The steady state of the fast variables is 

.obtained from equation (2) putting E = U and solving for y 
• 

y = - D -1 C x 

the steady stale of the fast, variables are used as input to the slow var-
iables. Substituting into equation (1) we get 

x = [A - BD -/ C) x 	(4) 

(3) 
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So the original system. !or order n + m is reduced to two subsystems. One is 

a fast subsystem and its eigenvalues are those of Lhe matrix D. The other 

is a slow subsystem and its eigenvalues are those of the matrix [A-BD-1 C 
The system is stable if the n eigenvalues of the matrix [ A - B B-1C ] 

as well as the m eigenvalues of the matrix D have negative real 
part. 

MATHEMATICAL MODEL 

The equations of longitudinal motion in nondimensional linearized form 

are according to Ref [4]: 

( 2  /u D- 	) u,- 	 06 + 	 CL0 	 =0 	(5.a) 

(2CL. - Ca.") u_+ (2(uD _ Cza D - C 2 	 _ (2?). 	C 21, ) 	o 	(5.b) 

	

- C mu  u - 	+ C 04. ) 06 +(c D2  cr„,;\,. D)e .0 	(5.c) 
The classical phugoid approximation uses first and second equation and 

drops the variable v, (see Ref (4) ). So the phugoid mode characteri-

stic equation is 

2  .... CA  U.  ',A 	C 2  Lo, 	=0 	( 6 ) 2 (1-4- 	2 /v.' 
In order to use the method or singular perturbations, equation (5) must 

be formulated in a matrix form and the variables must be devided into slow 

and fast- From the will known solutions of the longitudinal aircraft dyna-

mics it is possible to say that the slow variables are u and e while the 
fast variables are ocand q. Arranging the equations of motion in matrix 
form the following form could be easily found: 

•• 

CxLL 
2to. 

0 

-CL. 

2,44  

0 

0 

( 7 ) 
1 

- 	C 0 	C + 	de  C , C •••ig  
• 

C •,,4 4. Cfrel.  

U. 

e 

9. 
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It is easy to see that the approximate solution of the short period mode 

is the same The phugoid approximate solution is obtained as a dominant 

mode of the above system. The steady state values of the fast variables 

are 

2 [C Lo C„,1,  / 	2 /4-4-C„„)] 

= 2 C CLo Cgyna  hczo,c,,t, 	 C fr,,t )] 

It is seen from the above equation that the steady state fast variables 

and q are function of the perturbation velocity u only and are indepe- 

ndant on the perturbation elevation angle 	e . It is quite acceptable 
result from the physical point of view. Substituting into equation (7) the 

reduced system representing the dominant mode is obtained as follows: 

r 
CX 1,4 	CX0e  CLo C hi+ 	 cL o 

2 ju 	Itk (C zceC ivicl,- 2 (( A. ChIc 	1,u 
(9)  

2 CLo C  )tic<- 	 0 
cz o( C,,v,cs„- 2,u Cmc< 

The above equation is a new representation of the simplified phugoid mode. 

The characteristic equation could be easily found, after some manipola-

tion it is possible to write it as: 

2  
xtt 	

cx,x. 	cu.),  
1- 

[C 
2 

DLO 	Cr■-x. — O (10)  
2 e. 	(u(Co4C41.- 2/4C,„0 ) e(C24C h„,1-i: 2112 Cyl.) 

Comparing equation (10) . with equation (6) it is possible to see how far 

they are different. The obtained simplified phugoid solution is dependant 

on the static stability Cmce , damping in pitch Cm  and slope of lift curve 
CZ 	.These derivatives do not appear in the cladical formula of the 

simplified solution. As expected the solution is independent upon the 
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moment of inertia of the airplane which is in agreement with the known 

simpllified solution. 

RESULTS AND DISCUSSIONS 

The method is applied on an airplane, its data is given in Ref (4]. The 

exact solution is compared to both classical approximate solution given 

by equation (6) and the new solution given by equation (10). 

As mentioned previously the short period solution using the introduced 

method gives the same result as the well known approximate solution of 

the short period mode. So the discussions and analysis will be limited 

to the phugiod mode. 

In order to analyse the obtained solUtion and to compare it with the exact 
solution, the static margin Kn  was chosen as a parameter. The period T 

and the damping (Ni ) are found as function of the static margin K
n 
. The 

period of the phugoid mode obtained by this method is nearly the same 

as the exact solution. This is seen in Fig(1) where the curves of both 

solution coinside. The classical approximate solution gives constant 

value for the Period. This means that the introduced method gives an 

excellent approximation for the period of the phugoid mode. 

The damping which is expressed by the number of cycles to half amplitude 

N4 	
is seen in Fig(2). It is clear that the solution gives better appro- 

ximation for the damping than the classical approximate solution. The 

dependence of Nit upon the static margin Kn  has the same behaviour as 

that of the exact solution. At high values of Kn  the.approximation is 
very good. As the value of Kn  decreases the difference between the exact 

and the introduced solution increases, but it gives better results than 

the well known approximate solution of the phugoid mode. In the region 

of negative static stability ( Kn  negative) the results are far from 

the exact. This is expected, since the mothod is based on the assump-

tion that there are two modes one fast and the other is slow, and the 

fast is a stable one . But for negative static stability the short 

period mode is a divergent one. Hence the phugoid mode obtained by the 

presented method is not real. 

The root locus plot is given in fig(5). It is seen that the phugoid 
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branch corresponding to statically stable airplane ( Kn  positive) is the 

same for both exact and presented solution. For small negative values of 

Kn  the root locus plots are different.. As K
n increases in the negative 

direction the root locus plots become closer till they coiside for Kn<-0.1. 

The method is applied to a jet trainer and the results are given in Fig(3) 

and Fig(4). They give similar results to those shown in fig.(1) and fig.(2). 

CONCLUSION 

• 
A new solution of the approximate phugoid mode is obtained. The obtained 

solution gives excellent approximation for the period of this mode. The 

damping is very near to that of the exact solution. The method ptoves to 

be effective in the studied case. Also the method could be used to intro- 

duce the effect of the elastic mode on the longitudinal dynamics follow-

ing the same procedure of this work. 
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