

MILITARY TECHNICAL COLLEGE
CAIRO - EGYPT

* Military Technical College , Structural Engineering Department.

SECOND A.M.E. CONFERENCE
6-8 May 1986 , Cairo

Γ

These two suggested equations were estimated after the interpretation of the theoretical and experimental results of the different groups of frames used in that study.

Tables and curves were given for the comparison of using these two suggested equations with the experimental failure load. To shows how the calcula-- ted value is so better compared with Merchant formula results.

INTRODUCTION

Rankine (l866) suggested an empirical formula to calculate the failure load of isolated strut, as follow:

$$
\begin{aligned}
& \frac{l_{1}}{P_{R}} \equiv \frac{1}{P_{F}}-=\frac{1}{P_{E}}+\frac{1}{P_{p}} \\
& P_{E} \equiv \frac{2}{\pi} \operatorname{EA}\left(\frac{f}{\ell}\right)^{2} \text { and } P_{p} \equiv A \sigma_{Y}
\end{aligned}
$$

:
. where

$$
\begin{aligned}
& P_{F} \equiv \text { failure load of structure } \\
& P_{p} \equiv \text { load obtained from plastic theory } \\
& P_{E} \equiv \text { Euler's load } \quad \sigma_{Y}=\text { yield for strut material } \\
& \ell \text { Length } \boldsymbol{\ell} \equiv \text { sylinderness ratio } \\
& E \equiv \text { Young's modulus } \quad A \equiv \text { cross section area of strut. }
\end{aligned}
$$

Merchant suggested a new approach for obtaining the failure
: load of a complete structure by analogy from the isolated strut case and he suggested that

$$
\frac{1}{P_{R}}=\frac{1}{P_{F}}=\frac{1}{P_{C r}}+\frac{1}{P_{L}}
$$

where

$$
\begin{aligned}
& P_{c r} \equiv \text { elastic critical load for the structure. } \\
& P_{L} \equiv \text { plastic failure load for the structure. }
\end{aligned}
$$

SECOND A.M.E. CONFERENCE 6-8 May 1986 , Cairo

CHECK OF MERCHANT EQUATION FOR APPLICATION OF PITCHED-ROOF PORTALS:

Table (l) contains the values of the elastic critical load ($W_{c r}$) calculated using the elastic stability analysis for series (C) tested by Dr. Heyman at cambridge University.

The plastic failure loads $\left(W_{L}\right)$ were calculated and tabulated in the same tableno.l.beside the experimental load obtained by Dr. Heyman.

Merchant equation was applied to obtain the theoretical value of the failure load (W_{F})

Where

$$
\begin{align*}
\frac{1}{W_{F}} & =\frac{1}{W_{C}}+\frac{1}{W_{L}} \\
\therefore W_{F} & =W_{L} \quad\left(\frac{1}{1+\frac{W_{L}}{W_{C}}}\right. \tag{*}
\end{align*}
$$

From table (1) it is clear that Merchant equation should be modified to cover the error where the value in some frames such as frame c_{7} equals to: $+39.3 \%$ in case of pitched-roof portalframes.

Table (1)

Fr ame NO.	$\begin{aligned} & \left(W_{L}\right) \\ & (1 \mathrm{bs}) \end{aligned}$	$\begin{aligned} & \left(\mathrm{W}_{\mathrm{Cr}}\right) \\ & (1 \mathrm{bs}) \end{aligned}$	$\begin{gathered} \left(W_{F}\right) \\ (\text { Mer chant) } \\ \text { lbs } \end{gathered}$	Exper. failure load (Heyman)	Error \%
C_{4}	116.2	800	102	112	-8.95\%
- C_{6}	96.8	737	85.5	84	+1.79\%
- C_{8}	60.1	660	55.08	52	+5.92\%
C_{10}	37.3	496	34.9	34	+3.75\%
C_{5}	116.2	332	86	92	-6.5 \%
C_{7}	72.1	275	57.12	41	+39.3\%
C_{9}	39.5	236	33.89	26.5	+27.8\%
C_{11}	21.8	176	19.4	16	+21.2 \%

SECOND A.M.E. CONFERENCE
6-8 May 1986 , Cairo

SUGGESTED EQUATIONS FOR OBTAINING THE FAILURE LOAD OF
DIFFERENT STRUCTURAL FRAMES:

Two suggested equations may be used to obtain value of (W_{F}) regarding fig(l) in which the curve plotted to cover the relation between $\left(\frac{W^{W}}{W_{L}}\right)$ value and $\left(\frac{W}{W}\right)$ value for the fr ames tested by Dr. J. Heyman and frames tested by Dr. Merchant. The latter frames contain a group of portal frames and another group of traingul ated frames and warren trusses. After the interpretation of the experimental results and the theoretical calculations for the elastic critical load and the plastic failure load it should be noted that :
a for frames having the value of $\left(\frac{\mathrm{L}}{\mathrm{L}}\right)$ less than (O.3), the failure load of the frames may be obtained from equation (1) which is the equation of the suggested curve.
b For Frames having the value of $\left(\frac{{ }^{L}}{W}\right)$ bigger than 0.3 the failure load may be obtained from eqn (2) which is the equation of the suggested curve.

$$
\begin{align*}
& \text { If } \quad\left(\frac{W_{L}}{W_{C r}}\right)<0.3 . \ddots W_{F}=W_{L}\left[1-1.67\left(\frac{W_{L}}{W_{C r}}\right)\right] \tag{1}\\
& \text { If }\left(\frac{W_{L}}{W_{C r}}\right)>0.3 \quad \because \quad W_{F}=W_{L}\left[\frac{1}{1+\left(\frac{W_{L}}{W_{C r}}\right)}+\frac{1}{4}\left(\frac{W_{L}}{W_{C r}}\right)^{2}\right] \tag{2}
\end{align*}
$$

Tables (2), (3), (4) and (5) show the values of the failure load obtained using the suggested equations compared with the experimental value and also : compared with the value of the failure load obtained by Merchants equation fig (l).

Table (2) shows the error for obtaining the failure load of frames series (c) using the two suggested equations, the maximum value of error was (20.6 \%) (see table (l)) for comparison between Merchant. equation and the author suggested results.
r
:
C_{4}
Fr ame

No.

$$
\left(\mathrm{W}_{\mathrm{L}} / \mathrm{W}_{C r}\right)
$$

$\left(W_{F}\right) \quad$ lbs suggested

Table (2)

SECOND A.M.E. CONFFRENCE
6-8 May 1986 , Cairo

Frame				
No.	$\left(W_{L} / W_{C r}\right)$	Thest load		
suggested	Frror \%			

C_{4}	0.145	88.9	112.0	-20.6%
C_{6}	0.132	76.0	84.0	-9.5%
C_{8}	0.091	50.0	52.0	-3.85%
C_{10}	0.075	32.7	34.0	-3.83%
C_{5}	0.350	90.0	92.0	-2.17%
C_{7}	0.263	0.168	28.5	41.0
C_{9}	0.124	17.4	26.5	-0.975%
C_{11}		16.0	$+7.58 \%$	

-
- Note:

For values of $\left(\frac{W_{C r}}{W_{C r}}\right)<0.3$ equation (1) should be used.
For values of $\left(\frac{W_{L}}{W_{C r}}\right) \geqslant 0.3$ equation (2) should be used.

It was clear from table (1) and table (2) that the error for frame (C_{7}) using Merchant's equation is+ 39.3 \% reduced to -0.975 \% using the suggested equation (1) (see also the error for frames $C_{9} \& C_{l l}$ in the above two tables)

Table (3) shows the values of W_{F} using the suggested equations compared with the test load and Merchant failure load for the portal frames tested by Merchant and A. Salem, i.e. the suggested two equations may be used also in case of protal frames.

r
SECOND A.M.E. CONFERENCE
6 - 8 May 1986 , Cairo

Table (3)

Fr ame No.	W_{L} (l bs)	$\mathrm{W}_{C r}(\mathrm{lbs})$	$\left(W_{L} / W_{C r}\right)$	Merchant $\left(W_{F}\right)$	Suggested $\left(W_{F}\right)$	Test load
M_{2}	109	885	0.123	96.4	86.8	88
M_{3}	79	356	0.221	64.9	50.0	69
M_{4}	110	353	0.312	84.5	87.3	88
M_{5}	19.6	347	0.0564	18.6	17.8	18
M_{6}	37.3	885	0.0424	35.7	34.7	37
M_{9}	13	94	0.139	11.44	10.0	12
M_{13}	40	90	0.445	27.6	27.8	30
M_{14}	158	847	0.187	133.9	109.0	122
M_{15}	106	850	0.1245	94.5	84.4	98
M_{16}	30.4	87.5	0.348	22.15	23.5	27
M_{17}	106	890	0.119	95.2	85.0	96

Table (4) shows the values of $\left(W_{F}\right)$ using the suggested equations compared with the test load and Merchant. failure load for the Warren girders tested by Mer chant and A. Salem.

r

SECOND A.M.E. CONFERENCE
6 - 8 May 1986 , Cairo

Table (4)

Fr ame No.	$\begin{aligned} & { }^{W_{L}} \\ & (\mathrm{lbs}) \end{aligned}$	$\begin{aligned} & { }^{W}{ }_{C r} \\ & (\mathrm{lbs}) \end{aligned}$	$\left(\frac{\mathrm{W}_{\mathrm{L}}}{\mathrm{~W}_{\mathrm{Cr}}}\right)$	Mer chant $\left(W_{F}\right)$	Suggested $\left(W_{F}\right)$	Test load
T_{1}	394	420	0.935	205	293	374
T_{2}	255	275	0.925	132.4	188	232
T3	188	210	0.895	100	137.8	180
T_{4}	1720	2000	0.860	930	1420	1470
T_{5}	5400	9450	0.570	3440	3890	4590
T_{6}	6150	10400	0.590	3870	4400	4850
T_{7}	3700	6750	0.550	2390	2670	3330
T_{8}	3210	3500	0.915	1670	2375	2520
T_{9}	2350	3500	0.67	1410	1678	2280

- It was clear from table (4) that all the results obtained for $\left(W_{F}\right)$ value using the suggested equation (2) (where $\frac{W_{L}}{W_{C r}}>0.3$) have a value for $\left(W_{F}\right)$ far better than the value obtained by Merchant equation, in girder (T_{3}) the error clear from using Merchant equation is- 44.5% in obtaining the failure load, that error is reduced to a value - $23.5 \% \mathrm{f}$ we used the suggested equation (2). Also for girder (T_{8}) the error by using Merchant equation -33.6 is reduced to a value - 5.75 \% if we used the suggested equation (2).
- It was clear thatlarge difference between Merchant equation and the suggested one when $\left(\frac{W_{L}}{W_{C r}}\right)$ is higher than 0.3.

Table (5) shows the values of (W_{F}) using the suggested equation (2) compared with the test load and Merchant failure load for the triangul ated frames (Zested by Merchant and A. Salem.

SECOND A.M.F. CONFERENCE 6 - 8 May 1986 , Cairo

Table (5)

Frame	W_{L}	$W_{C r}$		Merchant	Suggested	Test
No.	(lbs)	$(1 \mathrm{bs})$	$\left.W_{L} / W_{C r}\right)$	$\left(W_{F}\right)$	$\left(W_{F}\right)$	load
R_{1}	23000	25960	0.890	12200	16800	20280
R_{2}	10700	11240	0.95	5500	7900	8650
R_{3}	32700	44570	0.735	19000	23400	24900
R_{8}	41000	94400	0.435	28700	30500	35130
R_{10}	26800	61300	0.435	18800	20000	21000
R_{12}	13000	16250	0.800	7200	9300	12380
R_{19}	36250	52300	0.690	21500	25800	27200
R_{21}	9860	13200	0.750	5630	7020	9070

It was clear from table (5) that most results obtained for (W_{F}) value using the suggested equation (2) have a value of $\left(W_{F}\right)$ far better than the value obtained by Merchant's equation, for triangul ated frame (R_{12}) the error clear from using Merchant equation is- 41.7 \% in obtaining the failure load, this error was reduced to the value -25% if we used the suggested equation (2).

Also for frame $\left(R_{2}\right)$ the error by using Merchants equation is -36.4 if we used the suggested equation (2) the error would be reduced to a value equal to :-8.7\%.

CONCLUSION

- The use of Merchant formula for obtaining the failure load without modification in different cases is not sufficient.
- Two suggested formulas may be used after the modification of Merchant equations for the estimating of the theoretical failure load.
-

:

$$
\begin{aligned}
& W_{F}=W_{L}\left[\frac{1}{1+\left(\frac{W_{L}}{W_{C r}}\right)}+\frac{1}{4}\left(\frac{W_{L}}{W_{C r}}\right)^{2}\right] . \text { for } \frac{W_{I,}}{W_{C r}}>0.3 \\
& W_{F}=W_{L}\left[1-0.6\left(\frac{W_{T}}{W_{C}}\right)\right] \ldots \text { for } \frac{W_{L}}{W_{C r}}<0.3
\end{aligned}
$$

ACKNOWLEDGEMENT

. The author wishes to extend his deepest gratitude to Prof. Dr. Saafan Abdel.

- Gawad Saafan, Structural Engineering department, Ain Shams University, for. his kind help and assistance throughout this research.

REFERENCES

1 Heyman J.C. "Plastic design of pitched-roof portal frames". The institution of civil Engineers, London, 1957. Discussion, January 1958, Vol. (9)

2 Livesley, R.K. and Chandler, D.B. "Stability functions for structur al Frame works". Manchester University Press, 1956.

3 Merchant, W. Rashid C.A., Bolton, and A. Salem. "The Behaviour of Unclad Frames". The Institution of Structur al Engineers, October 1958.:

4 Merchant, W. and Saafan, S.A. "Critical Pressures and Buckling Modes of Regul ar polygonal prismatic Tubes". (Int. J. Mech. Sci., Pergamon Press ltd.," 1960)

5 Merchant W. and Horne, M.R. "The stability of frames". Pergamon Press, London, 1965.

6 Mohamed F.A., M.Sc. Thesis "Failure load of Structural Frames". (1977)
7 Neal, B.G. "The plastic Method of Structural Analysis". Chapman \& Hall Ltd, London, 1959).

8 Partridge, F.A. "The Collapse Method of Design as applied to singleBay fixed Base portals". Written for British Constructional Steel work Association, 1957.

9 Saafan, S.A. "Non-Linear Behaviour of Structur al Plane Frames". Jour nal of the structur al Division, ASCE, Vol. 89, August 1963.

10 Saafan, S.A. "Analytical and Empirical determination of failure load of structur al frames". Publishing House of the Hungarian Academy of Sciences, Budapest, 1968.

