MDB-543

3

4



MILITARY TECHNICAL COLLEGE CAIRO - EGYPT

# SUGGESTED MODIFICATIONS OF MERCHANT FORMULA FOR THE

CALCULATION OF FAILURE LOAD OF FRAMES

By: Col.Dr. Mohamed Fahmy Amin Mahrous

## ABSTRACT

The problem of calculating the theoretical failure load  $(W_F)$  of a structure with good accuracy compared with its actual failure load value is a very important task of study. Rankine and Merchant suggested aformula for obtaining the failure load of a complete structure by analogy from isolated strut case and this in fact is an approximate method. An isolated strut of an elastic critical load  $(W_C)$ , yield load  $(W_L)$  and failure load  $(W_F)$  is similar to complete structure behaviour.

The application of Merchant equation for portal and pitched-roof frames:leads to an overage error equal to  $\pm$  29% when the failure load calculated compared with its experimental value.

Two suggested equations may be estimated after elastic-plastic analysis have been made on three different series of frames tested before till failure in Cambridge University laboratories by Dr. J.C. Heyman. It should be noticed that for frames having the value of  $\binom{W_L}{W}$  less than 0.3, the failure load of frames may be obtained using suggested equation (1), and for frames having the value of  $(\frac{W_L}{W_C})$  bigger than 0.3, the failure load obtained using suggested equation (2).

\* Military Technical College , Structural Engineering Department.



SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

Г

MD B

These two suggested equations were estimated after the interpretation of the theoretical and experimental results of the different groups of frames used in that study.

Tables and curves were given for the comparison of using these two suggested equations with the experimental failure load. To shows how the calculated value is so better compared with Merchant formula results.

# INTRODUCTION

Rankine (1866) suggested an empirical formula to calculate the failure load of isolated strut, as follow:

$$\frac{1}{P_{R}} \equiv \frac{1}{P_{\dot{F}}} = \frac{1}{P_{E}} + \frac{1}{P_{p}}$$

$$P_{E} = \frac{2}{\pi} EA(\frac{\pi}{\ell})^{2}$$
 and  $P_{p} = A \delta_{y}$ 

where

Merchant suggested a new approach for obtaining the failure load of a complete structure by analogy from the isolated strut case and he suggested that

$$\frac{1}{P_{R}} = \frac{1}{P_{F}} = \frac{1}{P_{Cr}} + \frac{1}{P_{L}}$$

where

 $P_{cr}$  = elastic critical load for the structure.  $P_{t}$  = plastic failure load for the structure.





SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

CHECK OF MERCHANT EQUATION FOR APPLICATION OF PITCHED-ROOF PORTALS:

Table (1) contains the values of the elastic critical load (W<sub>cr</sub>) calculated using the elastic stability analysis for series (C) tested by Dr. Heyman at cambridge University.

The plastic failure loads(W  $_{\rm L}$ ) were calculated and tabulated in the same tableno.l.beside the experimental load obtained by Dr. Heyman.

Merchant equation was applied to obtain the theoretical value of the failure load  $(W_{\rm p})$ 

Where

$$\frac{1}{W_{\rm F}} = \frac{1}{W_{\rm C}} + \frac{1}{W_{\rm L}}$$

$$W_{\rm F} = W_{\rm L} \left( \frac{1}{1 + \frac{W_{\rm L}}{W_{\rm C}}} \right)$$

(\*)

From table (1) it is clear that Merchant equation should be modified to cover the error where the value in some frames such as frame c<sub>7</sub> equals to + 39.3 % in case of pitched-roof portalframes.

|     |       |                   | 2                  |                   |                |         |
|-----|-------|-------------------|--------------------|-------------------|----------------|---------|
| F   | Frame | (W <sub>L</sub> ) | (W <sub>cr</sub> ) | (W <sub>F</sub> ) | Exper. failure | Error % |
| N   | 10.   | (lbs)             | (lbs)              | (Merchant)<br>lbs | load(Heyman)   |         |
| C   | 4     | 116.2             | 800                | 102               | 112            | -8.95 % |
| . C | 6     | 96.8              | 737                | 85.5              | 84             | +1.79 % |
| • 0 | 8     | 60.1              | 660                | 55.08             | 52             | +5.92 % |
| С   | 10    | 37.3              | 496                | 34.9              | 34             | +3.75 % |
| С   | 5     | 116.2             | 332                | 86                | 92             | -6.5 %  |
| С   | 7     | 72.1              | 275                | 57.12             | 41             | +39.3 % |
| С   | 9     | 39.5              | 236                | 33.89             | 26.5           | +27.8 % |
| С   | 11    | 21.8              | 176                | 19.4              | 16             | +21.2 % |
|     |       |                   |                    |                   |                |         |

Table (1)

SECOND A.M.E. CONFERENCE 6 - 8 May 1986, Cairo

Г

SUGGESTED EQUATIONS FOR OBTAINING THE FAILURE LOAD OF DIFFERENT STRUCTURAL FRAMES:

Two suggested equations may be used to obtain the value of  $(W_F)$  regarding fig(1) in which the curve plotted to cover the relation between  $(\frac{W_F}{W_L})$  value and  $(\frac{W_L}{W})$  value for the frames tested by Dr. J. Heyman and frames tested by Dr. Merchant. The latter frames contain a group of portal frames and another group of traingulated frames and warren trusses. After the interpretation of the experimental results and the theoretical calculations for the elastic critical load and the plastic failure load it should be noted that :

- a for frames having the value of  $(\frac{W}{W})$  less than (0.3), the failure load of the frames may be obtained from equation (1) which is the equation of the suggested curve.
- b For Frames having the value of  $(\frac{W_L}{W})$  bigger than 0.3 the failure load may be obtained from eqn (2) which is the equation of the suggested curve.

If 
$$\left(\frac{W_{L}}{W_{cr}}\right) < 0.3$$
  $\therefore$   $W_{F} = W_{L} \left[1 - 1.67 \left(\frac{W_{L}}{W_{cr}}\right)\right]$  (1)  
If  $\left(\frac{W_{L}}{W_{cr}}\right) > 0.3$   $\therefore$   $W_{F} = W_{L} \left[\frac{1}{W_{L}} + \frac{1}{4} \left(\frac{W_{L}}{W_{cr}}\right)^{2}\right]$  (2)

Tables (2), (3), (4) and (5) show the values of the failure load obtained using the suggested equations compared with the experimental value and also compared with the value of the failure load obtained by Merchants equation fig (1).

Table (2) shows the error for obtaining the failure load of frames series (c) using the two suggested equations, the maximum value of error was (20.6 %) (see table (1)) for comparison between Merchant equation and the author suggested results.



SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

#### Table (2)

| Fr ame          | (W_/W ) | ( $W_{\rm F}$ ) lbs | Test load | Error % |
|-----------------|---------|---------------------|-----------|---------|
| <br>No.         | L' cr   | suggested           |           |         |
|                 |         |                     |           |         |
| с <sub>4</sub>  | O.145   | 88.9                | 112.0     | -20.6 % |
| C <sub>6</sub>  | 0.132   | 76.0                | 84.0      | - 9.5 % |
| C <sub>8</sub>  | 0.091   | 50.0                | 52.0      | -3.85 % |
| C <sub>10</sub> | 0.075   | 32.7                | 34.0      | -3.83 % |
| C <sub>5</sub>  | 0.350   | 90.0                | 92.0      | -2.17 % |
| C <sub>7</sub>  | 0.263   | 40.6                | 41.0      | -0.975% |
| с <sub>9</sub>  | 0.168   | 28.5                | 26.5      | +7.58 % |
| C <sub>11</sub> | 0.124   | 17.4                | 16.0      | +8.75 % |
|                 |         |                     |           |         |

· Note:

> For values of  $\left(\frac{W_{L}}{W_{cr}}\right) < 0.3$  equation (1) should be used. For values of  $\left(\frac{W_{L}}{W_{cr}}\right) > 0.3$  equation (2) should be used.

It was clear from table (1) and table (2) that the error for frame  $(C_7)$  using Merchant's equation is+ 39.3 % reduced to - 0.975 % using the suggested equation (1) (see also the error for frames  $C_9 \& C_{11}$  in the above two tables)

Table (3) shows the values of  $W_F$  using the suggested equations compared with the test load and Merchant failure load for the portal frames tested by Merchant and A. Salem, i.e. the suggested two equations may be used also in case of protal frames.

MD B-5 48



SECOND A.M.E. CONFERENCE

6 - 8 May 1986 , Cairo

7

Г

Table (3)

| Fr ame          |                      |                                                                  | 1      | 1 1 /                     | Suggested         | Test |        |
|-----------------|----------------------|------------------------------------------------------------------|--------|---------------------------|-------------------|------|--------|
| N <u>o</u> .    | W <sub>L</sub> (IDS) | W <sub>cr</sub> (IDS) (W <sub>L</sub> /W <sub>c</sub> ) Merchant |        | Merchant(W <sub>F</sub> ) | (W <sub>F</sub> ) | load |        |
| <sup>M</sup> 2  | 109                  | 885                                                              | 0.123  | 96.4                      | 86.8              | 88   |        |
| м3              | 79                   | 356                                                              | 0.221  | 64.9                      | 50.0              | 69   |        |
| <sup>M</sup> 4  | 110                  | 353                                                              | 0.312  | 84.5                      | 87.3              | 88   | •      |
| <sup>M</sup> 5  | 19.6                 | 347                                                              | 0.0564 | 18.6                      | 17.8              | 18   |        |
| <sup>M</sup> 6  | 37.3                 | 885                                                              | 0.0424 | 35.7                      | 34.7              | 37   |        |
| <sup>M</sup> 9  | 13                   | 94                                                               | 0.139  | 11.44                     | 10.0              | 12   |        |
| M <sub>13</sub> | 40                   | 90                                                               | 0.445  | 27.6                      | 27.8              | 30   |        |
| M_14            | 158                  | 847                                                              | 0.187  | 133.9                     | 109.0             | 122  |        |
| M15             | 106                  | 850                                                              | 0.1245 | 94.5                      | 84.4              | 98   |        |
| M<br>16         | 30.4                 | 87.5                                                             | 0.348  | 22.15                     | 23.5              | 27   |        |
| <sup>M</sup> 17 | 106                  | 890                                                              | 0.119  | 95.2                      | 85.0              | 96   | •<br>• |

Table (4) shows the values of  $(W_F)$  using the suggested equations compared with the test load and Merchant. failure load for the Warren girders tested by Merchant and A. Salem.



SECOND A.M.E. CONFERENCE 6 - 8 May 1986, Cairo

Table (4)

| Frame<br>No.   | W <sub>L</sub><br>(lbs) | W<br>cr<br>(lbs) | $(\frac{W_{L}}{W_{Cr}})$ | Merchant<br>(W <sub>F</sub> ) | Suggested<br>(W <sub>F</sub> ) | Test<br>load |  |
|----------------|-------------------------|------------------|--------------------------|-------------------------------|--------------------------------|--------------|--|
|                | 204                     | 100              |                          | 6                             |                                |              |  |
| 1              | 394                     | 420              | 0.935                    | 205                           | 293                            | 374          |  |
| <sup>т</sup> 2 | 255                     | 275              | 0.925                    | 132.4                         | 188                            | 232          |  |
| <sup>т</sup> з | 188                     | 210              | 0.895                    | 100                           | 137.8                          | 180          |  |
| <sup>т</sup> 4 | 1720                    | 2000             | 0.860                    | 930                           | 1420                           | 1470         |  |
| <sup>Т</sup> 5 | 5400                    | 9450             | 0.570                    | 3440                          | 3890                           | 4590         |  |
| <sup>Т</sup> 6 | 6150 10                 | 0400             | 0.590                    | 3870                          | 4400                           | 4850         |  |
| <sup>T</sup> 7 | 3700 6                  | 5750             | 0.550                    | 2390                          | 2670                           | 3330         |  |
| <sup>T</sup> 8 | 3210 3                  | 3500             | 0.915                    | 1670                          | 2375                           | 2520         |  |
| т9             | 2350 3                  | 3500             | 0.67                     | 1410                          | 1678                           | 2280         |  |

It was clear from table (4) that all the results obtained for  $(W_F)$  value using the suggested equation (2) (where  $\frac{W_L}{W_Cr} > 0.3$ ) have a value for  $(W_F)$ far better than the value obtained by Merchant equation, in girder  $(T_3)$  the error clear from using Merchant equation is- 44.5 % in obtaining the failure load, that error is reduced to a value -23.5 % f we used the suggested equation (2). Also for girder  $(T_8)$  the error by using Merchant equation -33.6 % is reduced to a value -5.75 % if we used the suggested equation (2).

: It was clear that large difference between Merchant equation and the suggested one when  $(\frac{W_L}{W_C})$  is higher than 0.3.

Table (5) shows the values of  $(W_F)$  using the suggested equation (2) compared with the test load and Merchant failure load for the triangulated frames test-ed by Merchant and A. Salem.

MD B-5 50



SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

7

Table (5)

|  | Frame           | WL    | Wcr   | (W /W )  | Merchant          | Suggested         | Test  |   |
|--|-----------------|-------|-------|----------|-------------------|-------------------|-------|---|
|  | No.             | (lbs) | (lbs) | ("L'"cr' | (W <sub>F</sub> ) | (W <sub>F</sub> ) | load  |   |
|  | Rl              | 23000 | 25960 | 0.890    | 12200             | 16800             | 20280 | • |
|  | R <sub>2</sub>  | 10700 | 11240 | 0.95     | 5500              | 7900              | 8650  |   |
|  | R <sub>3</sub>  | 32700 | 44570 | 0.735    | 19000             | 23400             | 24900 |   |
|  | R <sub>8</sub>  | 41000 | 94400 | 0.435    | 28700             | 30500             | 35130 |   |
|  | R <sub>10</sub> | 26800 | 61300 | 0.435    | 18800             | 20000             | 21000 |   |
|  | R <sub>12</sub> | 13000 | 16250 | 0.800    | 7200              | 9300              | 12380 |   |
|  | R<br>19         | 36250 | 52300 | 0.690    | 21500             | 25800             | 27200 |   |
|  | R <sub>21</sub> | 9860  | 13200 | 0.750    | 5630              | 7020              | 9070  |   |
|  |                 |       |       |          |                   |                   |       |   |

It was clear from table (5) that most results obtained for  $(W_F)$  value using the suggested equation (2) have a value of  $(W_F)$  far better than the value obtained by Merchant's equation, for triangulated frame  $(R_{12})$ the error clear from using Merchant equation is- 41.7 % in obtaining the failure load, this error was reduced to the value -25% if we used the suggested equation (2).

Also for frame  $(R_2)$  the error by using Merchants equation is - 36.4 % if we used the suggested equation (2) the error would be reduced to a value equal to - 8.7 %.

MD B - 5 51



MILITARY TECHNICAL COLLEGE CAIRO - EGYPT

× K 9 OR1-078 ¢ 0 FC 0, 6.0 Qr4 2 Or, Suggested O KH 0.8 Merchar 0 <sup>R21</sup> Suggested equations& merchant equation O<sub>R19</sub> 2.0 o 0.3  $\wedge$ 9.0 0 0 2 Φ 0 L 0.5 O<sub>R w</sub> OM OR S 0.4 OMIG 10M. Ocs ю o C 0<sup>H3</sup> OMIA 5499 0.2 Ocg 0.3 050Mg 004 72 65 000 ¥ 9 0.1 101 OL 01 01 0.50 0.60 0.55 0.65 0.85 0.80 0.75 1.00 0.95 0.90 0.70 K X

FIG. 1

1

MD B-5 52



SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

7

Г

4

# CONCLUSION

- The use of Merchant formula for obtaining the failure load without modification in different cases is not sufficient.
- Two suggested formulas may be used after the modification of Merchant equations for the estimating of the theoretical failure load.

$$W_{\rm F} = W_{\rm L} \left[ \frac{1}{1 + \left(\frac{{\rm L}}{{\rm W}_{\rm Cr}}\right)} + \frac{1}{4} \left(\frac{{\rm W}_{\rm L}}{{\rm W}_{\rm Cr}}\right)^2 \right] \cdot \text{for } \frac{{\rm W}_{\rm L}}{{\rm W}_{\rm Cr}} > 0.3$$
$$W_{\rm F} = W_{\rm L} \left[ 1 - 0.67 \left(\frac{{\rm W}_{\rm L}}{{\rm W}_{\rm C}}\right) \right] \cdot \cdots \text{ for } \frac{{\rm W}_{\rm L}}{{\rm W}_{\rm Cr}} < 0.3$$

#### ACKNOWLEDGEMENT

The author wishes to extend his deepest gratitude to Prof. Dr. Saafan Abdel Gawad Saafan, Structural Engineering department, Ain Shams University, for his kind help and assistance throughout this research.





SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

# REFERENCES

- 1 Heyman J.C. "Plastic design of pitched-roof portal frames". The institution of civil Engineers, London, 1957. Discussion, January 1958, Vol. (9)
- 2 Livesley, R.K. and Chandler, D.B. "Stability functions for structural Frame works". Manchester University Press, 1956.
- 3 Merchant, W. Rashid C.A., Bolton, and A. Salem. "The Behaviour of . Unclad Frames". The Institution of Structural Engineers, October 1958.
- 4 Merchant, W. and Saafan, S.A. "Critical Pressures and Buckling Modes of Regular polygonal prismatic Tubes". (Int. J. Mech. Sci., Pergamon Press ltd., "1960)
- 5 Merchant W. and Horne, M.R. "The stability of frames". Pergamon Press, London, 1965.
- 6 Mohamed F.A., M.Sc. Thesis "Failure load of Structural Frames". (1977)
- 7 Neal, B.G. "The plastic Method of Structural Analysis". Chapman & Hall Ltd, London, 1959).
- 8 Partridge, F.A. "The Collapse Method of Design as applied to single-Bay fixed Base portals." Written for British Constructional Steel work Association, 1957.
- 9 Saafan, S.A. "Non-Linear Behaviour of Structural Plane Frames". Journal of the structural Division, ASCE, Vol. 89, August 1963.
- 10 Saafan, S.A. "Analytical and Empirical determination of failure load of structural frames". Publishing House of the Hungarian Academy of Sciences, Budapest, 1968.