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Abstract 

Recently, unmanned vehicles have attracted a great deal of attention in 

academic, civilian and military communities as prospective solutions to 

a wide variety of applications. With this growing interest, there has been 

a great development of unmanned systems control techniques. One of 

the promising approaches in the field of unmanned systems is model 

predictive control (MPC) due to its ability to handle the multi-variable 

constrained systems. Therefore, the goal of this paper is to present a 

comprehensive literature of applying MPC for motion control of both 

unmanned ground vehicles (UGVs) and unmanned aerial vehicles 

(UAVs). First, an overview of motion control principles is presented. 

Next, an overview of MPC including its concept, formulation, types, and 

its stability is provided. Then, a comprehensive literature review of 

applying MPC to both UGVs and UAVs is introduced, including the 

basic motion tasks such as path planning, point stabilization, and 

trajectory tracking. Finally, open problems, challenges, and future 

directions are highlighted. 
 

 

I. INTRODUCTION 

From the literal meaning, mobile robots can move 

autonomously from one place to another without 

assistance of external human operators. Mobile robots 

have the special feature of moving around freely within a 

predefined workspace to achieve their goals. This 

mobile capability makes them prospective in both civilian 

and military applications, including surveillance [1, 2, 3], 

search and exploration [4, 5, 6, 7], cooperative 

reconnaissance [8], environmental monitoring [9, 10], and 

cooperative manipulation [11, 12], respectively. 

According to the environment in which they move, 

mobile robots can be classified into unmanned aerial 

vehicles (UAVs), autonomous underwater vehicles 

(AUVs), and unmanned ground vehicles (UGVs), 

respectively. Ground vehicles are further distinguished in 

wheeled mobile robots (WMRs) and legged mobile robots 

(LMRs), respectively. WMRs are appropriate for typical 

applications with relatively low mechanical complexity 

and energy consumption. LMRs are suitable for tasks in 

non-standard environments, stairs, heaps of rubble, etc. 

Note that mobile manipulators (wheeled or legged robots 

equipped with one or more light manipulators to perform 

various tasks) are also considered as mobile robots [13]. 

Robot control deals with the problem of determining 

the forces and torques that are generated by the robotic 

actuators to reach a desired position and track a desired 

trajectory. In general, robot control is aimed at performing 

a specific task with desired performance requirements [13]. 

In well-structured and fixed environments (e.g. factories 

and laboratories), the configuration of the environment 

is known a prior. While in uncertain environments, the 

control algorithms must involve intelligence. Therefore, 

the basic tasks of unmanned vehicle controller are: 

mapping, localization, path planning, and tracking. To be 

more specific, the vehicle has to create the map of the 

surrounding environment, by which the localization is 

achieved. Then, the path is planned and the control inputs 

are generated to ensure that the vehicle tracks planned path 

and eventually accomplishes the task. 

Path planning focuses on determining how a robot 

moves in a workspace to achieve its goals. The path 
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planning problem involves computing a collision-free 

path between the start and destination points. The robot-

surrounded environment may be fully known, partially 

known, or fully unknown. In most practical cases, the 

environment is only partially known, where the robot, 

prior to path planning and motion, has partial knowledge 

of the workspace. Path planning may be either local or 

global. Local path planning is performed while the robot 

is moving and receiving data from local sensors. In this 

case, the robot has the ability to generate a new path in 

response to environment changes. On the other hand, 

global path planning can be performed only if the 

environment is static and perfectly known to the robot. In 

this case, the path planning algorithm produces a 

complete path from the start point to the goal at the 

initial stage of the motion. 

In order to enable an efficient, smooth, and continuous 

movement of vehicles along the desired path, a trajectory 

tracking is of great importance. Most of UGVs and 

UAVs are nonholonomic and with highly nonlinear 

dynamics. As a result, the control of unmanned vehicles 

must overcome vehicle nonlinearities as well as the 

nonholonomic constraint, so that the vehicle can be 

stabilized with sound robustness. According to Brockett 

[14], a smooth, time-invariant, static state feedback 

control law cannot be used to stabilize a nonholonomic 

system at a given configuration. To tackle this limitation, 

a variety of nonlinear control strategies have been 

presented for the trajectory tracking and stabilization. 

Though numerous control algorithms are found in the 

literature, the controller design is still challenging due to 

the nonholonomic nature and the nonlinearity nature. 

Many control algorithms have been developed to solve 

the UGVs control problem, including Lyapunov based 

method [15, 16, 17], dynamic feedback linearization [18, 

19, 20], sliding mode control [21, 22], and model 

predictive control (MPC) [23, 24, 25]. 

On the other hand, control of UAVs is much more 

challenging due to the complexity of the flight conditions. 

Several control algorithms are found in literature to solve 

the UAVs control problem, including proportional–

integral–derivative (PID) [26, 27], fuzzy control [28,29], 

adaptive control [30,31], neural network [32,33], genetic 

algorithm (GA) [34], and MPC [35, 36]. 

Recently, unmanned vehicles control problem is 

formulated as an optimal control problem, where 

optimization-based techniques can be applied. One of 

these approaches is MPC. The past decade has witnessed 

the development of MPC to be applied to unmanned 

systems. Its ability to handle constraints makes it promise 

for single vehicle control and cooperative control of a 

team of unmanned vehicles. 

This paper is intended to review and highlight the 

existing work of applying MPC for motion control of both 

UGVs and UAVs. This survey can be divided into three 

sections: 1) an overview of MPC, including the principle, 

types, formulation, and summary; 2) a review of the 

existing work of controlling UGVs based on MPC. This 

review indicates how to apply MPC to address the main 

issues of UGVs motion control: trajectory tracking, point 

stabilization, collision avoidance, and path planning; and 3) 

a review of the existing work of applying MPC to UAVs’ 

motion control including the following issues: path 

planning, disturbance rejection, trajectory tracking, and 

fault tolerant control (FTC). 

The rest of this paper is organized as follows. Section 

II presents an overview of MPC formulation and types. 

Section III gives a comprehensive review of applying MPC 

to UGVs, In Section IV, a comprehensive review of 

controlling UAVs based on MPC is investigated. 

Challenging issues and main future directions are presented 

in Section V. Finally, concluding remarks are presented in 

Section VI. 

II. MODEL PREDICTIVE CONTROL 

MPC, which is also known as receding horizon control 

(RHC), has received a great deal of attention in the 

control community, due to its ability to solve multi-variable 

constrained problems. Although it has been used for a long 

time in some industrial processes such as oil refinery, 

biomedical industry, and chemical plants [37], MPC 

recently start being applied for UAVs [35, 36, 38] and 

WMRs [23, 24]. 

The importance of applying MPC in the control community 

arises from its ability to handle the states and inputs 

constraints, and real-time predication, optimizing and 

correcting the feedback. Compared to the conventional 

control methods that use pre-computed control laws, MPC 

is based on iterative, finite horizon optimization of a plant 

model to obtain an estimate of its future behavior. An 

optimization problem based on a cost function is then solved 

to choose an optimal sequence of controls from all feasible 

sequences. The first control input of this optimal sequence 

is then applied to the feedback control loop, while the whole 

procedure is repeated at each subsequent step. Fig. 1 shows 

the basic structure of MPC. The main principle of building 

an MPC controller can be summarized as follows [39]: 

 Calculate the predictions of the future system 

behavior based on the explicit use of plant model; 

 Optimize the objective function subject to 

constraints, resulting in the optimal sequence of 

controls; and 

 Use the receding horizon strategy, in which only the 

first element of the optimal sequence of controls is 

applied on-line. 

To reduce the computational burden, MPC uses both a 

control horizon and a prediction horizon. The control 

horizon determines the number of actuation signals to 

find. On the other hand, the prediction horizon determines 

how far the behavior of the system is predicted. 
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The MPC methodology attempts to solve an on-line 

open loop finite horizon optimal control problem subject 

to input, state, and/or output constraints. As shown in Fig. 

2, at a time t, the system model and the measured 

variables (outputs) are used to predict the future behavior 

of the controlled plant over the prediction horizon Np. 

Usually, the system’s future response is expected to 

return to a desired set point by following a reference 

trajectory from the current states. The difference between 

the predicted output and the reference trajectory is called 

predicted error. A finite horizon optimal control problem 

with a performance index (usually be minimizing the 

predicted control input and the predicted error) is solved 

online. In consequence, an optimal control input u∗(t) 

over a control horizon Nc (usually Nc ≤ Np), which 

minimizes the predicted error, is obtained. Only the first 

element of u∗(t) is implemented to the plant. All the other 

elements are discarded. Then, at the next time interval, the 

whole procedure is repeated. 

The advantages of MPC can be summarized as [40, 41]: 

 It can deal with multi-variable and nonlinear 

systems; 

 It is very useful when future references are known; 

 Higher efficiency based on the minimization of the 

cost function; 

 It allows operation within constraints; and 

  It can handle multiple systems easily by merging 

them into the objective function. 

However, the main disadvantages of MPC are [41]: 

 As the system complexity increases, the on-line 

calculation burden is substantially increased; 

 In case of closed-loop systems, it is difficult to 

predict the controller performance; and 

 Theoretical results regarding stability and robustness 

are not easily applied to general cases. 

 One should notice that there are two main types of MPC, 

Linear MPC (LMPC) and Nonlinear one (NMPC). 

However, researchers started to introduce new approaches 

depend mainly on combining MPC with learning 

techniques. These new approaches such as Learning Based 

model predictive control (LBMPC) and neural predictive 

control guarantee stability and improve the performance of 

the systems in the presence of uncertainties. In the coming 

sub-sections, these types will be discussed briefly. Finally, 

in the end of this section, MPC stability will be briefly 

outlined. 

A. Linear Model Predictive Control (LMPC) 

Consider the following discrete-time linear system: 

𝑥(𝑘 + 1) = 𝐴 𝑥(𝑘) + 𝐵 𝑢(𝑘) (1) 

where x(k) ∈ Rn and u(k) ∈ Rm, n is the number of states 

and m is the number of control inputs. A ∈ Rn×n, and B 

∈ Rn×m. Then, at each time interval k, MPC can be 

formulated as the following optimization problem 

𝑚𝑖𝑛𝑢(.) 𝐽(𝑁𝑃,𝑁𝑐) (𝑥𝑘  ) (2) 

subject to 

𝑥(𝑘 + 𝑖|𝑘) = 𝐴𝑥 (𝑘 + 𝑖 − 1|𝑘) + 𝐵𝑢 (𝑘 + 𝑖 − 1|𝑘), 
(3)   𝑥(𝑘 + 𝑖|𝑘) ∈ 𝒳, 

  𝑢(𝑘 + 𝑖|𝑘) ∈ 𝒰, 

The performance index J can be defined as: 

𝐽(𝑁𝑃,𝑁𝑐) (𝑥𝑘  ) =  𝑥𝑇 (𝑘 + 𝑁𝑃)𝑃 𝑥 (𝑘 +  𝑁𝑃)

+ ∑ 𝑥𝑇 (𝑘 + 𝑖|𝑘) 𝑄 𝑥 (𝑘 + 𝑖|𝑘)

𝑁𝑃−1

𝑖=1

+ ∑ 𝑢𝑇 (𝑘 + 𝑖|𝑘) 𝑅 𝑥 (𝑘 + 𝑖|𝑘)

𝑁𝑐

𝑖=0

 

(4) 

where P ∈ Rn×n, Q ∈ Rn×n, and R ∈ Rm×m are the three 

positive semi-definite weighting matrices with P > 0, Q > 

 

Fig. 1: Illustration of MPC scheme [40] 
 

Fig. 2: The principle of MPC 
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0, and R > 0. The coefficients of P, Q, and R reflect the 

relative importance of the final state error cost, the 

intermediate state error cost, and the control input error 

cost, respectively. X ⊂ Rn are the state constraints, 

while U ⊂ Rm are the input constraints Usually, U = 

{u ∈ Rm : umin ≤ u ≤ umax}, where umin and umax 

are known constants in Rm. The first term on the right-

hand  side of Eq. (4) is called the terminal state penalty, 

the second term is called the state penalty, and the last 

term is called the control penalty. 

B. Nonlinear Model Predictive Control (NMPC) 

Consider the following continuous time nonlinear 

system: 

�̇� (𝑡) = 𝑓(𝑥(𝑡), 𝑢 (𝑡)) (5) 

where x(t) ∈ Rn and u(t) ∈ Rm, n is the number of states 

and m is the number of control inputs. MPC can be 

formulated as the following optimization problem [42]: 

subject to 

  �̇� (𝑡) = 𝑓(𝑥(𝑡), 𝑢 (𝑡)),  

(7) 𝑥𝑚𝑖𝑛  ≤ 𝑥 (𝑠; 𝑥(𝑡), 𝑡) ≤  𝑥𝑚𝑎𝑥 ,    𝑡 ≤ 𝑠 ≤ 𝑡 + 𝑇ℎ , 

 𝑢𝑚𝑖𝑛  ≤ 𝑢 (𝑠) ≤  𝑢𝑚𝑎𝑥 ,                 𝑡 ≤ 𝑠 ≤ 𝑡 +  𝑇ℎ , 

The performance index J can be defined as: 

𝐽𝑇ℎ
 (𝑥(𝑡), 𝑢(. )) = ∫ (‖�̅� (𝑠; 𝑥(𝑡), 𝑡)‖𝑄

2𝑡+ 𝑇ℎ

𝑡
+

 ‖𝑢 (𝑠)‖𝑅
2 ) 𝑑𝑠 + ‖�̅� (𝑡 +  𝑇ℎ; 𝑥(𝑡), 𝑡)‖𝑃

2   
(8) 

where Th represent both the prediction and the control 

horizons. 

C. Learning Based Model Predictive Control (LBMPC) 

LBMPC is constructed by combining MPC and learning 

control techniques. It combines both statistical learning 

and control engineering, allowing the system model to 

change gradually over time. This feature can lead to a 

decrease of the computation time and improvement of the 

decision quality rather than conventional MPC, results in 

improving the system performance and guarantees safety, 

robustness and convergence [43, 44]. In practice, the 

following factors have to be considered at the control 

design stage: 

1) The states and the inputs constraints; 

2) The ability of the control system to optimize the 

performance with respect to the cost function; 

3) The ability to use statistical identification tools to 

learn about the uncertainties of the model; and 

4) The ability to converge to the required results in an 

obvious and provable manner (provably converge). 

MPC only considers (1) and (2). It is necessary to 

cooperate with a learning based control technique to cover 

(3) and (4). LBMPC is an integration between two 

control techniques; MPC combines with a learning 

control technique to fulfill the requirements (1–4). The 

main concept of LBMPC is to return the measured data 

from the model at specific points to a time varying oracle. 

Then, by using this stored data, the system learns how to 

behave, i.e. by joining both the MPC technique and the 

learning based control, a time varying oracle is created. The 

oracle can learn the performance of the model 

guaranteeing the improvement in system performance, 

safety and robustness when different states, inputs, and 

control constraints are present [43]. 

LBMPC is not fully investigated in the literature, in 

[107] LBMPC has been implemented on-board a 

quadrotor helicopter to control its flight in real time 

experiments. The quadrotor succeeded to learn how to 

fly in a certain arena and catch a thrown ball. 

D. M P C  Stability 

One of the main concerns of MPC is its stability. 

Although MPC formulation seems not difficult, the 

stability may not be guaranteed since the control 

sequence is generated from a finite optimal control 

problem. Without proper selection of the weighting 

matrices, the MPC algorithm may lead to divergent 

responses [42]. Therefore, much effort has been devoted 

to obtain the sufficient conditions for MPC stability. As 

a powerful analysis tool, Lyapunov methods are frequently 

used in MPC stability. According to [45], the 

performance index is monotonic and it can be used as a 

Lyapunov function. For linear systems, the key idea of the 

monotonicity is to adopt the performance index function 

J as a Lyapunov function, then the following inequality 

of the performance index function should be achieved. 

Let Np = Nc = N, then 

𝐽𝑁 (𝑥(𝑘)) − 𝐽𝑁 (𝑥(𝑘 + 1))  ≥ 0          𝑓𝑜𝑟 𝑥 ≠   0 (9) 

Substitute in Eq. (4) to find the value of JN (x(k)) −JN (x(k + 
1)), one can obtain: 

𝐽𝑁 (𝑥(𝑘)) −  𝐽𝑁 (𝑥(𝑘 + 1)) =  𝑥𝑇  (𝑘)𝑃 𝑥(𝑘) +

𝑢∗
𝑁
𝑇  (𝑥(𝑘))𝑅𝑢∗

𝑁
𝑇  (𝑥(𝑘)) +  𝐽𝑁−1 (𝑥(𝑘 + 1)) −

 𝐽𝑁 (𝑥(𝑘 + 1))  

(10) 

According to the assumption Q > 0 and R > 0, the second 

line of Eq. (10) is always positive. However, it is difficult 

to guarantee that the third line is nonnegative. The 

positivity of the third line assures that the performance 

index is decreased. Several approaches are proposed to 

guarantee the constant decreasing of the performance 

index JN. In [46, 47], the idea of zero terminal constraints 

is proposed. To guarantee stability, a global optimum 

solution must be found at each time step. Although 

𝑚𝑖𝑛𝑢(.) 𝐽 (𝑥(𝑡), 𝑢(. ) ) (6) 
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optimization problem with terminal equality constraint 

can be solved, the computational effort for finding the 

global optimum solution is too high. Even when a 

feasible solution exists, the convergence to that solution 

is not guaranteed. A dual–mode MPC algorithm is 

developed in [48] to handle both the global optimality and 

the feasibility problems. A terminal region is introduced 

to relax the terminal equality constraint, while the 

terminal region must be reached at the end of the 

prediction horizon, and the stabilizing controller is 

employed. With this algorithm, a feasible solution at the 

initial time guarantees the feasibility at all future time 

steps. However, for higher order systems, it is difficult 

to define the terminal region. A quasi-infinite MPC 

proposed in [49] can overcome both the global 

optimization and the feasibility problem with- out using 

controller switching. As the algorithm presented in [48], 

a feasible control sequence solution at time t leads to 

feasible solutions in the future, and stability of the closed-

loop system is guaranteed. However, the terminal region 

calculation is still difficult. A contractive MPC is 

introduced in [50, 51]. A constraint is added to the 

performance index to enforce both the actual and 

predicted state to contract. Within this context, the 

stability can be proven. 

 

III. UGVs MOTION CONTROL BASED ON 

MPC 

Although MPC is not a new control approach, a few 

works deal with control of UGVs by means of MPC are 

found in the literature. In this section, a review of 

applying MPC for motion control of UGVs is presented, 

while a summary of this detailed review is summarized in 

Table I. 

An NMPC with time varying weights is designed in 

[52] for both trajectory tracking and posture stabilization 

of a unicycle mobile robot. A stabilizing NMPC is adopted 

in [53] to achieve simultaneous tracking a pre-defined 

trajectory. Stability is addressed in this work by forcing the 

terminal state to move into a terminal state region through 

adding a stability term to the cost function. An NMPC 

algorithm considering side slip and tangential wheel slip 

is presented in [54]. Predicted future position errors are 

minimized by numerical computation of an optimal 

sequence of control inputs using pre-specified shape 

functions based on a Gauss-Newton algorithm NMPC and 

LMPC approaches for trajectory tracking of a 

differentially-driven WMR are exploited in [55]. The 

results show that the computational effort of NMPC is 

much higher than that in the case of LMPC. An NMPC of 

a unicycle mobile robot based on Taylor approximation is 

proposed in [56]. The main advantage of this approach is 

that it doesn’t require an on-line optimization, inducing a 

less computational effort. NMPC for an omni-directional 

UGV trajectory tracking is presented in [57] based on the 

conjugate gradients. Experimental results have shown the 

good performance of the strategy of the control proposed. 

A reactive algorithm based on NMPC for trajectory 

tracking and obstacle avoidance is proposed in [58]. In 

the presence of obstacles, the controller deviates from the 

reference trajectory by incorporating into the optimization 

obstacle-distance information delivered from the sensors. 

A first-state contractive MPC for trajectory tracking and 

point stabilization is developed in [59]. Stability is 

guaranteed by adding a first-state contractive constraint at 

the beginning of the prediction horizon. An NMPC 

approach is proposed in [23] to be applied for trajectory 

tracking and obstacle avoidance of a single UGV. A 

nonlinear-programming problem is solved on-line an 

NMPC approach for trajectory tracking of a differentially-

driven WMR is applied experimentally in [60]. A new 

algorithm for trajectory generation of a car-like UGV in a 

cluttered environment is proposed in [61]. An optimal 

tracking problem with obstacle avoidance is solved on-

line with nonlinear programming. Information of obstacles 

is incorporated on-line in the NMPC framework as they are 

sensed. With this algorithm, both the local and the global 

path planning problems can be solved. An NMPC 

approach for trajectory tracking of an Omni-directional 

UGV is presented in [62]. The closed-loop system stability 

is ensured by deriving the linear matrix inequalities (LMI) 

constraints for the monotonicity of the upper bound of the 

cost function. An NMPC approach based on both 

dynamics and kinematics of a unicycle mobile robot is 

presented in [63]. Stability is guaranteed by adding a 

terminal state penalty to the cost function and constraining 

the terminal state to a terminal region. The terminal 

region and its corresponding local controller are 

developed based on T-S fuzzy model. The point 

stabilization problem of a unicycle WMR subject to wheel 

slippage is investigated in [64]. When slippage occurs, 

the robot is modeled as hybrid systems, while NMPC is 

applied to find the optimal solution. A nonlinear predictive 

control strategy based on an extreme learning machine 

(ELM) is proposed in [65]. The ELM-based identifier is 

used to learn the robot dynamics and provide the output 

signal for the nonlinear optimizer. An NMPC for a car- like 

UGV to control its velocity and steering simultaneously is 

exploited in [66]. The optimization solver is based on the 

genetic algorithm (GA). Real-time experiments show the 

effectiveness of the proposed algorithm. An NMPC 

algorithm to automatically steer the vehicle along a 

desired trajectory is presented in [67] considering the 

vehicle dynamics and the tire-ground contact 

nonlinearities. The developed strategy can guarantee the 

stability of the closed-loop control system. 

To tackle the computational efforts problem associated  
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with NMPC, LMPC approach is proposed. In [25] and 

[68], a linear time varying description of the robot model 

based on linearizing the error dynamics between the 

reference trajectory and the actual one of a unicycle mobile 

robot is presented. The states of the linearized system are 

the errors in the position in x and y directions and the error 

in the orientation angle φ. The control law is derived by 

the optimization of a quadratic cost function. In [69] a 

combination between LMPC and a fuzzy control is 

presented. LMPC is used to predict the position and the 

orientation of the robot and the fuzzy control is used to 

deal with the nonlinear characteristics of the system. In 

[70], both LMPC and NMPC for controlling the front 

steering of a car-like UGV is presented. As in [55], the 

TABLE I: Summary of applying MPC to UGVs motion control 

Ref. 

UGV Type UGV Model Objective MPC Model Results 

Uni-

cycle 

Car-

like 

Omni- 

dir. 
Kin. Dyn. 

Traj. 

Tracking 

Point  

Stab. 

Path 

planning 
LMPC NMPC Sim. Exp. 

[52]             

[53]             

[54]             

[55]             

[56]             

[57]             

[58]             

[59]             

[23]             

[60]             

[61]             

[62]             

[63]             

[64]             

[65]             

[66]             

[67]             

[25]             

[68]             

[69]             

[70]             

[24]             

[71]             

[72]             

[73]             

[74]             

[75]             

[76]             

[77]             

[78]             

Notes: Omni-dir: Omni-directional, Kin. Kinematics, Dyn. Dynamics, Traj. Trajectory, Stab. Stabilization, Sim. 

Simulation, Exp. Experimental 
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results show that the computational effort of LMPC is 

much lower than of NMPC. In [24], an LMPC for a 

unicycle UGV trajectory tracking is exploited based on 

linearizing the error dynamics model between the 

reference trajectory and the actual one. The objective 

function is to minimize the difference between the future 

trajectory-following errors of the robot and the reference 

trajectory. The control law is explicitly obtained without 

using any optimization solver, while the bounded velocity 

and acceleration constraints are considered in the low-level 

controller. Experimental results illustrate the 

effectiveness of the proposed control law compared to a 

state-tracking controller presented in [15]. An LMPC for 

trajectory tracking of a car-like UGV is developed in 

[71] with consideration of the kinematics and dynamics 

in a cascade manner. Two approaches are used: the first 

one is based on linearizing the error dynamics between 

the reference and actual trajectories; while the second 

one is based on the local linear model of the UGV. 

When comparing between the two approaches, the 

second one has less computational effort and better 

response. An LMPC for trajectory tracking of an omni-

directional robot is presented in [72] based on linearizing 

the error dynamics of the robot. An explicit LMPC 

scheme is developed in [73], where the solution of the 

minimization problem can be calculated off-line and 

expressed as a piecewise affine function of the current 

state of the robot, thus avoiding the need for on-line 

minimization. By obtaining such optimal controller, 

which has a form of a look-up table, there is no need 

for expensive and large computational infrastructure. 

However, since all the computations are calculated off-

line, this method cannot guarantee that the robot continues 

tracking the desired trajectory in case of sudden situations 

such as fault occurrence and facing any obstacles. A 

predictive controller for an omni- directional mobile 

robot is exploited in [74] considering the robot dynamics 

and the friction compensation. Experimental results are 

presented showing the effectiveness of the pro- posed 

algorithm. An integrated approach combining dynamic 

feedback linearization and LMPC is developed in [75]. 

The linearized model of the robot with nonlinear dynamics 

is found through feedback linearization, while LMPC is 

applied to the linear model. By virtue of this approach, 

the computational effort problem associated with MPC 

can be avoided. An LMPC based on linearizing the 

tracking error model of a car-like UGV is adopted in 

[76]. Experimental results on an unmanned tractor-trailer 

are presented. Considering the road friction and lane 

changing situations, an LMPC for trajectory tracking of 

a car-like UGV is developed in [77]. An LMPC 

algorithm is applied in [78] for path planning and 

obstacle avoidance of a car-like UGV. The authors adopted 

two models, a fourteen degree-of-freedom (DOF) car 

model and a two DOF reduced model. 

From the existing literature, compared to NMPC, using 

LMPC based on a linearized model can be implemented 

since its computational effort is less than the computational 

effort of NMPC. 

IV. UAVs MOTION CONTROL BASED ON MPC 

In this section, a survey for the application of MPC 

in solving the control problem of UAVs is conducted.  MPC, 

with its different types, plays a central role in solving 

the control problem of UAVs guaranteeing stability, 

robustness and success of desired mission. Most of the 

existing MPC work applied to UAVs is indicated in Table 

II. 

The path planning problem for a rotor UAV is 

investigated in [79] using an NMPC in the presence of 

states and input constraints. The controller can track the 

generated position and heading trajectories. Moreover, 

the introduced controller succeeds to handle input 

constraints and system parameters uncertainties. In [80, 

81], an NLMPC approach is developed to a 

pursuit/evasion game as a higher order controller of a fixed 

wing UAV. The controller allows the UAV to change its 

mode according to the current and future state of the 

vehicle with respect to the adversarial aircraft. In [82], 

NMPC is adopted to generate suitable trajectories in the 

case of obstacles. The designed controller can guarantee 

that the best trajectory is chosen avoiding threats. This 

algorithm is applied to both fixed-wing and quadrotor 

UAVs. A theoretical study to reduce the computational time 

of the onboard NMPC is presented in [83] using a new set 

of design tools to compute finite horizon optimal controls. 

The proposed approach enables a fixed-wing UAV to track 

a pre-determined trajectory and reduce the mathematical 

complexity. Hence the capability of UAVs can be enhanced. 

Furthermore, in [84], NMPC is applied for an autonomous 

UAV to track a pre-defined trajectory. The presented 

controller depends mainly on solving a group of Taylor 

series allowing real-time implementation. An NMPC 

algorithm is proposed in [85] as high-level controller for a 

fixed-wing UAV tracking a pre-determined path. The 

low- level controller is applied on the UAV while the 

NMPC reduces the tracking error from the desired trajectory 

providing better performance with faster and smoother 

convergence. An NMPC is applied in [86] to control a 

rotary-wing UAV during autonomous hovering and forward 

flight with low speed. The designed NMPC can decrease 

the control effort with the help of servo dynamics during 

the prediction phase. In [87], an NMPC approach is 

applied to control a fixed-wing UAV to track a desired 

path quickly and smoothly. Moreover, the controller 

ensures the ability of the UAV to track adjoined multiple 

line segments. Stability analysis for the system is 

performed to provide the conditions guaranteeing the  
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stability of a fixed wing UAV during executing the 

desired mission. A visual NMPC is exploited in [88] to 

ensure the stability of a quadrotor UAV executing a 

spiral tracking. The controller succeeds to decrease the 

control effort, guarantees stability of the system, and 

provides robustness to model mismatch and external 

disturbances. In [89], an NMPC is applied to control an 

UAV through a determined trajectory in the presence of 

random up-draft distributions. The main goal of the 

controller is to choose the optimal path of flight toward 

high energy locations through the atmosphere respecting 

these random up- draft distributions leading to improve 

the flight endurance, reduce fuel consumption, and 

increase battery life. 

TABLE II: Summary of applying MPC to UAVs motion control 

Ref. 

UAV Type Objective MPC Model Results 

Quad-

rotor 

Fixed-

wing 

Traj. 

tracking 

Point  

stab. 

Dis. 

rejection 

Path 

planning 
Others LMPC NMPC Sim. Exp. 

[79]            

[80]       evasion     

[81]       evasion     

[82]            

[83]            

[84]            

[85]            

[86]            

[87]            

[88]            

[89]            

[90]       Endurance     

[91]       Endurance     

[92]            

[93]            

[94]            

[95]            

[96]            

[97]            

[35]            

[98]            

[99]            

[100]            

[101]       Time delay     

[102]            

[103]            

[104]       FTC     

[105]       FTC     

[106]            

[107]       Catch a ball     

[108]       Encirclement     

[109]       Encirclement     

[110]       Encirclement     

Notes: Dis. Disturbances, Traj. Trajectory, Stab. Stabilization, Sim. Simulation, Exp. Experimental 
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One of the main challenges in UAVs is the limited 

running time. MPC is exploited in [90, 91] to enhance 

the UAVs’ running time. In [90], NMPC is applied to 

glider-type UAV. The proposed algorithm aims to allow 

the UAV to extract the maximum amount of energy 

from the surrounding environments updrafts (vertical 

winds) along a pre-determined trajectory. In addition, 

the proposed algorithm increases the fuel efficiency and 

loiter time. Also, in [91], NMPC is applied to a soaring 

UAV allowing harvest of the energy form the 

surrounding environment updrafts. The designed 

controller can guarantee the optimal trajectory while 

success in energy extraction in a challenging dynamic 

environment. Environmental disturbance and noise 

rejection are of great importance in the UAV control. In 

[92], an NMPC is developed to solve the problem of the 

environmental disturbance and measurement noise that 

affect the quadrotor’s propellers. In [93], NMPC and 

PID are combined to achieve better performance of a 

quadrotor UAV under different environmental noises and 

disturbance conditions. The proposed technique can 

handle different sort of uncertainties, guarantee the 

stabilization of quadrotor UAV under different perturbed 

and unperturbed conditions. 

As discussed previously, applying NMPC in real-time 

applications of UAVs is still difficult due to the 

computational effort problem associated with NMPC. To 

avoid this demerit, LMPC is applied based on the UAVs’ 

linearized models. In [94], a combination of neural 

network and a state- dependent Riccati equation is 

proposed to guarantee the stability of a six DOF 

autonomous helicopter model. LMPC is presented in [95] 

to control a fixed-wing UAV during passing through pre-

determined way-points. The deigned controller succeeds 

to solve the optimization problem in the presences of 

constraints and random disturbance proving its 

robustness. In [96], LMPC is exploited for trajectory 

tracking to solve the convex optimization problem for a 

small unmanned helicopter tracking pre-determined 

waypoint trajectories. The proposed approach generates a 

substantially less control effort to track the desired 

trajectories under different flight conditions. In [97], 

LMPC is employed to address the problem of obstacle 

avoidance for a small-scale helicopter. The designed 

controller determines the optimal trajectory from the 

starting point to the desired target position avoiding 

different obstacles in the track. An efficient LMPC to 

reduce the computational burden is developed in [35]. A 

closed-loop prediction algorithm is presented to calculate 

the future behavior of quadrotor UAV based on the 

vehicle linear internal model. In [98], an LMPC 

approach for path planning and obstacle avoidance of a 

quadrotor UAV is presented. MPC is used as a position 

controller. The collision avoidance is achieved in the 

MPC based on a sigmoid function. In [99], an embedded 

system for stabilization and control of a micro UAV is 

proposed. The control algorithm used a disturbance 

estimator and LMPC to find optimal control inputs that 

allow the vehicle to track the pre-defined trajectory. A 

combination of a flatness-based controller and LMPC is 

proposed in [100] for trajectory planning of a quadrotor 

UAV. A flatness-based approach is applied to get the linear 

input-output nonlinear quadrotor dynamics. Feasible 

reference trajectories are generated using LMPC. 

An LMPC algorithm is developed in [101] to solve 

the problem of time delay in man-in-the loop UAVs. 

This time delay affects the performance of the UAV and 

has a great impact on executing the UAV mission causing 

system instability. The MPC controller compensated the 

time delay decreasing its effect on the performance of the 

man-in-the loop UAVs. 

LMPC is applied on UAVs to investigate the problem 

of disturbance and noise rejection. In [102], a switching 

MPC algorithm is presented to solve the problem of 

disturbance rejection for a quadrotor helicopter flying in 

the presence of wind gusts. The proposed controller is 

computed based on a piecewise affine (PWA) model of 

the quadrotors attitude dynamics considering the effect of 

the atmospheric turbulence. The influence of disturbances 

on the stability of a team of UAVs during flight based on 

LMPC is studied in [103]. The disturbance information is 

stored and shared with the other vehicles on the same 

track. This allows UAVs to predict the disturbances which 

improve their stability during the flight. Proposed 

controller succeeded to suppress the influence of 

disturbances affecting the UAVs stability. 

For reliable and safe operations of UAVs, MPC is used 

for FTC of UAVs. In [104], MPC based FTC integrated 

with a moving horizon estimation (MHE) and/or 

unscented Kalman filter (UKF) is presented. Moreover, in 

[105], a comparison between two MPC algorithms for 

controlling the height of a quadrotor helicopter ( Qball-

X4) in fault-free and actuator fault cases. The proposed 

algorithms succeeded to manage an acceptable 

performance in both cases. 

Recently, the combination of a learning algorithm and 

MPC has become a central of research focus. Applying the 

learning algorithm to the MPC improves the performance of 

the system and guarantees safety, robustness and 

convergence in the presence of states and control inputs 

constraints [106, 107]. In [106], LBMPC is applied to 

approximate quadrotor UAV dynamics and stabilize in a 

desired altitude. A dual extended Kalman filter (DEKF) is 

used for learning the quadrotor un- certainties, while an 

MPC is adopted to solve the optimization control problem. 

In [107], LBMPC is used on a quadrotor UAV to learn it 

catching a ball during flight. Experimental results are 

presented in both references. 
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One of the main applications of UAVs is the dynamic 

encirclement, where UAV is used to encircle a target. 

MPC is recently applied in such application. In [108], the 

problem of dynamic encirclement of a quadrotor around 

an invading target using LMPC is investigated. Moreover, 

in [109] LMPC solve the encirclement problem. Taylor 

series linearization technique is developed to linearize 

the nonlinear UAV dynamics considering the dynamics 

uncertainties. The circular path around the stationary 

target is divided into eight regions where the controller 

is switched from one to another according to the 

quadrotor position. In [110], a combination of linear MPC 

and feedback linearization is proposed to solve the 

encirclement problem of a quadrotor UAV. System 

identification technique, based on least-square algorithm, 

and the linearization of the Cartesian to polar 

transformation via feedback linearization are used 

successfully to identify the required model. The proposed 

algorithm can ensure the circular motion of the UAV 

around the invading target, stability of the system and the 

convergence to the desired radius of encirclement. This 

work is extended and applied to dynamic encirclement 

using a team of UAVs [111]. 

V. CHALLENGES AND FUTURE DIRECTIONS 

Although tremendous effort has been dedicated to 

implement MPC in unmanned systems, there still exist 

significant challenges. As mentioned in this review, 

applying MPC is still limited in real-time applications 

especially for nonlinear systems such as UGVs and 

UAVs. MPC is regarded as a predicting approach, while 

an optimization problem has to be solved on-line. The 

main problem associated with MPC is the computational 

time. Therefore, the main research direction in this field 

is to reduce the computational burden. 

When applying NMPC, a nonlinear programming 

problem to be solved on-line is usually non-convex. As 

a result, finding an optimal solution may be difficult. 

LMPC is a good option to address this problem. However, 

many challenges still exist when applying LMPC. To 

apply LMPC, a linearized model is needed. Linearizing 

UGV model using Taylor series approximation may result 

in a linear time varying (LTV) model as proposed in [25, 

68]. Despite the computational time is reduced, the 

problem still exists as the system states change at every 

sample. Another solution is to simplify the nonlinear 

model as reported in [112] for the quadrotor model. 

However, some of these assumptions may be difficult to 

apply in UAV outdoor testing. 

Many future directions can be proceeded towards 

overcoming the previously mentioned challenges. Most 

of them are focus on doing most of the required 

computations off-line, leaving only the rest of 

computation to be performed on-line. The future 

directions can be summarized as follows. 

1) The first future direction is to integrate MPC with 

dynamic feedback linearization as proposed in [110, 

113]. Feedback linearization is a common approach 

used with nonlinear systems. The concept is to make 

use of algebraic transformation of nonlinear system 

dynamics to an equivalent linear system with new 

control inputs. The resulting model becomes linear 

time invariant (LTI), therefore LMPC can be applied 

and the computational time can be reduced. 

However, the major drawback of applying feedback 

linearization is that the actual control inputs have to 

be replaced by new ones. Thus, the actual control 

inputs’ constraints cannot be directly applied in this 

approach; 

2) The second direction is to do some of the 

computations off-line. This idea can be performed by 

applying the multi-parametric quadratic programming 

(MP-QP) technique to the linear models as 

presented in [114, 115]. With this idea, MPC solution 

turns out to be a piecewise affine controller; 

3) The third direction is to apply the approximation 

functions such as the artificial neural networks 

(ANN), that can learn the nonlinear functions or solve 

specific problems where massive parallel computation 

is required [40]. Another approximation function can 

be employed is the hinging hyperplanes; and 

4) The fourth direction is to utilize the LBMPC. As 

mentioned in this review, LBMPC has been applied to 

UAVs control but not applied yet to the UGVs. The 

idea is that the vehicle can learn its unmodeled 

dynamics using the learning algorithm at every time 

step and the updated system is controlled by the 

MPC to achieve the desired objective. 
 

VI. CONCLUSION 

MPC is one of the promising approaches for motion 

control of unmanned systems. Although MPC has several 

challenges, but its advantages and benefits in control of 

constrained systems have inspired tremendous studies in 

UGVs and UAVs. This paper has presented a technical 

review on applying MPC to motion control of UGVs and 

UAVs. The basic definitions, classification, and stability of 

MPC are presented. The application of MPC to UGVs and 

UAVs in the literature are categorized and summarized. 

The challenges and future directions have also been 

mentioned to facilitate the research progress in this field 

of research. 
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