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ABSTRACT 

The paper examines in detail four separate models of disc brake 
squeal. The mathematics of each model are produced together 
with the underlying mechanism of squeal. The four models are 
compared one with another to demonstrate their essential fea-
tures. Examinations of these models showed that two simplifi-
ed models can be applied to the disc brake system. These are 
the cantilever-disc and pin disc models. A double pin-disc 
model is developed and some stability results are reported 

NOMENCLATURE 

a 	Coefficient defined in equn. 20 

C 	Equivalent damping 

c 	Damping coefficient 

F 	Normal force 

I 	Inertia 

K 	Equivalent stiffness 

k 	Spring stiffness 

L 	Pin length, half the friction pad length 

M 	Equivalent mass 

m 	Mass 

N Normal force or reaction 

N Static preload or reaction 

q Vibration displacement 
r 	Pivot-tip radius 

*Professor and **Associate Professor Dept. of Mech. Design and 
Production Faculty of Engineering, Cairo University. 
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,u 	Linear displacement 

W 	Linear displacement 

X 	General displacement 

x 	Linear displacement 

a 	Coefficient equn. 20 

6 	Coefficient equn. 20 

0 	Relative angular position 

1-1 	Coefficient of friction 

(I) 	Torsional (angular) vibration coordinate 

Subscripts  

a 	Axial direction as shown in fig.7 
m 	Mass 

D Disc 

C 	Cantilever 

P Pin 

✓ Rotational 

t Translational 

o Static 

1,2 Pads numbers, coefficients numbers 

Superscripts  

• First time derivative 

Second time derivative 

INTRODUCTION 

Brakes usually suffer from unwanted vibration which can cause 
Caliper chatter and high brake noise. These vibrations can 
occur at any frequency, but squeal is defined as the vibrations 
within the range 1-5 KHz, and is self excited. 

In an early work (1) a simplified model for drum brake squeal 
is presented. The present paper is therefore devoted tb disc 
brake squeal. In this context Fosberry and Holubecki (2,3) ,. 
published the first concerted attack on disc brake squeal in 
1955. Their work was mainly experimental and rather limited to the frequencies and mode shapes of a squealing disc brake. Although no guaranteed cures were reported, they claimed that the insertion of a shim between the piston and the back plate 
gives a considerable promise in alleviation of squeal. 

The earlist theories of squeal are reviewed in some detail by 
North in reference (4). These theories are based on a simple 
elastic rubbing system as shown in Fig.l. In this system the 
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friction is assumed to decrease with increasing the velocity 
and therefore the resulting oscillation is in the direction of 
the friction force rather than being transverse to it, as 
usually found in practice. Stability analysis of this system 
has been published earlier (5). 

In the following four more realistic models are reviewed before 
the present model is described. 

1. DOUBLE CANTILEVER MODEL 

Spurr (6) attempted new ideas for squeal models by considering 
the double cantilever model in fig.2. The mechanism of this 
model was explained qualitatively rather than quantitatively. 
Experimental work made by the same author showed that such a 
system did create stick-slip motion. The model was shown to 
excite transverse vibration of the disc and was the first to 
indicate the dependence of squeal on actual value of p rather 
on the slope of the p-velocity relationship. 

2. CANTILEVER-DISC MODEL 

The first analytical model of disc brake squeal is due to 
Jarvis (7). In this model a cantilever was clamped in a large 
horizontally-pivoted block and the tip was loaded against a 
disc as shown in fig 3 by means of dead weight. The cantilever 
tip is replaced by a mass mc  whose motion (,1) is linear and 
perpendicular to the neutral axis of the cantilever. The mass 
me  is constrained by stiffness k

c 
and damping c m  such that the 

the frequency and damping of mass m are the same as for the tip. 

The direction of motion of me  is at an angle 6 to the disc 
surface. The disc motion w however, is presented by a mass 
free to move in a direction parallel to the disc axis. The 
associated stiffness k

mD and damping cmD are chosen to give 
the same natural frequency and damping as the equivaleTt disc 
mode. 

The two mating parts are constrained to remain in contact by 
balanced reactions N and friction force F = pN. The equations 
of motions are therefore given by 

me 	+ Kmu + Cm it = N(sin6 - p cosh ) 	(1) 

mD w + KmD w + Cm;) * = - N 	 (2) 

w = u sine 

These equations can be reduced to an equation of the form 

Mq + Cq + Kq = 0 

(3) 

(4) 
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where 
m 

M 	
2m
D 

1 - — sin 20 (p- tan() ) 

c 	m
DmD C = m — - 	sin 20 (p- tame ) 2m 

m K = 	2m sin 20 (p- tan0 ) 	 
mD 

The condition of instability is therefore given by 

C/M <0 	
(5) 

According to reference 6 the value of M was always found to be 
positive and therefore equation 5 reduces to 

c m  m
D 1-, 	sin 20 (p- tan0 )> c 	 2m

D  

	

mD 	 (6) 

and tan-1 p>0>0 

Equn 6 indicates that instability can occur if 0 falls within 
the range 0 to tan-1  p for proper values of (mp/m) and(c mD ) m 	• 
Prevention of squeal can therefore be achieved by proper selec-
tion of p , (mp/m) and (c m/c mp). 

The agreement of the experimental stability and theoretical 
findings was rather poor and therefore other models were pro-
posed. 

3. PIN-DISC MODEL 

This model (8) consists of a disc and a pin fixed to the end of 
a shaft and loaded in contact with the disc as shown in figure 
4. Consequently the pin was given two degrees of freedom. These 
are the translational motion x along the axis of the shaft but 
at an angle 0 to the surface of the disc and a torsional free-
dom cp about an axis orthogonal to both the pin and the shaft 
axis. For the torsional vibration mode one can write the 
following equations 

mD  y + cD  Y + kD • v = - N(t) 
	

(7) 

(1)  + c p (p+ k p 	= N(t). L sin(0+0- pN(t)L cos(0+0 	(8) 

mD  

k 	m 	
k mD 
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y = 0 L sin 0+0 	
(9) 

For small values of (1) the above equations reduce to 

2B M
D 
S 	

4.p
+c
D AS

2
I+mD AS 	I + m D AS 

where 

A = L sin (0+4) 

B = L cos (0+4) 

S = L (sin(0+4))-p cos(0+(i))) 

T = L (cos(0 4-(1)) -p sin(e+q))) 

k +1-  AS p  D  
I + M D AS 

(1) -  0 	(10) 

Further developments of this model are given in refs. 9 and 
10. In ref. 9 a multidegree of freedom is assumed and in 
ref. 10 a new system arrangement (as shown in fig.5) is propo-
sed. In both cases however the condition of instability 
remains the same 

tan-1  p>o> 0 

4. EIGHT DEGREES OF FREEDOM MODEL 

This model has been described in refs. 9 and 10. 	It consists 
of a disc of thickness t sandwiched between layers of friction 
lining of stiffness k. The disc has a mass (m) and inertia(I) 
and vibrates with two degrees of freedom y and e . It is res-

t
rained by translational stiffness k t  and rotational stiffness 
r * 

The condition of instability accordingly was shown to be 

K"= 16 m I f Pt  _ e 

(I-m L2/3)2 

	

where L 	is half the friction-pad length 

	

f 	=P No  where No  is the static preload, 
between the pad and the disc. 

COMPARISONS OF THEORIES  

Theories 1 and 2 assumed linear motion of the cantilever tip so 
that, with the kinematic constraint, a linear single degree of 
freedom equation is obtained. 
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Theory 3, however, is based on the non linear motion of the 
pin tip to create energy input to the system. It was demons-
trated, however, that for a 2.5 cm pin the rotation is typical 

less than 10-3 radians for inclination angles 0 of greater 
than 5°. It seems therefore that the non-linearity is very 
mild and prediction based on self-excited vibrations must take 
into account all sources of damping in the system. 

Examination of the theoretical results with various experimen-
tal findings (11) indicate that the last two theories are the 
most widely accepted in disc-brake squeal. 

A PROPOSED MODEL 

Considering the disc brake assembly given in fig.6, it is 
possible to represent the system by the dynamic model shown in 
fig.7. This model represent further development to the pin-
disc model (8), and can accommodate varying friction on both 
sides of the disc as well as independently varying mass, iner-
tia, inclination, and stiffness for the two friction pads. The 
system is undamped and assumes that the pins remain in contact 
with the disc at all times and the displacement amplitudes of 
the self induced oscillations are small. It also assumes that 
the displacement mode of each pin parallel to the disc surface 
is uncoupled from the other modes and is inherently stable. 

The system as shown in fig.7 allowsthree translational motions 
along the coordinates x1  , x2  and x o  in addition to two rota- 

tional motions in the coordinates (pi  and cp 2. Now the equations 

of motions can be set-up as follows 

m1 xl 	ka1 xl = 
	F1 	 (12) 

II  1 
+`1 	

= p i  F1  r1  cos 0/  + F1  r1  sin 01 	(13) 

m2 x2 + k
a2 

x2 = F2 	 (14) 

12  (15 2  + kt 
2 
 (1) 2 	p 2  F2  r2  cose2 	F2  r2  sin 02 	(15) 

1.)  + k D  xo  = F1  - F 2 	 (16) 

The two necessary constraints to maintain contacts also yield 

xp  = xi  - r1 	sinel  

xD = x 2  - r2 	sine 2 2 2 	2 

(17)  

(18)  
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Eliminating x/  and x2  and F1  and F2  the above equations redu-
ces to 

  

[M id ] {Xi} +[Kid ] {X.} = {0 } , i i = 1,2,3 
	

(19) 

where all the elements of the M and K matrices are given in 
table 1. 

Assuming a solution of the form X = X
o 

e At 
where X

o is the 
eigen-vector of any particular eigenvalue A, the eigenvalues 
are obtained from the equation 

a
o 

A6 + a
l A

4 
+ a

2 X2 + a
3 = 0 
	

(20) 

where 

ao  =61 62 mD  + Ql  12  m2 + Q2 Il ml 

a
l = Q1 62 KD +(al  62  + a261)mD +(a2 m1 + 6

2 
Ka

1 
 ) I1 + 

(al  m2  + (3
1 

K
a2

) I
2 +61 m2 K

t + 1
2 

m
1 K

t 2 	1 
a2  =al  a2  m

D +
(a1O2 4-'2 Y K D +

('2 ml + 2 K) K al 	tl 

(al 
	K

a2
)  K

t2 
+a

1 
1
2 

K
a2 

+a
2 

I
1 

K a
1  

a3  = al  a
2 

K
D 

+a
1 
 Ka KtK

t2 
+ a

2 
K
a K

t 1 	1 

131  = I
1 
 + m

1 
r1
2  
sin0

1 cos% (y, + tany 

(3 	+ m2  r2
2 
 sin02 	e sn 2  cos = 12 	2 (u2 + tan02) 

a
1 	+ r

I
2  

K
al 

sine
I cos = Kt ). 	1 (Pl  ▪ tan01) 

a2 = K
t2 

+ r
2
2  

K
a sine

2  cos02 "2 ▪ tan02
) 

2 

The conditions of stability (12) are: 

1) All the coefficients of equation (20) must be positive, 
i.e. a

o >o , a1 >0 , a2 >o and a
3 >0 	(21) 

2) a
1 

-3a
o a2 >0 

	

2 	2 al  a2  - 4a0  a2  + 3a0  al  a3  >0 

	

a
2 	2 	3 

	

al 	? - 4a_ a, + 1Rn 	_ n 

(22) 

. . 3 
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Equations 21 and 22 are solved for a specific system having 
m1  = m2 = 100 grams, kt  = kt = 800 N.m/rad, mD  = 0.12 kg, 

1 	2 
k
al 

= k
a2 

= 3x105  N/m , I1  = 12  = 9x10-6 kg m
2
. Obviously the 

domain of stable oscillation depends on the system data as 
well as on other physical parameters such as the coefficient 
of friction. 

SAMPLE RESULTS  

Fig. 8 shows the instability domains as determined for speci-
fic values of friction (01  = p2  = 0.7) and pin tilt(02=10,0 
and -10°). It is shown that the instability region narrows as 
the pin tilts are on opposite sides. As the coefficient of 
friction is reduced the instability region are also reduced 
(see for example fig.9). In both cases however the widest unstable 
el  angle range is observed at values of disc stiffness close to 

.25x10
8 

N/m. 

Taking the above mentioned disc stiffness Kd  = .25x108  into 
consideration one can get the 01  - 02 domain of instability for 

a wide range of friction coefficients. Obviously the higher 
the friction is the larger the domain of instable oscillation. 
This is clearly demonstrated in fig.10 for 0.1<p <0.6.1  A note- 

	

worthy however is that setting 	the pin tilt angles(0= 2- tan -I -p) 
equal to half the negative friction angle results in a maximum 
range of 0 for the other pin instability. 

Due to the wide range of system data one can generate more ins-
tability domains in various parameter planes, but these will be 
of little importance since they will be aplicable only to the 
present system. In practice one have to solve these equations 
again for any specific practical system. To this end the model 
yields results which qualitatively agrees with one's feeling.An 
experimental set-up is being designed to further verify the 
validity of this model and this will be reported in future 
publication. 

CONCLUSIONS  

Theories and models describing the squeal behaviour of disc 
brakes are briefly reviewed and some cross examinations are 
outlined. A double pin-disc model is proposed and the gover-
ning equations are produced. Sample results indicating the 
essential stability features are included. The model in its 
present form can handle any realistic undamped disc brake 
system. 
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FIG. 1 Simple elastic rubbing system 

FIG. 2 Double cantilever system 

Support 

FIG. 3 Disc-Cantilever model 

FIG. 4 Pin-disc model ( 8 ) 
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FIG. 5 Four degree of freedom pin-disc model 

Caliper 

disc 

FIG.6 Basic features of a real disc 
brake assembly 

Md 

FIG.7 Dynamic model of disc brake assembly 
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