# APPLICATION OF THE METHODS OF SELECTION OF <br> GEAR BOX RATIOS TO PASSENGER CARS 

Col Dr. SAYED SHAABAN* AND COL DR. SAID A. HASSAN**

ABSTRAC'T
Selection of ratios in mechanical transmission of motor vehicles can be done according to various mathematical progressions such as : arithmatic, harmonic and geometric with constant and increasing roots.

In a paper presented by the same authors, a comparison of the methods of selecting the gear ratios has been made. This was done by calculating the wasted power due to their stepped tractive effort - speed characteristics relative to the ideal one with continuous power transmission. It has been concluded that the gemetric progression would give the least wasted power. This conclusion was based on calculations considering the data of only one Jeep car.

The objective of this paper is to prove the validity of the above mentioned conclusion. In this regard, same method of comparison was applied to 14 small and medium class different passenger cars having engines of swept volume between 0,9 and 1.6 litre.

* Chief of Dept. of Motor Vehicles, Military Technical College, Cairo, Egypt.
** Lecturer at the Dept. of Motor Vehicles, Military Technical College, Cairo, Egypt.


## INTRODUCTION

Matching of the vehicle engine and transmission is an important job that a vehicle designer has to fulfil. A good matching depends upon both engine and transmission characteristics.

In a mechanical transmission, the choice of the gear ratios represents the most important factor influencing the degree of matching and consequently the vehicle performance.

Selection of the gear ratios is usually done according to certain mathematical progressions such as; arithmatic, harmonic and geometric with constant or increasing roots.

In a paper published by the authors in May 1985 (1) a comparison of the methods of gear ratios spacing has been done. As a measure of comparison, the unobtainable power due to traction-speed characteristics of mechanical transmission relative to the ideal one has been considered. On the tract-ion-speed curve in Fig. l, the areas representing the unobtainable or wasted power is shown.

The comparison has been made considering the data of a Jeep car and it has been concluded that the geometric progression would give the least wasted power.

To prove the validity of this conclusion, the present study considers a variety of small and medium class passenger cars.

TECHNICAL DATA OF THE PASSENGER CARS CONSIDERED IN THE ANALYSIS.

The passenger cars considered in the study belong to the small and medium class cars have swept volume of engine ranging between 0.9 and 1.6 litres. The main technical data of these cars are given in Tables $1 a, l b$, and the caharacteristic power and torque curves are shown in Figs. 2,3,4,5.

The engine power curve can be predicted by an equation of the following form :

$$
\begin{equation*}
P_{e}=P_{e \max }\left[A\left(\frac{n_{e}}{n_{N}}\right)+B\left(\frac{n_{e}}{n_{N}}\right)^{2}+C\left(\frac{n_{e}}{n_{N}}\right)^{3}+D\left(\frac{n_{e}}{n_{N}}\right)^{4}\right] \tag{1}
\end{equation*}
$$

Where :

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{e}} & =\text { engine power, } \mathrm{HP} \\
\mathrm{P}_{\mathrm{e}} \text { max } & =\text { engine maximum power, } \mathrm{HP} \\
\mathrm{n}_{\mathrm{e}} & =\text { engine revolutions, r.p.m. } \\
\mathrm{n}_{\mathrm{N}} & =\text { engine revolutions at max. power, r.p.m. } \\
\mathrm{A}_{\mathrm{B}}, \mathrm{C}, \mathrm{D} & =\text { constants. }
\end{array}
$$

SECOND A.M.E. CONFERENCE
6 - 8 May 1986 , Cairo
$\Gamma$


Fig. 1 : Ideal and Stepped Tratction-speed relationships
Table $1 a, b:$ Techrical data of small and medium class vehicles

$\Gamma$


Fig. 2 : Engine power curves for small class passenger cars.
$r$


Fig. 3 : Engine torque curves for small class passenger cars.

$\Gamma$

| $M D-27$ | 306 |
| :--- | :--- |

$r$


Engine speed, r.p.m
Fig. 5 : Engine torque curves for medium class passenqer cars.

The constants $A, B, C, D$ in equation (1) could be determined by taking the values of engine power and the corresponding engine speed at sour points widely spaced on the power curve between the engine speed values corresponding to max power and torque.

A special BASIC computer program (Appendix l) has been written to calculate the constants $A, B, C, D$ for each of the fourteen power curves.

CALCULATION OF THE GEAR RATIOS ACCORDING TO DIFFERENT METHODS.

The following methods were used to calculate the intermediate ratios while the maximum and minimum are given as vehicle data.

A special BASIC computer program (Appendix 2) has been written to calculate the gear ratios according to arithmatic, harmonic, geometric with constant root and geometric with increasing roots.

The relationships for calculating the individual ratios according to the mentioned progressions are as follows : Arithmatic :

$$
i_{1}-i_{2}=i_{2}-i_{3}=\ldots=i_{n-1}-i_{n}=\text { const }
$$

Harmonic :

$$
1 / i_{2}-1 / i_{1}=1 / i_{3}-1 / i_{2}=\ldots=1 / i_{n-1}-1 / i_{n}=\text { constant }
$$

Geometric with constant root :

$$
i_{1} / i_{2}=i_{2} / i_{3}=\ldots=i_{n-1} / i_{n}=\text { constant }
$$

Geometric with increasing root :

$$
\frac{i_{1}}{i_{2}}=q_{1}, \frac{i_{2}}{i_{3}}=q_{2}, \ldots, \frac{i_{n-1}}{i_{n}}=q_{n-1}
$$

and

$$
q_{1} / q_{2}=q_{2} / q_{3}=\ldots=q_{n-2} / q_{n-1}=q=\text { constant }
$$

## COMPUTATION OF THE WASTED POWER.

The wasted power represented by the hatched areas in Fig. 1 can be computed using the following mathematical integration:

$$
\begin{equation*}
\Delta P_{e}=\sum_{i=1}^{n}\left[\int_{V_{1}}^{V_{2}} F_{t} \cdot d v-\int_{V_{1}}^{V_{2}} F_{t} \cdot d V\right] \tag{2}
\end{equation*}
$$

| $M D-27$ | 308 |
| :---: | :---: |

SECONL A.M.E. CONFERENCE
6 - 8 May 1986 , Cairo

## r

Where :
$\begin{array}{ll}\Delta \mathrm{P}_{\mathrm{e}} & =\text { the total wasted power, } \mathrm{HP} \\ \mathrm{V}_{1}, \mathrm{~V}_{2} & =\text { vehicle speeds as in Fig. } 1\end{array}$
Ft $=$ tractive effort given by the ideal traction characteristics, $F_{t}=P_{e} \max \cdot \eta \cdot 2700 / \mathrm{V}$, Newtons
$=$ Tractive effort given by the individual traction curves of the mechanical transmission.
$\mathrm{F}_{\mathrm{t}}{ }^{\prime}=\mathrm{P}_{\mathrm{e}} \cdot \eta \cdot 2700 / \mathrm{V}$
$\mathrm{P}_{\mathrm{e}}$ : given by the equation (1)
V : given by the equation $: V=\frac{0.377 \cdot \mathrm{n}_{\mathrm{e}} \cdot r_{\mathrm{d}}}{i_{\mathrm{t}}}$
$r_{d}$ : wheel dynamic radius.
$i_{t}$ : total transmission ratio.
$\eta$ : total mechanical cfficicncy.
To facilitate the computation of the wasted power, a special BASIC computer program (Appendix 3) has been written.

## RE SULTS

The actual power delivered at wheels (areas under the stepped curves in Fig. 1), the power at wheels in case of ideal transmission (area under the hyperbolic curve in Fig. 1) were calculated in five cases for each car. In the first case the actual gear ratios of the car were considered and in the other four cases the gear ratios spaced according to the previously mentioned mathematical progressionshave been taken into account. The results of computations are shown in table 2.

CONCLUSIONS.
1- Based on the calculated unobtainable power due to mechanical transmission characteristics relative to the ideal one, the geometric with constant root stands as the best progression for gear ratios spacing.
2- The geometric progression with increasing root gave slightly higher wasted power than in case of constant root.
3- The arithmatic and harmonic progressions gave approximately $30 \%$ higher wasted power relative to the geometric progression.


Table 2 ：Unobtainable power for used vehicles with different progressions．

FFOGFAM TO CALCULATE THE LOSSES

FFOGRESSION DIFFERENCE

| FIAT UND |  |
| :---: | :---: |
| AFIITHMATIC FROGFESSION： | 19619.99 |
| HARMONIC FROGFESSION： | 17656.72 |
| GEOMETRIC FFIOGFESSIDN： | 16252．81 |
| GEOMET．WITH INCF．FIOOT： | 16743.54 |
| FEEAL GEAFi RATIOS： | 18105.14 |
| OFEL COF：SA |  |
| AFI THMATIC FFOGFESSION： | 19128.95 |
| HAFMONIC FROGRESSION： | 17827．43 |
| GEOMETFIC FFIOGFiESSIDN： | 1599こ． 47 |
| GEOMET．WITH INCF．FOOOT： | 15655.7 |
| FEAL GEAF FATIOS： | 16780.68 |
| HFZDA $32=$ |  |
| ARITHMATIC FFOOGFESSION： | 39709.41 |
| HAFMMONIC FROGFESSION： | 37916.97 |
| GEOMETFIC FROGFESSION： | 23459.03 |
| GEOMET．WITH INCF．FOOT： | 27500.1 |
| FIEAL GEAF FiATIOS： | 35542.79 |
| MISSAN FIILZAR |  |
| AFITHMATIC FROGFESSIUN： | 15401.21 |
| HAFMONIC FFiOGFESSIOM： | 15405．79 |
| GEOFETFIC FFOGFESSIDN： | コごさく， |
| GEOMET．WITH INCF．FOOT： | 18053 |
| FEEAL GEAFi FATIOS： | 12917.7 |
| SEAT IFIZA |  |
| ARI THMATIC FFIOGFESS IDH： | $110=4.9$ |
| HAFMONIC FROGFESSION： | 1109.1 |
| GEOMETFIC FFOGFEESSION： | 8740．174 |
| GEOMET．WI TH INCF．FOOT： | 7337.647 |
| FEAL GEAF FiATIOS： | 10188.74 |
| MISSAN SUNNTY |  |
| AFI THINATIC FFOGFESSION： | $20978 . \leq 1$ |
| HARMONIC FFOGFESSION： | 20772.19 |
| GEDMETFIC FROGFESSION： | 16465.96 |
| GEOMET．WITH INCF．FIOOT： | 176カ1： 31 |
| FIEAL GEAFi FAATIOS： | 17440．6： |
| V．W．TET TA |  |
| AFITHMATIC FFOGFESSIION： | 27763.5 |
| HAFIONIC FROGFEESSIUN： | 27766.79 |
| GEOMETFIL FFIOGFESSION： | 22752.44 |
| GEOMET．WITH INCF，FOO | ？ $4<4$ |

## Table 2 continued.

DFEL ASCONA
AFI THMATIC FFOGFESS JON: HAFMONIC FFOGFESSION: GEOMETFIC FFOGFEGSION: GEOMET. WJTH INCF. FOOT: FEEAL GEAF FATIOS:

$$
\begin{aligned}
& 21287 \cdot 42 \\
& 21296 \cdot 46 \\
& 16439 \cdot 63 \\
& 17565 \cdot 11 \\
& 17656.23
\end{aligned}
$$

FEUGEOT 205
ARITHMATIC FFOGFESSIUN: HAFIMONTC FROGFESSION:
GEOMETFIC FFOGFESSION: GEOHET, WITH INCR. FOOT:
FIEAL GEAFI FIATIOS:

FENAIILT E
AFITHMAT IC FFOGFESSION:
HAFMONIO FFOGFESSIUN:
GEDNETFIC FFOGFESGION: GEOHET. WITH INCFI. FOOT:
FEAL GEAF FATIOS:
FIAT FEGATA
AFI THMAT IC FFDGFESSION: HAFMONIO FFOGFESSION:
GEOMETFIC FFOGFESSION:
GEOFET.WITH INCF. FOOT:
FEAL GEAF FATIOS:
HONDA GIVIE
AFIITHNAT IC FFDGFESSION: HAFMONTC FROGFESSION: GEOMETFIC FFDGFESSION: GEDPVET. WITH INCF. FOOT:
FEAL GEAFI FATIOS:

GEAT MAL ABA
AFI THMAT IC FFOGFFESION:
HAFMOMIC FFOGRESGTON:
GEOMETFIC FFOGFESSIUN:
GEOMET. WITH INCF FOOOT:
FEAL GEAF FATIOS:
EENAIIT 9
AFITHVAT IC FROGFESSION:
HAFMONIC FFOGFESSION:
GEOMETFIC FFAGGESSICN:
GEOMET, WITH INCF: FOOT:
FEEAL GEAF FIATIOS:
29711.87
29702.62
2108.2

249か2.24
26765.1

25597, 15
2597.15
2054.52

2उउO.
2055.69
34575.92
34571.85

2779世.74
31054.6
29506.97
$181 \% 7.82$
1 181.22
12927.15
14932.5
1.4991 .0 s

SECOND A.M.E. CONF'ERENCE
6-8 May 1986 Cairo
(1) S.Shaaban, S.A. Hassan, "Comparison of methods of selection of the gear ratios of automobile transmission". First International Conference of Machine Design, Milit= ary Technical College, Cairo, Egypt (1985).
(2) Wong, I. $y_{\text {, "Theory of ground vehicies." John wiley }}$ Sons, U.S.A. (1978).
(3) Morsy, M. A., "Theory of automotiles" Printed leetures, Military Technical Colleq̧e, Case, Eqype. (1975).
(4) John David Agsoctater, "Getting fid et the geax box". "Engineering Apris, England, (1983).

 Paris, France, (1979).
 les". I Mech E, Automotive Engineex= Teb/March, 要ngiand (1978).


Appendix 1 ：Program to calculate constants of power curves．

```
EFEM FFOGFAM TO CALCULATE OONGTANTS OF FOWER CURVES
10 FEM USING FFOGFAFM TO SOLVE SYSTEM OF LINEAF EGUATIONS
11. LFFINT"VALIUES OF CONSTANTS OF FOWER CUFVES"
```



```
1 S LFFITNT
\(20 \quad N=4\)
ⓄDIN A (N,N+J), B (N), X (N)
उGFEAD T丰 TYFE OF VEHJCLE (="FND" TO FTNTSH)
उ́ IF T丰="END" THEN 340
\(\triangle 7\) FEAD FMAX, FNAX "FPm at max FOWEP', mex power
40 FOF \(I=1 . \quad T O \quad N\)
45 FEAD FEV, FOWEF one point on the curve
EOOFB \(J=1 \quad 10 \mathrm{~N}\)
GO \(A(I, J)=(F \in E V / F \| A x) \cdots J\)
70 NEXT J
日O \(E(I)=F\) COWEF/FMAX
GO NEXT I
\(100 \mathrm{FOF} \quad \mathrm{I}=1 \quad \mathrm{TO}\)
\(110 \mathrm{~A}(I, N+1)=\mathrm{E}(\mathrm{I})\)
\(1 \%\) NEXT I
```



```
\(140 \quad T=1 / A\) (ド, ド)
1. 5 OCOF , I=k TO +1
\(160 \quad A(*, J)=A(1, J) * T\)
170 NEXT J
\(180 \mathrm{FOF} \mathrm{J}=1 \mathrm{TO} \mathrm{N}\)
190 IF \(K=3\) THEN 240
200) \(T=F_{1}\left(T, k_{0}\right)\)
210 FOF I=ト TO N+1
\(20 \mathrm{~A}(I, I)=A(I, I)-T, A(F, I)\)
2SO NEXT I
240 NEXT I
2与O NEXT ト
260 FOF \(I=1\) TO
\(270 \times(I)=A(I, N+1)\)
280 NEXT I
285 LFFINT"TYFE OF VFHTCLE:", I
280 LFFINT"VALUES OF OONGTANTS ="
290 FOF \(I=1 \quad\) TO N
उOO LFFINT X(I),
B10 NEXT I
O2O LFFINT: LFFRINT
\(306070 \quad 5\)
\(\therefore 40\) ENO
```

F Appendix 2 : Program to calculate speed ratios according to different progressions.

```
30 LFFINT'
CALCULATION OF SFEED FATIOS ACCORDING TO "
40 LFFINT"
5 0 ~ L F R I N T " '
5 5 ~ L F R I N T
56 LFFINT"FIRST","SECOND","THIFD","FOURIH","FIFTH"
57 LFRINT"SFEED","SFEED","SFEED","SFEED","SFEED"
75 FEAD T&,FI,LA,N
76 IF T&="END" THEN 540
gO LFRINT
1OO LFRRINT
110 LFRINT"VEHICLE TYFE:";「浸
120 LFRINT"AFITHHATIC FROGRESSION"
130 I (1) =FI
140 I (N)=LA
150 Q=(I(1)-I(N))/(N-1)
160 LFFFINT I (1),
1 7 0 ~ F O R ~ K = 2 ~ T O ~ N - 1
180 I (k)=I(1)-(k-1)*0
190 LFFINT I (k),
200 NEXT K
210 LFRINT I (N)
2JO LFFINT"HAFMONIC FFFOGRESSION"
240 LFRINT I(1),
250 0=(1/I (N)-1/I(1))/(N-1)
2GO FOR N=2 TO N-1
270 I (k) =1/I(1)+(k-1)*O
2aO I (k)=1/I (k)
290 LFFRINT I (&),
BOO NEXT K
310 LFFRNT I (N)
3OO LFFRINT"GEOMETRIC FFOGGESSION"
S40 LF'RINT I(1),
350 Q=(I (1)/I(N))\cdots(1/(N-1))
360 FOF K=2 TO N-1
370 I (k)=I(1)/(0)(k-1))
30 LFFINT I (&),
300 NEXT K
400 LFFRINT I (N)
42O LFFRINT "GEOMETRIC WITH INCREASING FOOTG"
4%0 0=1.1
440 IF N=5 THEN 470
45001=(I (1)/(I (N)*O*)) (1/\Sigma)
460 GOTO 480
47001=(I(1)/(I(N)*D 6)) (1/4)
4 8 0 ~ L F F I N T ~ I ~ ( 1 ) ,
470 FOF K=2 TO N-1
500 I (K)=I (K-1)/(01*O(N-K))
50 LFFINT I(F),
F20 NEXT K
53O LFFINT I (N)
```



Appendix 3 ：Program to calculate the unobtainable power．

```
10 FEM FFOGFAM TO CALCULATE THE LOGSES
2 LFEINI "FROGFAM TO CALCLILATE THE LOSSES"
O LFRINT
40 FEAD T丰 'type of vehicle
50 IF T車="END" THEN 480
GO LFRINT: LFFINT"TYFE OF VEHICLE: ", T末
70 FEM INFUT MAX FOOWEF, FEEU.AT MAX FCIWEF, DYY. FIAD.,
BO FEM FINAL DFIVE GEAF FATIO,NU OF SFEEDS
QO READ PMAX, NN, FID, IO, N
95 FEM INFUT FIFST AND LAST SFEED FAAIIOS
96 FEAD \(G(1), G(N)\)
130 FEAD \(A, B, C, D\) constants of power curves
140 L_FFINT"GREAT AFEA", "SMALL AFEA", "DIFFFFENCE"
150 FOFi \(J=1\) TD \(\quad\) different progressions
160 ON J GOTO \(170,190,210,230,235\)
170 LFRINT"AFITHMATIC FFOGFESSIDN: "
180 GOTD 240
170 LFFINT"HAFMONIC FFOGFESSIUN: "
200 GOTO 240
210 LFFINT"GEONETFIC FFOGFESSIGN: "
220 GOTV 240
OUO LFFINT"GEOMETFIIC WITH INCFEASING FOOT: "
23 GOTO 240
בSE LFFINT"FEAL GEAF FATIUS: "
240 FOF \(I=2 T O N-1\)
2EO FiEAD G(I) gear ratios
260 NEXT I
270 SUMDIF \(=0\)
280 SUMF \(1=0\)
290 SUMF \(2=0\)
291 FIF \(I=1 \quad \mathrm{TO} \mathrm{N}\)
\(292 V(I)=.377 * N N * F D /(I \square *(I)(I))\)
29G NEXT I
(0) \(1=2=200\) FFMAX*. 9
310 FOF \(I=2\) TO \(N\), differenit gears
\(32 \mathrm{~F} 1=\mathrm{K} 1 *(\operatorname{LOG}(V(\mathrm{I}))-\operatorname{LOG}(V(\mathrm{I}-1)))\)
```







```
Stio \(F 2=A 1-A 2\)
S6 SUNF \(1=\) SUFF \(1+\) F \(^{0}\)
ジ0 SUMF \(2=\) SUMF2 \(+F 2\)
BO DIF=F1-F2
SGO SUMDIF=SUNDIF+DIF
400 LFFIINT F1,FA, DIF
410 NEXT [
42O LFFINT"SLIMAT IUN: "
4O LFFINT SUMF 1, SUMF 2, SUMDIF
440 LFFINTT
45O NEXT J
460 LFFINT:LFFIINT
```

