EVALUATION OF LOW LEVEL LASER THERAPY ON THE STABILITY OF IMPLANTS USING RESONANCE FREQUENCY ANALYSIS (CLINICAL STUDY) | ||||
Alexandria Dental Journal | ||||
Article 16, Volume 43, Issue 2, August 2018, Page 94-100 PDF (540.88 K) | ||||
Document Type: Original Article | ||||
DOI: 10.21608/adjalexu.2018.57638 | ||||
![]() | ||||
Authors | ||||
Nada M. Fahmy* 1; Nevein SH. Abdulla2; Mervat M. Khalil2; Ahmed A. AbdelHakim3 | ||||
1Bachelor student of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Egypt, Dentist at Ministry of Health, Alexandria Egypt | ||||
2Professor of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Egypt. | ||||
3Professor of Prosthodontic, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Egypt | ||||
Abstract | ||||
INTRODUCTION: The implant supported overdentures are considered a very successful treatment option for edentulous patients. Low level laser therapy (LLLT) has gained greater awareness in the last decade for implant surgery, reduces postoperative pain after surgery, promotes the osseointegration of implants, particularly, improving stability and enhances new bone formation without causing any tissue destruction. OBJECTIVES: : The aim of this study was the effect of low-level laser therapy on the biostimulation of bone repair by enhancing or accelerating osseointegration through stimulating the expression of osteoblastic phenotype in cells cultured on Titanium specimens. MATERIALS AND METHODS: 10 patients with age ranged between 45-60 years old were involved in the study. Each patient received 2 implants in the mandibular edentulous ridge at the canine area. The right side acted as study group has received one implant with a Semiconductor diode LASER (type IV) application, while the left acted as control one of same patients having normal loading in left mandibular canine area without LLLT application. All implants osseointegration was assessed by Magnetic Resonance Frequency Analysis to evaluate the implant stability. RESULTS Resonance Frequency Analysis evaluation revealed great difference in the stability after three months when irradiated with LLLT, implant stability quotient changes were found to be statistically significant between the two studied groups. (P2= <0.001). CONCLUSIONS: Effect of LLLT on bone remodeling is evident and improves implant stability. | ||||
Keywords | ||||
Dental implants; Low level laser therapy; implant stability; Implant supported mandibular overdenture | ||||
References | ||||
1. Farre-Pages N, Auge-Castro ML, Alaejos-Algarra F, Mareque-Bueno J, Ferres-Padro E, Herrnandez-Alfaro F. Relation between bone density and primary implant stability. Med Oral Patol Oral Cir Buccal. 2011;16:62–7.
2. Veltri M, Balleri B, Goracci C, Giorgetti R, Balleri P, Ferrari M. Soft bone primary stability of 3 different miniscrews for orthodontic anchorage: a resonance frequency investigation. Am J Orthod Dentofacial Orthop. 2009;135:642–8.
3. Gonzalez-Garcia R, Monje F, Moreno-Garcia C. Predictability of the resonance frequency analysis in the survival of dental implants placed in the anterior nonatrophied edentulous mandible. Med Oral Patol Oral Cir Buccal. 2011;16:664–9.
4. Albrektsson T, Dahl E, Enbom L, Engevall S, Engquist B, Eriksson AR, et al. Osseointegrated oral implants. A Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. J Periodontol. 1988;59:287–96.
5. Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res. 1996;7:261–7.
6. Penarrocha-Diago MA, Maestro-Ferrin L, Demarchi CL, Pennarocha-Oetra D, Pennarocha-Diago M. immediate versus non immediate placement of implants for full arch fixed restorations: A preliminary study. J Oral Maxillofac Surg. 2011;69:154–9.
7. Marković A, Calasan D, Colić S, Stojčev-Stajčić L, Janjić B, Mišić T. Implant stability in posterior maxilla: bone-condensing versus bone-drilling: a clinical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:557–63.
8. Mandić B, Lazić Z, Marković A, Mandić B, Mandić M, Djinić A. et al. Influence of postoperative low-level laser therapy on the osseointegration of self-tapping implants in the posterior maxilla: a 6-week split-mouth clinical study. Vojnosanit Pregl. 2015;72:233–40.
9. Herrero-Climent M, Albertini M, Rios-Santos JV, Lázaro- Calvo P, Fernández-Palacín A, Bullon P. Resonance frequency analysis-reliability in third generation instruments: Osstell mentor®. Med Oral Patol Oral Cir Bucal. 2012;17:801–6.
10. Kim JM, Kim SJ, Han I, Shin SW, Ryu JJ. A comparison of the implant stability among various implant systems: clinical study. J Adv Prosthodont. 2009;1:31–6.
11. Al-Jetaily S, Al-dosari AA. Assessment of Osstell and Periotest systems in measuring dental implant stability (in vitro study). Saudi Dent J. 2011;23:17–21.
12. Sennerby L, Roos J. Surgical determinants of clinical success of osseointegrated oral implants: a review of the literature. Int J Prosthodont. 1998;11:408–20.
13. Convissar RA. The biologic rationale for the use of lasers in dentistry. Dent Clin N Am. 2004;48:771–94.
14. Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP. Lyngstadaas SP. Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:693–700.
15. Pinheiro ALB, Junior FAL, Gerbi MEM, Ramalho LMP, Marzola C, Ponzi EAC. Effect of Low Level Laser Therapy on the Repair of Bone Defects Grafted with Inorganic Bovine Bone. Braz Dent J. 2003;14:177– 218.
16. Petri AD, Teixeira LN, Crippa GE, Beloti MM, de Ooliveira PT, Rosa AL. Effects of Low-Level Laser Therapy on Human Osteoblastic Cells Grown on Titanium. Braz Dent J. 2010;21:491–8.
17. Kotz S, Balakrishnan N, Read CB, Vidakovic B. Encyclopedia of statistical sciences. 2nd ed. Hoboken, NJ: Wiley-Interscience; 2006. 18. Kirkpatrick LA, Feeney BC. A simple guide to IBM SPSS statistics for version 20.0. Student ed. Belmont, Calif.: Wadsworth, Cengage Learning; 2013.
19. Glavind L, Loe H. Errors in the clinical assessment of periodontal destruction. J Periodont Res. 1967;2:180–9.
20. Branemark P, Zarb G, Albrektsson T. Tissue-integrated prostheses. Chicago: Quintessence; 1985. p 11–43.
21. Herrero-Climent M, Albertini M, Rios-Santos JV, Lázaro- Calvo P, Fernández-Palacín A, Bullon P. Resonance frequency analysis-reliability in third generation instruments: Osstell mentor®. Med Oral Patol Oral Cir Bucal. 2012;17:801–6.
22. Walsh LJ, Goharkhay K, Verheyen P, Moritz A. Low Level Laser Therapy. (LLLT) in Moritz A. Oral Laser Application. Quintessenz Verlags-Gmbh. 2006;521–39.
23. Strbac GD, Unger E, Donner R, Bijak M, Watzek G, Zechner W. Thermal effects of a combined irrigation method during implant site drilling. A standardized in vitro study using a bovine rib model. Clin Oral implants Res. 2012;25:665–74.
24. Lee J, Ozdoganlar OB, Rabin Y. An experimental investigation on thermal exposure during bone drilling. Med Eng Phys. 2012;34:1510–20.
25. Augustin G, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S. Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int Orthop. 2012;36:1449–56.
26. Martin E. Lasers in dental implantology. Dent Clin N Am. 2004;48:999–1015.
27. McKinney RV, Koth DL, Steflik DE, Robinson FG, Davis BC, Morris CF, et al. Crystal sapphire. Endosteal dental implants in humans: Ten years results. J Oral Implantol Res. 1967;2:180–6.
28. Ersanli S, Karabuda C, Beck F, Leblebicioglu B. Resonance frequency analysis of one-stage dental implant stability during the osseointegration period. J Periodontol. 2005;76:1066–71.
29. Zix J, Kesiler-Liechti G, Mericska-Stern R. Stability measurements of one-stage implants in the maxilla by means of resonance frequency analysis- a pilot study. Int J Oral Maxillofac Implants. 2005;20:747–52.
30. García-Morales JM, Tortamano-Neto P, Todescan FF, de Andrade JC Jr, Marotti J, Zezell DM. Stability of dental implants after irradiation with an 830-nm lowlevel laser: a double-blind randomized clinical study. Lasers Med Sci. 2012;27:703–11.
31. Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: biological and biomechanicalaspects and clinical implications. Periodontol 2000. 2008;47:51–66.
32. Aparicio C, Lang NP, Rangert B. Validity and clinical significance of biomechanical testing of implant/bone interface. Clin Oral Implants Res. 2006;17 (Suppl 2):2– 7.
33. Karl M, Graef F, Heckmann S, Krafft T. Parameters of resonance frequency measurement values: a retrospective study of 385 ITI dental implants. Clin Oral Implants Res. 2008;19:214–8.
34. Sun G, Tuner J. Low-level laser therapy in dentistry. Dent Clin N Am. 2004; 48: 1061–76.
35. Kim JR, Kim SH, Kim IR, Park BS, Kim YD. Lowlevel laser therapy affects osseointegration in titanium implants: resonance frequency, removal torque, and histomorphometric analysis in rabbits. J Korean Assoc Oral Maxillofac Surg. 2016;42: 2–8.
36. Khadra M. The effect of low level laser irradiation on implant tissue interaction: in vivo and in vitro studies. Swed Dent J Suppl. 2005;172:1–6.
37. Guzzardella G, Torricelli P, Nicoli-aldini N, Giardino R. Osseointegration of endosseous ceramic implants after postoperative low power laser stimulation: an in vivo comparative study. Clin Oral Implants Res. 2003;14:226–32.
38. Pereira CL, Sallum EA, Nociti FH Jr, Moreira RW. The effect of low-intensity laser therapy on bone healing around titanium implants: a histometric study in rabbits. Int J Oral Maxillofac Implants. 2009;24:47–51. | ||||
Statistics Article View: 342 PDF Download: 717 |
||||