

4
4
*M.I.Hosam E1-Din

* * F.S.Holail

By

ABSTRACT

${ }^{\bullet}$ In this paper we establish sufficient conditions for the existence of periodic solutions of the equation

$$
\ddot{x}+K(x-a)(x-b) \dot{x}+\epsilon x^{2 n+1}(x-c)=0 \text {, }
$$

This equation does not satisfy the condition $\mathrm{xg}(\mathrm{x})>0$ for $|\mathrm{x}|>0$ which was assumed in [3] and [5].

* Military Technical College, Cairo.
** Technical Research Department, Presidency, Cairo.

INTRODUCTION

In this paper we are going to establish sufficient conditions to be satisfied by the constants k, a, b, c and \in to prove the existence of a nonconstant periodic solution of the nonlinear second order differenticl equation

$$
\begin{equation*}
\ddot{x}+K(x-a)(x-b) \dot{x}+\epsilon x^{2 n+1}(x-c)=0 \tag{1}
\end{equation*}
$$

The equation is a form of lineard's equation

$$
\begin{equation*}
\ddot{x}+f(x) \dot{x}+g(x)=0 \tag{2}
\end{equation*}
$$

which discribes many physical phenomenas. The equation does not satisfy the condition which was commonly used by [3], [5], and others•To prove the existence of a periodic solutions of (1) we suppose that $K>0, \epsilon>0, a, b$ and c are real constants.

Equation(1) is equivalent to the system,

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{y}, \quad \dot{\mathrm{y}}=-\mathrm{f}(\mathrm{x}) \quad \mathrm{y}-\mathrm{g}(\mathrm{x}) \tag{3}
\end{equation*}
$$

where $f(x)=k(x-a)(x-b)$
$g(x)=6 x^{2 n+1} \quad(x-c)$
To prove our result we shall use a technique similar to that used in [3] and [5] to investigate the phase digrame of the system (3). MAIN RESULT

Theorem

Suppose that
i) $\quad \mathrm{c}<\mathrm{a}<0<\mathrm{b}$
ii) there are two numbers x_{1}, w $; c<\mathrm{x}_{1}<a ; \quad \mathrm{w}>1$
such that

$$
2 w\left(1+\frac{L}{\sqrt{2} N}\right) L \leqslant B \quad\left(x_{1}, \quad\right. \text { a) }
$$

SECOND A.M.E. CONFERENCE
6 - 8 May 1986 , Cairo
$\dot{\square}$
$:$
unstable and $A_{0}=(c, 0)$ which is a saddle point. With A_{0} is
associated four separatrices $T_{+} T_{\ldots}, U_{+}$and U_{-}.
For t increasing, the separatrix $T{ }^{T}$ leaves A_{0} and enters region: $y=\left\{(x, y) \mid c<x<a, \frac{-\epsilon x^{2 n^{+}+1}(x-c)}{k(x-a)(x-b)}>y>0\right\}$,

Now, we shall prove that T_{+}is a contracting spiral .We have different cases.
case 1 : Let us suppose that T_{+}intersects the line
$\mathrm{x}=\mathrm{b}$ and 1et $\mathrm{P}_{1}=\left(\mathrm{a}, \mathrm{y}_{1}\right), \mathrm{P}_{2}=\left(0, \mathrm{y}_{2}\right)$ and $\mathrm{P}_{3}=\left(\mathrm{b}, \mathrm{y}_{3}\right)$,
denote the intersections of T_{+}with the lines $x=a, x=0$, and $\mathrm{x}=\mathrm{b}$ respectively as t increases (Fig.1)

SECOND A.M.E. CONFERENCE
6-8 May 1986 , Cairo

Fig. 1.
Let $\lambda(x, y)=\frac{1}{2} y^{2}+G(x)$,
$\frac{d \lambda}{d t}=\frac{\partial \lambda}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial \lambda}{\partial x} \cdot \frac{d x}{d t}=-y^{2} f(x)=$ $=-K y^{2}(x-a)(x-b)$.
$\frac{\mathrm{d} \lambda}{\mathrm{dt}}<0$ when $\mathrm{x}>\mathrm{b}$ or $\mathrm{x}<\mathrm{a}$
$\frac{\mathrm{d} \cdot \lambda}{\mathrm{dt}}>0$ when $\mathrm{a}<\mathrm{x}<\mathrm{b}$.

Then, $\lambda(x(t), y(t))$ is decreasing for $x<a$, hence

$$
\begin{gathered}
\lambda\left(\mathrm{P}_{1}\right)<\lambda\left(\mathrm{A}_{0}\right) \quad \text {, i.e. }, \\
\frac{1}{2} \mathrm{y}_{1}^{2}+\mathrm{G}(\mathrm{a})<\mathrm{G}(\mathrm{c}), \\
\frac{1}{2} \mathrm{y}_{1}^{2}<[\mathrm{G}(\mathrm{c})-\mathrm{G}(\mathrm{a})]=\in \int_{\mathrm{c}}^{a} 2 \mathrm{n}+1(\mathrm{x}-\mathrm{c}) \mathrm{dx}
\end{gathered}
$$

SECOND A.M.E. CONFERENCE
6-8 May 1986 , Cairo
r

- - 5 -

$$
y_{1}<\sqrt{2}\left[\xi \int_{c}^{a} x^{2 n+1}(x-c) d x\right]^{\frac{1}{2}} .
$$

then $y_{1}<\sqrt{2} N$.

Now, we have two cases, either $\mathrm{y}_{1}<\mathrm{N}$ or $\mathrm{y}_{1} \geqslant \mathrm{~N}$. suppose first that $y_{1} \geqslant N$, then by eliminating t between the two equations . of the system (3) we get:

$$
\begin{align*}
\frac{d y}{d x} & =\frac{\hat{y}}{x^{n}}=\frac{-y f(x)-g(x)}{y} \\
& =-k(x-a)(x-b)-\frac{E x^{2 n+1}(x-c)}{y} \tag{6}
\end{align*}
$$

Then, $\frac{d y}{d x}>0$ for $y>0, a \leq x \leq 0$. Then, the trajectory $y=y^{*}(x)$ of (6) satisfying $y(a)^{*}=N$ is increasing in x for $a \leq x \leq 0$.
\therefore Let $\emptyset(x)= \begin{cases}-k(x-a)(x-b)-\frac{\epsilon x^{2 n+1}(x-c)}{N} & \text { for } a \leq x \leq 0 . \\ -k(x-a)(x-b) & \text { for } 0<x \leq b .\end{cases}$

Then, we get :

$$
\begin{aligned}
\phi(x) \geqslant-k(x-a)(x-b)- & \frac{\epsilon x^{2 n+1}(x-c)}{y} \\
& \text { for } a \leq x \leq b \text { and } y \geqslant N .
\end{aligned}
$$

- We denote by $y(x)$ the solution of

$$
\begin{equation*}
-\frac{d y}{d x}=\emptyset(x), \tag{7}
\end{equation*}
$$

satisfying the initial condition $y(a)=\sqrt{2} \quad N$.

$$
\text { Since } y(a)=V^{-} 2 \quad N>N=y^{*} \text { (a), and }
$$

$$
\frac{d y}{d x}=\varnothing \quad(x) \geqslant \frac{d y^{*}}{d x} \quad \text { for } a \leq x \leq b
$$

Integrating (7) from a to b, we get :

$$
\begin{gathered}
y(b)-y(a)=\int_{a}^{b} \emptyset(x) d x \\
=-k \int_{a}^{b}(x-a)(x-b) d x=\frac{\epsilon}{N} \int_{a}^{x^{2 n+1}(x-c) d x} \\
\text { Hence }, y(b)=\sqrt{2} N+K \frac{(b-a)^{3}}{6}+\frac{\epsilon}{N} \int_{0}^{a} x^{2 n+1}(x-c) d x
\end{gathered}
$$

$$
\leqslant \sqrt{2} \quad N+k \frac{(b-a)^{3}}{6}+\frac{G}{N}
$$

hence , by (5) , y (b) $-\sqrt{2} \quad \mathrm{~N} \leq \mathrm{L}$, and that

$$
y_{3} \leq y \quad(b) \leq \sqrt{2} N+\quad L
$$

But, $G(x) \rightarrow \infty$ as $x \rightarrow \infty$, then using (iv) we have the equation

$$
\lambda(x, 0)=\sqrt{2} N+L \text { in } x \text {, has a positive root which is denoted }
$$

by ξ_{0}.
Since $\lambda(x, y)$ is decreasing for $x \geqslant b$, the trajectory which leaves P_{3} must meet the x - axis between $x=b$ and $x=\xi_{0}$. Let $P_{4}=\left(b, y_{4}\right)$ be the intersection with the half line $\{x=b, y<0\}$. Now let

$$
\Delta(\lambda)=\lambda\left(p_{4}\right)-\lambda\left(p_{3}\right)=\frac{1}{2}\left(y_{4}^{2}-y_{3}^{2}\right)
$$

since $\frac{d \lambda}{d t} \bar{P}_{4}-k y^{2}(x-a)(x-b)$, hence, $\Delta(\lambda)=-\quad \int_{P_{3}}^{P_{4}} k y^{2}(x-a)(x-b) d t \leq 0$.
Then,$y_{4}^{2}-y_{3}^{2} \leq 0$ gives us $\left|y_{4}\right| \leq\left|y_{3}\right|$, thus we have:

$$
\begin{equation*}
\left|\mathrm{y}_{4}\right| \leq\left|\mathrm{y}_{3}\right| \leq \sqrt{2} \quad \mathrm{~N}+\mathrm{L} \tag{8}
\end{equation*}
$$

For the case $y_{1}<N$, we consider the trajectory $\underset{\sim}{T}(\boldsymbol{\alpha}(t), \boldsymbol{\beta}(t))$ of the system (3) leaving the point (a, N),
also denote by t_{3} the value of t such that $\mathcal{\alpha}\left(t_{3}\right)=b$, then using the previous argument, we can show that

$$
\left|y_{4}\right| \leqslant\left|y_{3}\right| \leqslant \sqrt{2 x}+\quad \mathrm{L} .
$$

In addition to the hypothesis that T_{+}meets the line $x=b$, we make an assumption that T_{+}meets also the half $\operatorname{line}\left\{\mathrm{x}=\mathrm{x}_{1}, \mathrm{y}<0\right\}$.

Let $P_{5}=\left(a, y_{5}\right)$ and $P_{6}=\left(x_{1}, y_{6}\right)$ be the first points of intersection of T_{+}and the half lines $\{x=a, y<0\}$ and $\left\{x \quad x_{1}, y<0 \mid c<x_{1}<a\right\}$ respectively. Proceeding from the point P_{4} to P_{5} in a similar way as from P_{1} to P_{3} and by using the inequality (8), we get

$$
\begin{equation*}
\left|y_{5}\right|<\sqrt{2} \quad N+2 L \tag{9}
\end{equation*}
$$

we have

$$
\frac{d \lambda}{d x}=\frac{d^{\prime} \lambda}{d t} / \frac{d x}{d t}, \frac{d \lambda}{d t}=\frac{\partial \lambda}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial \lambda}{\partial y} \cdot \frac{d y}{d t}
$$

hence,$\frac{d \lambda}{d x}=-y(x-a)(x-b) k$.
Integrating from P_{5} to P_{6} we get :

$$
\begin{aligned}
\lambda\left(P_{6}\right)-\lambda\left(P_{5}\right) & =-\int_{a}^{x_{1}} k y(x-a)(x-b) d x \\
& =-\int_{x_{1}}^{a} k|y|(x-a)(x-b) d x
\end{aligned}
$$

Since $y<0$ in the interval $\left[x_{1}, a\right]$ and hence $|y|=-y$.
We have two cases either $|y| \geqslant \frac{\sqrt{2} N}{\omega!}$ for every point on $P_{5} P_{6}$ or not.
If $|y| \geqslant \frac{\sqrt{2} N}{\omega}$ along $\overparen{P}_{5} P_{6}$, by using condition (ii) we get

$$
\begin{aligned}
& \qquad \lambda\left(P_{6}\right)-\lambda\left(P_{5}\right) \leqslant-\frac{\sqrt{2} N K}{\omega} \int_{x_{1}}^{c l}(x-a)(x-b) d x \\
& =-\frac{\sqrt{2} N}{\omega} B \quad\left(x_{1}, a\right) \leq-2 \sqrt{2} L\left(N+\frac{1}{\sqrt{2}}\right) \\
& \text { and } \lambda\left(P_{6}\right) \leqslant \lambda\left(P_{5}\right)-2 L(\overline{2} N+L) .
\end{aligned}
$$

Γ

SECOND A.M.E. CONFERENCE
6 - 8 May 1986 , Cairo

Using $\boldsymbol{\lambda}\left(\mathrm{p}_{5}\right)=\frac{1}{2} \quad \mathrm{y}_{5}^{2}+G(a)$ and the inequality (9), we get

$$
\begin{aligned}
\lambda & \left(p_{6}\right)=\frac{1}{2}(\sqrt{2} N+2 L)^{2}+G(a)-2 L(\sqrt{2} N+L) \\
& =N^{2}+G(a) \\
& =\epsilon \int_{a}^{C} x^{2 n+1}(x-c) d x+\epsilon \int_{0}^{a} x^{2 n+1}(x-c) d x \\
& =\epsilon \int_{0}^{c} x^{2 n+1}(x-c) d x=G(c) .
\end{aligned}
$$

Then,

$$
\begin{equation*}
\lambda\left(p_{6}\right) \leqslant G(c) \tag{10}
\end{equation*}
$$

If there exists at least one point of $\overparen{p_{5} p_{6}}$ such that $|y|<\frac{\sqrt{2} N}{\omega}$
:at that point, then using the fact that $\dot{y}(t)>0$ for $c<x<a$ and .
$\mathrm{y}<0$ on $\overparen{\mathrm{p}_{5} \mathrm{p}} 6$ it follows that

$$
y_{6} \leqslant \frac{\sqrt{2} N}{\omega}
$$

Using condition (iii) , we get:
$\lambda\left(p_{6}\right)=\frac{1}{2} y_{6}^{2}+G\left(x_{1}\right) \leqslant \frac{N^{2}}{\omega^{2}}+G\left(x_{1}\right) \leqslant \epsilon \int_{x_{1}}^{C} x^{2 n+1}(x-c) d x+G\left(x_{1}\right)=G(c)$,

- 9 -
which means that the inequality (10) holds.
Continuing with T_{+}, as $\boldsymbol{\lambda}$ decreases in the half plane $\mathrm{x} \leq \mathrm{a}$, it follows that T_{+}must intersect the negative x axis at some point $\left(x^{*}, 0\right)$ where,

$$
G\left(x^{*}\right)=\lambda\left(x^{*}, 0\right)<\lambda\left(p_{6}\right)
$$

Let x_{2} be a point such that $G\left(x_{2}\right)=\lambda\left(p_{6}\right)$ then $G\left(x_{2}\right)>G\left(x^{*}\right)$. But $G(x)$ is decreasing in $c<x<0$ then $c<x_{2}<x^{*}<x_{1}$.

Now, we have proved that T_{+}is a contracting spiral.
If T_{+}does not intersect the half $\operatorname{line}\left\{x=x_{1}, y<0\right\}$, then, by constructing a function similar to $\phi(x)$, we can prove that $y \geqslant-(\sqrt{2} N+2 L)$ and it follows that T_{+}intersects the x-axis at $x^{*}, x_{1}<x^{*}<0$ and again T_{+}is a contracting spiral.

In the same way, we can prove that, if T_{+}does $\mathrm{n}^{\text {not }}$ meet the line $\mathrm{x}=\mathrm{b}$, it must intersect the negative x -axis at some point $\mathrm{x}^{*}, \mathrm{c}<\mathrm{x}^{*}<0$. Again T_{+}is a contracting spiral.

In addition to T_{+}being a contracting spiral, the origin is an unstables critical point. Hence, there exists an annulus surrounding the origin which satisfies the hypothesis of Poincare-Bendixon Theorem (See Ref. 4)which proves the existence of at least one periodic solution.

1 - Coddington,E.A. and Levinson, Theory of ordinary Differential Equations, McGraw- Hill, 1955.

2 - Hossam E1-Din, M.I., On Existence of Infinitely Many periodic solutions of the system $\dot{x}=y-F(x), \dot{y}=-g(x)$. The Fourth Annual Operation Research Conference, E1-zagazig. Vo1.4, No.1,1978,pp.101-107.

3 - Hossam E1-Din, M.I.and Nagib,M,On Periodic solutions of some second: Order ordinary Differential Equations Proceeding of the fifth International congeress of statistics, computer science, Social and Demographic Research, (Apri1 1980) pp. 207 217, Cairo Egypt.

4 - Jordan, D., and smith, P.,Nonlinear Ordinary Differential Equations, Clarendon press,oxford, 1977.

5 - Ponzo,P.T. and Wax, N. On perindic solutions of the system $\dot{x}=y-F(x)$, $\dot{y}=-\mathrm{g}(\mathrm{x})$, Journal of Differential Equations, Vol.10, No. 2, 1971, pp.262- 269.

