

_1

_2. _3

4

MILITARY TECHNICAL COLLEGE

CAIRO - EGYPT

ON PERIODIC SOLUTIONS OF SECOND ORDER DIFFERENTIAL

EQUATIONS

By

* M.I.Hosam El-Din

* * F.S.Holail

ABSTRACT

'In this paper we establish sufficient conditions for the existence of periodic solutions of the equation

 $\dot{x} + K(x - a) (x - b) \dot{x} + \epsilon x^{2n+1} (x - c) = 0,$

This equation does not satisfy the condition xg(x) > 0 for |x| > 0 which was assumed in [3] and [5].

* Military Technical College, Cairo.

* * Technical Research Department, Presidency, Cairo.

SECOND A.M.E. CONFERENCE 6 - 8 May 1986, Cairo

INTRODUCTION

-2.

In this paper we are going to establish sufficient conditions to be satisfied by the constants k,a,b, c and ϵ to prove the existence of a nonconstant periodic solution of the nonlinear second order differenticl equation

 $\mathbf{x} + K(\mathbf{x}-\mathbf{a}) (\mathbf{x}-\mathbf{b}) \mathbf{x} + \boldsymbol{\epsilon} \mathbf{x}^{2n+1} (\mathbf{x}-\mathbf{c}) = 0$ (1)

The equation is a form of lineard's equation

$$x+f(x)x+g(x) = 0$$
 (2)

which discribes many physical phenomenas. The equation does not satisfy the condition which was commonly used by [3], [5], and others. To prove the existence of a periodic solutions of (1) we suppose that $K \ge 0, \epsilon \ge 0$, a , b and c are real constants. Equation(1) is equivalent to the system,

$$x = y, y = -f(x) y - g(x)$$
 (3)

where f(x) = k (x-a) (x-b) (4) $g(x) = \epsilon x^{2n+1} (x-c)$ (5)

To prove our result we shall use a technique similar to that used in [3] and [5] to investigate the phase digrame of the system (3).

MAIN RESULT

Theorem

CA-14

140

Suppose that

- i) c < a < 0 < b
- ii) there are two numbers x_1, w ; $c < x_1 < a; w > 1$

such that

$$2w(1 + \frac{L}{\sqrt{2}N}) L \leq B (x_1, a)$$

A.M.F.

SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

141

CA-14

Then equation(1) has at least one nonconstant periodic solution.
Proof

Consider instead of equation(1) the equivalent system (3) .The only two critical points of the system (3) are 0=(0,0) which is unstable and $A_0=(C,0)$ which is a saddle point.With A_0 is associated four separatrices T_+ T_- , U_+ and U_- . For t increasing, the separatrix T_+ leaves A_0 and enters region: $y = \{(x, y) \mid c < x < a, \frac{-e_x^{2n+1}(x-c)}{k(x-a)(x-b)} > y > 0\},$

Now ,we shall prove that T_+ is a contracting spiral .We have different cases.

case 1:Let us suppose that T_{+} intersects the line x=b and let $P_1=(a,y_1), P_2=(0,y_2)$ and $P_3=(b,y_3)$, denote the intersections of T_{+} with the lines x=a,x=0, and x=b respectively as t increases (Fig.1)

SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

F

CA-14

143

$$y_1 < \sqrt{2} \left[\underset{C}{\in} \int_{x}^{\alpha} x^{2n+1} (x-c) dx \right]_{x}^{\frac{1}{2}}$$

then $y_1 < \sqrt{2}$ N .

Now, we have two cases, either $y_1 < N$ or $y_1 \ge N$. suppose first that $y_1 \gtrsim N$, then by eliminating t between the two equations of the system (3) we get:

$$\frac{dy}{dx} = \frac{\hat{y}}{x} = \frac{-yf(x)-g(x)}{y}$$
$$= -k (x-a)(x-b) - \frac{\epsilon x^{2n+1}(x-c)}{y}$$
(6)

Then , $\frac{dy}{dx} > 0$ for y > 0, $a \le x \le 0$. Then, the trajectory y = y(x) of (6) satisfying $y(a)^* = N$ is increasing in x for $a \le x \le 0$.

: Let
$$\emptyset$$
 $(x) = \begin{cases} -k(x-a)(x-b) - \frac{e x^{2n+1}(x-c)}{N}, & \text{for } a \le x \le 0. \\ -k(x-a)(x-b) & \text{, for } 0 < x \le b. \end{cases}$

Then, we get :

.

$$\phi(\mathbf{x}) \ge -k(\mathbf{x}-\mathbf{a})(\mathbf{x}-\mathbf{b}) - \frac{\in \mathbf{x}^{2n+1}(\mathbf{x}-\mathbf{c})}{\mathbf{y}}$$

for $a \leq x \leq b$ and $y \geq N$.

We denote by y(x) the solution of

$$-\frac{\mathrm{d}y}{\mathrm{d}x} = \phi(x), \qquad (7)$$

satisfying the initial condition $y(a) = \sqrt{2}$ N.

Since $y(a) = \sqrt{2}$ N > N = y^{*} (a) , and

 $\frac{dy}{dx} = \emptyset \quad (x) \ge \frac{dy}{dx} \quad \text{for } a \le x \le b .$

Г

SECOND A.M.E. CONFERENCE 6 - 8 May 1986, Cairo

7

* - 6 - *

Integrating (7) from a to b, we get : $y(b)-y(a) = \int_{C}^{b} \phi(x) dx$ $= -k \int_{C}^{b} (x-a)(x-b) dx = \frac{\varepsilon}{N} \int_{C}^{0} x^{2n+1} (x-c) dx.$ Hence $y(b) = \sqrt{2}$ N+ K $\frac{(b-a)^{3}}{6} + \frac{\varepsilon}{N} \int_{C}^{0} x^{2n+1}(x-c) dx$ $\leqslant \sqrt{2}$ N + k $\frac{(b-a)^{3}}{6} + \frac{C}{N}$,

hence , by (5) , y (b) - $\sqrt{2}$ N \leq L, and that y₃ \leq y (b) $\leq \sqrt{2}$ N+ L.

But, $G(x) \rightarrow \infty$ as $x \rightarrow \infty$, then using (iv) we have the equation $\lambda(x,0) = \sqrt{2N} + L$ in x, has a positive root which is denoted by ξ_0 . Since $\lambda(x,y)$ is decreasing for $x \ge b$, the trajectory which

leaves P_3 must meet the x- axis between x= b and x= ξ_0 . Let $P_4 = (b, y_4)$ be the intersection with the half line $\{x=b, y<0\}$.

Now let

$$\triangle (\lambda) = \lambda (P_4) - \lambda (P_3) = \frac{1}{2} (y_4^2 - y_3^2)$$

since $\frac{d}{dt} = ky^2(x-a)$ (x-b), hence, $\Delta(\Lambda) = -\int_{R_3}^{R_4} ky^2(x-a)$ (x-b) $dt \leq 0$. Then $y_4^2 - y_3^2 \leq 0$ gives us $|y_4| \leq |y_3|$, thus we have: $|y_4| \leq |y_3| \leq \sqrt{2}$ N + L (8)

For the case $y_1 < N$, we consider the trajectory $T(\propto (t), \beta (t))$ of the system (3) leaving the point (a,N) ,

CA-14 145

SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

Г

-7-

also denote by t_3 the value of t such that $\mathbf{Q}(t_3)$ =b,then using the previous argument,we can show that

In addition to the hypothesis that T_+ meets the line x=b, we make an assumption that T_+ meets also the half line $\{x=x_1, y < 0\}$.

Let $P_5 = (a, y_5)$ and $P_6 = (x_1, y_6)$ be the first points of intersection of T_+ and the half lines $\{x=a, y < 0\}$ and $\{x \ x_1, y < 0\}$ c $\langle x_1 < a\}$ respectively. Proceeding from the point P_4 to P_5 in a similar way as from P_1 to P_3 and by using the inequality (8), we get

$$|y_5| < \sqrt{2}$$
 N + 2L . (9)

we have

$$\frac{d\lambda}{dx} = \frac{d\lambda}{dt} / \frac{dx}{dt}, \quad \frac{d\lambda}{dt} = \frac{\partial\lambda}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial\lambda}{\partial y} \cdot \frac{dy}{dt},$$

hence, $\frac{d\Lambda}{dx} = -y(x-a) (x-b) k$. Integrating from P₅ to P₆ we get : $\lambda(P_6) - \lambda(P_5) = -\int_a^{X_1} ky(x-a)(x-b) dx$ $= -\int_{X_1}^a k |y|(x-a)(x-b) dx$, Since y < 0 in the interval $[x_1, a]$ and hence |y| = -y. We have two cases either $|y| \ge \frac{\sqrt{2N}}{\omega}$ for every point on P_5P_6 or not. If $|y| \ge \frac{\sqrt{2N}}{\omega}$ along P_5P_6 , by using condition (ii) we get $\lambda(P_6) - \lambda(P_5) \le -\frac{\sqrt{2NK}}{\omega} \int_{X_1}^a (x-a) (x-b) dx$ $= -\frac{\sqrt{2N}}{\omega} B (x_1, a) \le -2\sqrt{2L} (N + \frac{L}{\sqrt{2}})$

and $\lambda(P_6)$ $(P_5) - 2L(\sqrt{2}N+L)$.

1

CA-14 146

SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

Г

- 8 -

Using $\lambda(p_5) = \frac{1}{2} y_5^2 + G(a)$ and the inequality (9) , we get

$$\lambda (p_6) = \frac{1}{2} (\sqrt{2}N + 2L)^2 + G(a) - 2L(\sqrt{2}N + L)$$
$$= N^2 + G(a)$$
$$= \epsilon \int_{x}^{c} x^{2n+1}(x-c) dx + \epsilon \int_{x}^{a} x^{2n+1}(x-c) dx$$

$$= \epsilon \int_{a}^{x} (x - c) dx + \epsilon \int_{a}^{x - c} x^{-1} (x - c) dx$$

= $\epsilon \int_{a}^{c} x^{2n+1} (x - c) dx = G(c).$

Then,

$$\lambda (p_6) \leq G(c)$$
(10)

If there exists at least one point of $\widehat{p_5p_6}$ such that $|y| < \frac{\sqrt{2N}}{w}$. at that point, then using the fact that y(t) > 0 for c < x < a and y < 0 on $\widehat{p_5p_6}$ it follows that

$$y_6 \ll \frac{V_{2N}}{\omega}$$

Using condition (iii) , we get:

$$\lambda(p_6) = \frac{1}{2} \quad y_6^2 + G(x_1) \leq \frac{N^2}{\omega^2} + G(x_1) \leq \frac{C}{\chi_1^2} + G(x_1) \leq \frac{C}{\chi_$$

CA-14 147

which means that the inequality (10) holds.

Continuing with T_+ , as λ decreases in the half plane $x \leq a$, it follows that T_+ must intersect the negative x axis at some point $(\overset{*}{x}, 0)$ where,

 $G(\mathbf{x}^*) = \mathbf{\lambda}(\mathbf{x}^*, 0) < \mathbf{\lambda}(\mathbf{p}_6).$

Let x_2 be a point such that $G(x_2) = \lambda(p_6)$ then $G(x_2) > G(x^2)$. But G(x) is decreasing in c < x < 0 then $c < x_2 < x^2 < x_1$.

Now, we have proved that T, is a contracting spiral.

If T_+ does not intersect the half line $\{x = x_1, y < 0\}$, then, by constructing a function similar to $\phi(x)$, we can prove that $y \ge -(\sqrt{2}N+ 2L)$ and it follows that T_+ intersects the x-axis at x^* , $x_1 < x^* < 0$ and again T_+ is a contracting spiral.

In the same way, we can prove that, if T_{+} does not meet the line x=b, it must intersect the negative x-axis at some point x^{+} , $c < x^{+}$ (0.) Again T_{+} is a contracting spiral.

In addition to T₊ being a contracting spiral, the origin is an unstables critical point. Hence, there exists an annulus surrounding the origin which satisfies the hypothesis of Poincare-Bendixon Theorem (See Ref. 4)which proves the existence of at least one periodic solution.

Γ

SECOND A.M.E. CONFERENCE 6 - 8 May 1986 , Cairo

-10-

7

REFERENCES

- Coddington, E.A. and Levinson, Theory of ordinary Differential Equations, McGraw- Hill, 1955.
- 2 Hossam El-Din, M.I., On Existence of Infinitely Many periodic solutions of the system x = y - F(x), y =-g(x). The Fourth Annual Operation Research Conference, El-zagazig. Vol.4, No.1, 1978, pp.101-107.
- 3 Hossam El-Din, M.I.and Nagib, M, On Periodic solutions of some second Order ordinary Differential Equations Proceeding of the fifth International congeress of statistics, computer science, Social and Demographic Research, (April 1980) pp.207 217, Cairo Egypt.
 - 4 Jordan, D., and smith, P., Nonlinear Ordinary Differential Equations,
 Clarendon press, oxford, 1977.
- 5 Ponzo, P.T. and Wax, N. On periodic solutions of the system x=y-F(x), y = -g(x), Journal of Differential Equations, Vol.10, No.2, 1971, pp.262-269.