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ABSTRACT 

The aim of this paper is to introduce a generalized form of Fisher's . 

information based on the concept of divergence of a sample of size n for • 

different values of the population parameter. By using this generalization, 

we obtain a new form;less restricted, of cral4r-Rao inequality. Some 

illustrative examples are presented. 



SECOND A.M.F. CONFERENCE 
\ _DR 

6 - 8 May 1986 , Cairo ICA-16 1160 1 

r 	 1 

O. INTRODUCTION:  

The aim of this paper is to introduce a generalization of the classical 

statistical theory of point estimations based on Fisher's concept of inform-

ation in a sample of size n using cramer-Rao inequality . As it is well 

known, applications of the classical point estimation theory based on cramer-

Rao inequality require that the sample joint density function must satisfies 

some regularity conditions which are some what numerous and consequentely app-

lications is so limited. If these conditions are not guaranteed we may come • 

lo serious mistakes. Decreasing these restrictions on the statistical model . 

is achieved by generalizing Fisher's information which is based on the concept 

of divergence of a sample of size n for different values of the parameter to 

be estimated)this generalization permits a straight forward generalization 

to the classical cramer - Rao inequality . The new form is without the pre-

vious rather awkwqrd regularity conditions. 

The paper consists of two sections. Thronh-out section one formulation of 

the statistical model and demonstration of the basic results are given. 

Section two is devoted to the applications of the derived criteria of estima- 

tion. 

1.  MODEL FORMULATION AND GENERALIZED FISHER'S INFORMATION  

Through this section, we shall consider the probability space (11_,er, 
is the fundamental probability set(sample space), G- is the segma algebra 
of subsets of./and P

© is a probability function defined on (.2 , 	) 
which depend on the parameter ;9E: 	, S is an open subset of R(the set 
of real numbers). Let X1,X2,..., Xn  be n independent identically distri- 

buted, continuous random variables, each one defined on the probability 

space(, 	pe  octq) having joint distribution function F 	; 9 ) o  

and joint density function f
o
( 	; 0 ) , 	= (x1, 	xn) f(xi; 9 ), 

F(xi, 0 ) are the density and distribution functionsof Xi, i = 1,2,...,n. 

Let us consider the following definition (see [3.] ) 

Definition 1.1:  The quantity 

D
n
(07 ,0") = E8,( 1 

f ( Sc■ 	0") 2 

f0(;, 0 ) 
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is 	called the divergence of a sample of size n for different values 

8' and 0" of the unknown parameter 8. For simplicity, we shall call 

Dn(0',8") by divergence only and denote D (81 ,8") by D(8.' , 8"). 

In the definition of D
n(0',8") we understand, 0(1 	

0 
— )2 = 0 for a>0 a 

a and 0(1 - 	- oo for a>0. It is easy to see that 04:D (8',8")4.10D. 
n 

Proposition 1.2:  

The divergence D (f0,0") as defined before is equal to, 

f ( A , 	6") 
D (8,6") - 	 - 1 

fo( Ac 	8') 

Proof: 

From the definition of divergence, we have 

f(%; 	0" ) 	o  

	

Dn(0',0")= E8, (1 	)
2 

fo( X  ; 	e'  ) 

fo( X\ 	; 8")   2 (1 	 ) f (A; 8') cPx 

" 
(f0  ; 9') 	°  

f2( 	; 0") f(f
o
(sc ,e') - 2f o (AC, 0") 	° 	 

f ( 	; 8 ') ) R" 	 0 
Consequently, 

ir  
f
o

2 
 ( 	8") 

	

Dn(8' ,0") = 
qi 	 dX- 1 

Lemma 1.3 

For our statistical structure, 

Dn(0',0") + 1 = (D(0',8")+ 1)n  

Proof: 

From the precedent proposition 
jr   

fo
2 
 X ( , en 

11)n  (01 ,0n = 	riz - 1 
fo( X , 

	8') 
Rh o 

fo  ( 	, e') 



I
CA-16 I 162 

 

SECOND A.M.E. CONFERENCE 

6 - R May 1986 , Cairo 

r 

then, 

D
n
(8',8") d% 

2=/ 	
(x f . 	0  ) 	

1,8' 
, -03 

f 
0
( 	; 	0' ) rt..  

f(x. 	" ) 
1, 0 	2 = . 

) f(x.) dx. 

'D
n
(e',8") 	f

2
(x , 0")  

	

1 = (   dx 
) n 

f (x , 8') 

But 
	

fr) 

D(0',0") + 1 = 	
f
2
(x 	e" )dx 

-a) 	f (x , 8' ) 

Thus, 

Dn(0',0") + 1 = (D(0',8") + 1)n  

Definition:1.4 

The quantity 

I
n 
 (8) - 

 Lim 	1  
D
n
( R,f3 +e ) 

is called the generalized Fisher's information in a sample of size n. 

where Lim denotes the left hand limit. I
1(0) will be denoted simply by 

1(0). 

Theorem: 1.5 

I
n(0) = n 1(0) 

Proof: 

from Lemma 1.3 

D
n(8,0') + 1 = (D(8,8') + 1)n  

Using the Binomial theorem, we get, 

Dn(8,0')+1= 1 +n 8(8,8') + 	+( 	) Dk( 8, 8') + 	+ Dfl(0,0 1 ). 

replacing 0' by 8 +e-and dividing both sides by t52  , we have, 
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n 

z.2 D
n
(8,8+ 	) = n 1

2  D(8,8+ )+... + 	2 
k 	Dk(8,044..) + 

1 
Dn(0,8 	) 

Taking the limit from left of both sides, we get, 

lim 	 In(0) = n 	D(8,0 +L) + 	+ ( 17) X12 	 D
k
(9,84-6) 

lim 	1  Dn(0,8 +E ) 
o 

E 2 

But since, 

lim 	1 	k 

	

e-- 	
D (0,0+ f  ) = 0 	if k 	1 and 0 < 1(8)c! OD , then 

I
n(8) = n I(8) 

if I(0) = oo , then In 	OD (0) =  

Theorem: 

• The generalized information I(0) as defined before is the same as the 

classical definition, 
op 

f'(x , 8 )  )2  1(8) =   ) 	f(x,O) dx 

-co 	f(x 	, 8 ) 

provided the following conditions are satisfied 

(1) 	 f(x;8) (f'(x,8)) 	exists for all x E:12 
e OC" 

(2) )(( fl(x' 
 e )

)
2 

f(x, 8) 

oe0 	f(x, 8 ) 

 

oc: 

(3) lim f(x;8 + E ) - f(x ; 8 )  

i"-*o 	f(x,e) 

f'(x; 8 )  )2 

f(x ; 8 ) 

 

 

f(x;8) dx 0 

for any 8 E e _ 

V 8 
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Proof:  

We shall start the proof by the following lemma. 

Lemma. 	If we have (f(x, 	) , I(x) such that, 

.)(n 	(x) f(x,8) dx<oc, and r2  

lim ) 	(r(x»2  f(x,8) dx = 0 E yo 
( (IP (x, 

 

then 

lim k2 
 (x) f(x;0) dx 

Proof: 

  

   

Let us adopt the following notation, 

oo 

pf(x; E )11 	= 	r2(x;  f )f(x,O) dx 

11 r(x)ll 	A02 
r2( x) f(x; 8 ) dx 

we know that, 

#90(x; E)// < lltp(x; f ) - r(x)i/ 	//r(x)// 
and 

//(x;)J1 - 	up(x)ll 	(f (x; 	) - 	(x)ll 
	

(2) 

then, 

	

irx; ) //2  - Of(x) l1 2/ =-11/r(x; 	-ilT(x)jji.(// 	)/1 	F(x), ) 

using (1) and (2) we have, 

01117 (x; E) // 2  - 101x)1/ 2  f.,,r rx, 	— (x)11 .(/ p(x; f )— 7  (x)11 	f(x)11 ) 

But since, 

8V7(x, 	te(x)// 2  + 2 1l (x)/1 	f(x; E) - Lt(x)il 

	

1/(f(x)4<er 	and 

	

if r(c,. f) — C(x)// 	0 
0 
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-I 
SO , 

/ yo(x; e.) ll 
2 
 - 	(.) JI 

2 - 	
0 

and therefore the lemma is proved. 

If we denote , 

• and 
• 

f1(x.;8 	) 

f(x; 8 ) 

f(x; 0 + f ) - f(x ; A )  

f(x 	e ) 

by 'f(x), then ,from condition (3) and using the above 

f(x;e) dx I = 0 

v If(x,' F ) 

lemma, we have *0 	
t 

E 	‘
„ lira  / 	,2(.:  e) 	r 2(x)  ) 

i.e., 	
r  

(f(x; 	)11 2 -117(x)II 2  = 0 
0 

therefore, 0.0 	 oO 

limf(x;8 + 	) - f(x; 8 ) 
 )

2
f(x; A) dx = 	(  f'(x ; e) )

2
f(x;0)dx. 8,0 	-c 	f(x; 8 ) 	 f(x; 0 ) 

Hence, 	 -ea  

lim 	1 

62  
D(0;8+ e) 

- 
which completes the proof. 

Remark: 

f'(x 	8)  )2 ) 	f(x;8)dx 
f(x ; 8 ) 

Due to the fact that In(8)= n 1(8), the shove theorem is: also true for n>1. 
Theorem:  

For our statistical structure and for any unbiased estimate T(x
'xn)- 

of the unknown parameter 8, we have 

var (T(xl,..., 	1  

Proof: 
n I( A ) 

  

The basic tool of the proof is schwarz inequaltiyt hence, 

(f (T(%) - e) (f (e +e)- ftx 	e )  ) 
f(K; 8) AK ) 2 

;  

R - 	 ; 8  ) 

jr(T(1)-8) 2f ( 78)d4(  f(x;(4 +f;   )--1(X;0 ))2  f( A) 
o 



1/41614S 	SECOND A.M.E. CONFERENCE 

6 - 8 May 1986 , Cairo I

CA-16 I 166 1 

r . 	• 	• 

thenr 	R n  

( f (T(%)-0)f(X;0+ )4( - f (T(X)-(9)f(g;13)dX)2.< var(T(X)) D (0;0 + 	) 

var(T(%))› 

D 
n(0;0 + 	) 

taking 	lim 	
ofboth sides , we have, 

• var (T( X)) > 

lim 	1 n(6) 	n I(0 )  

2 D n(8;0 	) cs:   

Therefore, 

Var(T(X) 1 

 

n I(8 ) 

2. APPLICATIONS  

	

Through-out this section 	the detived result will be applied into three 

different statistical structures. 

Example 1: 	The normal case. 

1 	(x- 8)2  

f(x,0) = (2TT) 	2 	e 	— 2 

1 	1 
- - 	- f2(x; e+e-) 	 2 	t2 	 (0+ 2 E ))2  (x 

(2-,T) 	e 	e 
f(x',0 ) 

SO, 1 
11 
2 	2 	2  (x - (9 + 2 )) 2  D(9,0 +E) + 1 = (2;-) 	e J e dx 

Then, 
2 

D(0, 0 + 	+ 1 = e 

consequently, 

	

lim 	1 	lim 	1 1(0) =   D(0; A +L) = 

	

E-.:),' 	2 	2 _,,, 0 	2t2 

therefore the minimum variance is 1 . 

L2 
(e - 1) = 1 

1 
1 

n 



D(8; 8 + Z.) + 1 - i 	e  
• (9 + g )2 

dx 

0 -< x < 

) • -(8 + 2£.) + 

. • 

I
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Example 2: The uniform case 

f(x; e ) 1 
0< x <8 e 

f
2
(x ; e +E) 	9  

f(x ( e + 	) 2  ; 	)  
Then, 

0 

0 	
0 x. 

e2 

(8 	t  ) 2 

Thus 

D(803 +4) = ( 	8 	) 2 	
1 

e + E. 
lim 	1 TO) =  	D (8;8 + 	= 

0 e 2 
The minimum variance is therefore zero. 

Example 3: The triangle case. 

f(x,9) = - 	2 	
(x - 	) 

8  

f 2
(x; e + (4" ) 	 282 

f(x ; 8 ) 

2 92 

(E) + e ) 2  

Then 
9 

D(8,8 + e ) 	- - 2 82  fix - (9+2E ) + 

Hence, 

D(8,8 +e) 	00 	and 1(8) = on 

therefore the minimum variance is zero. 

(8  + c„. ) 2 0  

e2 
dx 

x - 9 
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Comment 

It was shown through-out the paper that the classical form of Cramer.. 
Raoinequality used in the books of mathematical statistics is a special 
case of more general concept. 

It is easy to see that the classical form of Cramer- Rao inequality 
can be applied in the case of example 1 but it can not be applied for the 
cases of examples 2 and 3. unfortunately the minimum variance calculated 
using the generalized concept in the last two cases was zero. Investigation 
therefore should be continued to find models where the classical form can 
not be applied and the minimum variance is different from zero. 
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