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OSCILLATIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS
GENERATION BY SEVERAL RETARDED AND ADVANCED ARGUMENTS

Medhat E1 ZANFALY,

ABSTRACT

*In this paper I stu:ly the oscillatory behaviour of equat:.ons of the forms
(*) y (t)+qy(t)+£:" p; y(t—?) =0 and (**)y'(t)-qy(t) - Zpiy(t+'l‘i)=0,
i=1 e
where g2,0, p.)O and t P O, are constants, i=1l,...,n. It is proved that

each of the follow1ng conditions (1)p, I’i. exp (l+g Ti) > 1l for some i,1=1,2,

veer n, (2) ( A::' P,) T exp(l+q )T>1, where T= min ‘L’l’l,’tz,...,’tn),(a)
n

(np](E’T dexp(ntq 3 T ) 1, or @) {[zj (a/ntp) T, J%}2>gimplies
i=1

=
that every solution of (*) or (**) oscillates. A generalization in the

case where the coefficients 92 0, pi)o i=1l,...,n are continuwus functions

of t is also presented.
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1. INTRODUCTION

In:studying the oscillatory behaviour of equations of the forms

n
y'(e) + I pyy(t=t,) =0 (1)
i=1
and
n
: y'(t) - I pyy(t + 1) =0, (2) )
i=1 .

where Py and Ti’ i=1,2,...,n, are positive constants, Ladas and Stavrou-

lakis[l]proved that each of the following conditions

(cl) piTi> é—, for some i, i=1,2,...,n,

(c2) (Z:=1pi)T>é-, where T=min {Tl, .,Tn},
n 1 B 4 1
UKL o %y B— .
1 " s 2.1
(Ca) (=) Zi=l(piTi) ) > s

implies that every solution of (1) or (2) oscillates.

In this paper, the work is extended to the equations of the forms:

n
y'(t)+qy(t) + I piy(t-Ti) =0 , (3)
i=1
and *
n
y'(t)-qy(t) - I pyy(ttt,) =0, (4)

1=1
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where q ;0,pi >D,-370,i=1,2,..,n, are constants. It is clear that (1) and

(2) are special cases of (3) and (4) when q=0 . Thus, it is expected that

the derived conditions should depend on q, and should be reduced to condi-
tions (cl)—(ca) if q=0. The paper is terminated by a generalization to the
case q(t) >0, and pi(t) >0 are continuous functions for i=1,2,..,n, and by
examples.

By an oscillatory solution it is meant a solution which has arbitra-

:rily large zeros. It is also assumed that all solutions are defined for all-
t >0.

The following two theorems are extentions of the corresponding theor-
ems of Ladas [2] and Kusano [3 ], which were given for the case q=0,
Theorem 1.1. The first-order inequality

{y'(t)+qy(t)+p y(t-1)} sgn y(t-1) <0, (5)
where q30,p >0 and 1>0 are constants, has no nonoscillatory solution if and
only if p Texp(l+q 1) >1.

. .

Proof. without loss of generality, let y(t) be a solution of (5) which’

is positive on [to,m ). Then we have

y' (g —q y(t) - py(t-1) , t 3t (6)
where tl=t0+1. Since y'(t)< 0,y(t) is decreasing and so y(t) Ly(t-t1) for

t> t,. Put w(t) = y(t-1)/y(t) and let w=lim inf w(t). We show that w is

. t >
finite. Otherwise, let w be infinite. Then lim w(t)= =, Integrating (6) from
t >
"(t - %1 ) to t, we have .
: . ) :
y(o)-y(t-}s 1) -q S y(s) ds-p J y(s-1) ds,
t-4T t=15T

£ =% qry(t) =% pt y(t-1),

which gives for t>tl+% T

y(t=% 1)
o R S @
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y(t) oo oy (t) poo. ¥y (t=T)
e e ey % 29 Yoy T ¢ PV SHE - &y (8)

From (7) it follows that lim y(t- 1)/y(t) == ., But this is in

t > »

contradiction with (8). Hence w is only finite.

Now, dividing (6) by y(t) and integrating from t -T to t we get

t
- log w(t) £ —qt= p [ w(s)>ds, t )tl
t—T
.hence
=
- log w(t)z qi+ p J w(s) ds> qT + piw , t> tl’ .
E-T .
Taking the lower limit as t+®cwe get
log w3 qT + p Tw.
Let F(w) = log w —qT - pT w.
S : dF 1
Then it is clear that F(w)> 0 for some w 21, and Ju - % PT = 0, for
1 d’r 1
w =—— . Since —F5 = - 5 <0, then the maximum of F at the critical point
“ P dw”™ W
W is nonnegative, that is
i log ‘"éf’“l -q130 , or pt< exp(-l-qt) , or pT exp(l+qT)gl. ©

On the other hand, suppose that pT exp(l+q7)g 1. Then as easily verified,
y(L) = exp [— ( %—+q)t ]is a solution of (3) . Thus the proof is complete.
By exactly the same way we can prove the next theorem, which I give its

proof for completeness.

Theorem 1.2.The first - order inequalitv

{y'(t) -qy(t)-p y(t+1)} sgn y(t+1)2 O, (9)
where q 20, p> 0 and 7>0 are constants, has no nonoscillatory solution if
and only if pT exp(l+q1)> 1.

Proof. Without loss of generality, let y(t) be a solution of (9) which

is positive on [to,m). We then have

y'(t)> q y(t) + p y(e+T ), t2 ty (10)



’ . SECOND A.M.E. CONFERENCE

ICA-IS [187 ‘ DPLE.

6 - 8 May 1986 , Cairo

r

Since y'(t)> 0,y(t) is increasing and so y(t+1) 2 y(t) for ta.to, Put w(t)=

(9}

y (t+1)/y(t) and w=lim inf w(t). We show that w cannot be infinite. Suppose

t > ™
that w is infinite, so lim w(t) == .Integrating (10) from t to t+ Lt, we
t > @
obtain
t+s T tHstT
y(t + % 1) —y(t) 2q [ y(s) ds + p I y(stT) ds,
t t

> 35 q ty(t) + ' p ty(e+n) , 2t

which gives, for t> t

(0]
Xii%%jl) - 1> kqt +%p1 viit;) ) (11)
1 v(t) 1 g y(t) L1 _yderr) (12)

“ytersn) 22 90 (e T PTG 1)

From (!1) it follows that 1lim v(tHs ) /y(t) = =, which is in contradiction
t =~ ® :

with (12) , hence w is finite.

Now dividing (10) by y(t) and integrating from t to t +T we get

t+1
log w(t)> qT + p [/ w(s) ds > qT + ptw , t> t,.
. t .

Taking the lower limit as t+ w, we get
log w2 qT + p Tw.
Now if we consider the function

F(w) = log w — qT - pT W,
which is non-negative, as exactly we did in the previous theorem we arrive

. at the conclusion that

p Texp(l+q T)& 1
¢ 1 On the other hand, suppose that pT exp(l+q )¢ 1. Then, we can easily verify
that y(t) = exp [(-% + q) t] is a solution of (9).
Thus the proof is complete.

In what follows we shall study the case of several deviating argume-

s . o are modifications of Ladas and Stavroulakis,
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The preceding results gives :

Theorem 1.3. Every solution of equations (3) or (4) oscillates if one of the

following conditions holds:

p; Ty exP (1+q Ti) >1, for some i,i=l, ...,n, (13)

or <0 . s e !
(ui:lpi)T exp(l+qt)> 1, T=min {El,...,Tn; ; (14)

exists an eventually positive solution y(t) of (3). Then for every o =1 0

we obtain from Eq.(3), and for t sufficiently large
y'(t)+q y(t) + pj_v(t- Tj) <0,

and also, y'(t) + q y(t) +(E?: pi) y(t=1) < 0 . (16)

1

Hence from Theorem 1.1., neither (13) nor (14) can hold. Hence, each of (13)

and (14) is a sufficient condition for the oscillation of all solutions of

(. 3);

Similarly, if y(t) is an eventually positive solution of (4), then for

every j=1,2,..,n, we obtain from equation (4), and for sufficiently large t

v'(t)-q y(t)—pjy(t +-rj) 20, ' (17)

and v'(t)-q y(t)—22=l piy(t+Ti) 20. (18)

By the same arguments, Theorem 1.2 gives that (13) and (17) are in contradi-
cation, and that (l4) and (18) are also in contradiction. The proof is

. complete,

2, RETARDED DIFFERENTIAL EQUATIONS

Theorem 2.1. Every solution of (3) oscillates if
n

yn exp(ntq §=1 Ti) s, (19)

n

n
. : Ly
= i=1 i

( ﬂlpi)(z

1

Proof. It suffices to show that if Lq.(3) have eventually positive

solution then the negation of (19) holds. So, assume that y(t) is a
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solution of (3) for which y(t)> 0, t> to’ for sufficiently large to :
Choose a tl>t0 such that y(t—Ti)po, i=1,2;+:sn5 for t> tl.
From (3), y'(t) <0 for t >t Next chooge a t,> £y such that

y(t)< y(t—Ti), i=1,2, ...,n, for t >t,.

Set w,(t) = ElE:Eil., f=1,2; w:a,0 fOr ts t,s (20)
i y (t) 2
and
. wy = lim inf wi(t), fimd.y 2y wie Tl (21) )
- to> o™ .

Then wi(t) >1 and Wi 1 for 4=0,2,.:5:0 Dibiding both sides of (3) by

y(t) for t >t2, we obtain

y'(t)
y(t)

1~

$ g+ I

Li=1 piwi(t) =4 , 1,

Integrating both sides of the last equation from t-Tktnt for k=1,2,..,n,

we find that

t
- ~0 7 =
log y(t)-log y(t—lk) +q 1+ I, Py { w,(s) ds =0 (22)
" -k .
" We show that wi<mfor i=1,2,..,n. Otherwise, assume that Wy = +o for some -
o
J'.D=1,2, 30 )
y(t-T4 )
Hence 1lim -#——Tr——‘= + 1o (23)
t ao Y(E
From (3),
t {4 %2 —— e >
y'(t)+qy(t) + ploy(t Tio) <0, L tl.
. If we proceed exactly as in the proof of Theorem 1.1 taking T= Ti we
o .
“arrive at the same contradiction. Hence all wiw for I=1,2,..,00 :
Now, Eq.(22) in view of (20) and (21), yield
n
log wk(t)z q Tk+ Tk 151 piwi, ) R S, T
Taking the lower limit as t. 4, we obtain
n
] r =qT. + o
og uk,qu Tk §=1 P4V B P 44)
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and adding we find

n n n n
B log wiz aGE 1)+ (Ey pywy) (4 Ty)
Set
n n n n
F(wl,...,wn) = .L log W q ( 2 i) —( &1 piwi)( i&1 T,
i=1 i=1
Clearly

F(wl,...,w ) 20 for some w,, ...,w - 1

Noting that

. n
VF -
;r I p.( & T;) =0,
ow W, i i
i i 1
for
v - : , i=1, o
i n
p.( £ 1.)
i i
At the critical point
1 1
) ( 1_} b ] L IR0 | n ) b
. o 2T ) p ( ;,_'T_)
o 1 1 i n 1 i

the function F has a maximum because the quadratic form
n '
i,j=1 i j

is equal to
n a

i=1 W,
: Al

.Since F(w .,wn)) 0, the maximum of F at the critical point should be

177

nonnegative. That is

n n . n
i T i " Y _
.L {-log {pi ( T fi )J} q ( 1 .i) nz 0
i=1
= s N o
. . G T = oo —_ )
i.e. log [( igl py) ( . Ti) 1 -q( 1 T ¢

which contradicts(19).7The proof is complete.
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Theorem 2.2. Every solution of equation (3) oscillates if
6 ' .
2 q 152 .0
{ L [ S d e, 1S s (25)

i=l

Proof. Otherwise there exists a solution y(t) of (3) such that for tO
sufficiently large
y()2> 0, t>t

Defining Wos i=1,2,..,n as in Theorem 2.1, we arrive at the inequalities

*(24) . Using (24) and the fact that max [ l£%§11] = 1/e,we find that
w2 1
qw_-} n By i wi
+ ¥ . 3
1/ey wj» jep 13 wJ
n qtg. W n W
= b _.]_.. 1+ - = 1
i:l ! W i1 Pity W
n w1 n w
= I (== +p)r,—= . cr1, —— ,
i=1 o, i"7 3w i=F 14 wJ
where
c1= ;g— + Py i=1l,2,..,n
i

n i
n >3 ecr1,+ 4 (c.T.~——,~+c.T.J—).
e 7i=1 Yt g,5=1 T3 Ov; 1wy
Using the fact that
i W,
el o J_ ~ / i
ey . Bty o 22 v cyc, 4Ty,
J i
.the last inequality yields
n n n
By ¥ r ) T = 7 Y
e?15] €171 Y 2 ghgarveyeyTity = Oy (T 0T
w i]
Hence
n n L 9
> ( E [( ;;ﬂ— pi) Ti]‘ ) R

i
for all w,> 1, i=1,2, ...,n, and therefore
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Ly (L [(%+pi)ri]')2, .
i=1

in contradiction with (27). The proof is complete.

3. ADVANCED DIFFERENTIAL EQUATIONS

Theorem 3.1. Every solution of the equation (4) oscillates if
. o n n
9 T e -{- e # -
¢ 1 p;) (L t;) exp (nbq ;g1 )= L. (19)
i=1 i=1

Proof. Otherwise there exists a solution v(t) of (4) such that for t0

sufficiently large

vlE)> @ 3 t >t

Then from (4) ,y'(t) >0 for E>e . Hence y(t+ Ti) >y(t) ,i=1,2,..,n, for

E >to.
y(t ﬂi)
= — ! = 2 = R =
Set zi(t) S0 i=1,2,.:,n for t to' (26)
and
>i = lim dinf zi(t), 2 i PR B o (27)
i o 50 .

*Then zi(t)> 1 and kiv 1 for 1i=1,2,...,n. Dividing both sides of (4) by .

y(t) for ¢t to, we obtain

<
—~
ot
'
([ e B

: pizi(t) =0, N [ U

Integrating the last equation from t to t+Tk for k=1,2,...,n, we have

n t+tk
log y(t+ 1, )-log y(t) =q T, + Z p i z.(s) ds, k=1,2,...,n.

t (28)

We show that li # 4+ for any i=1,2,...,n. Othervise, let Ai = 4+, for some

io = 1.2, sespfs Then,
vyttt )
. O
lim = +0o,
£ xo YEE)

From Eq.(4) we have
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y'(t)-qy(t)—pio y(t+tg 1> 0, > -

Integrating the last inequality from t to t + % Ti  and using the fact
that y(t) is increasing and proceeding exactly as in the proof Theorem 1.2,,
with 1=1 i, we arrive at the same contradiction. Therefore wto for all

i=1,2,..,n. Then(28), in view of (26) and (27) ,yields

P. 2., k=1,2,..,n.
1

I a3

log zk(t); q Tk+Tk

‘Taking the lower limit as t.m, we obtain.

n

5 foss

log Ak >q Tk+‘ck ;1 Py )i’ k=1, ,n (29)
Adding up, we get

n n n n

I log A,2q ( Z1,) + ( £ p,A.)( ZT1.).

i=1 i L F 1 i 11
Set
n n n n
F(A,seeesd ) =L log A, =q ( Z 1.)-( Z pLAYCE T,):
1 n 1 i 1 i X ; 1 1 i

‘Then, as in the proof of Theorem 2.1., we are led to a contradiction. The

proof is complete.

Theorem 3.2. Every solution of equation (4) oscillates if

re L 42,1 "
L(nq+Pi) Ti] )>e (30)

2 (
' 1

i

noM o

Proof. Otherwise there exists a solution y(t) of (4) such that for t
(@]
.sufficiently large
y(t)> 0, t> to.

Define Ki,i=1,2,...,n as in Theorem 3.1. Then, as we proved in that theor-

em, all the Ai,i=1,...,n are finite. From inequality (29) and using the

fact that max [log w/w j= ] we get
w2l €
1 n li
ek 4 o



Lcacts | 100 RF oo e cone

- .

where di =

+ p, L [ O
nA i pl, | ] -} b

Adding these inequalities and using the fact

AL A,
d T, w4 d T =42 fa 4% L.
1J>\_j Jl)\i ljl]

then as in Theorem 2.2., we are led to a contradiction.

.The proof is complete.

4, GENERALIZATION

In this section we generalize the preceding results to differential

equations with variable coefficients of the forms

n

y'(8) +q(e) y(&) + I p.(r) y(t-T)) =0 £3')
=1
n
and y'(t) —q(t) y(t) - ¢ »p.(t) y(t+ T.)=0 4"
g=1 = .

where Ti,i=l,2,...,n, are positive constants, pi(t)) 0 and qi(t)g‘O are

.continuous functions.

‘Theorem 4.1, Consider equation (3') with the conditions

t
lim dinf f p.(s) ds >0, i=1,2,...,n (30)
bose t-r,  *
i

Then every solution of (3') oscillates if one of the following conditions

holds.
E t
(lim dinf I pi(s) ds) exp(l+ 1lim inf f q(s) ds) >1
£ = t—Ti e =T,
" (31)
P ) f n t
(1im inf £p.(s) ds) exp(l+ lim inf /[ q(s) ds) > 1 ,
ts o t-% 3 ¢ t> o
where T =min{t,,...,T } (32)
1 n
n n t n t
i (-E lim inf I pi(s)ds) exp(n+t I 1lim inf th q(s) ds ) >1
i=1 i=1 t+ e  t-r, i=1 o e Ty

]
(33)

SECOND A.M.E. CONFERENCE
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I [ — (lim inf S q(s)ds) + (lim inf [ pi(s)ds Z
i=1m " g e €T, £ o £t
i i
n 1 t t Lﬁ
+2 ¢ [ = (liminf [ q(s)ds)+(lim inf S p,(s)ds )]
i,j=1 " t+ o gt b o t-T,
R j i
i ]
1 t t 45 o
AXE = (lim inf [ q(s)ds)+(1lim inf 5] p.(s)dsj >— (34)
Lt io t-T. T ® t-T . d e
J i

Proof. We present the proof when condition (33) is satisfied. The other
cases can be treated in similar wav. To this end suppose there exist ;
a solution y(t) of (3') such that for ty sufficiently large,

y(t) >0, t >t s
Dividing both sides of (3') by y(t) and using (20) we obtain

'(t) n 1 i
L—*y(t) +a(t) + (I, p (0w ()= 0

Define W i=1,2,..,n, as in Theorem 2.1, and assume that all of them are

finite. Integrating both sides of the above equation from t- Tk to t for

kﬁl,Z,...,n, we find ;
t n t
log W > lim inf [ q(s)ds + igl v, (lim inf [ pi(é)ds),k?l,Z,...,n
t—> t_Tk t> o t_rk

Adding the above inequalities, we have

n t n n E
n
log w,> I (lim inf I q(s)ds) + £ w. ( .Z lim inf [ p.(s)ds).
i§1 i i=1 i -, i=1 it i=1 £ 5 6 t—Tj i
Set :
n I ;
F(wl,...,wn) = iél log W, - 'X lim . inf | . q(s)ds
i=l <o =T,
n 5 t -
el (a4 1ds inf S p(s) ds ).
i=]l i j=1 s t—ti i '

Then F(wl,...,wn)Z.O, On the other hand,
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n n n t
max F (w,,...5w ) == log . (L liminf J_ p.(s) ds)- I (lim inf I a(s)
@31 T " Pl yeg e e BTy E i=] e
i
ds=n2 0
7 A i n t
Hence I (X lim inf t£ p.(s)ds)£L exp(-n- Z 1lim inf [ q(s)ds),
= j=1 t > o Ty 2 i=l] t—=e 6=,
which is in controdiction with (29)
. Finally we show that none of the wi,i=l,...,n, can be infinite. Otherwise
tonsider wi = + o | for some i=io, i1=1.25.5:50, .
y(t-T4 J
Hence lim =+ (23)
y(t)
t > o
From Eq.(3') and for i= io, we have
y'(e) +q(t)y(e)+p(e) y(t-T4) <0

fe) o
Integrating both sides of this inequality from t - %'tio to t and using the
fact that y (t) is decreasing, we get

t t
y(e)=-y(t=k 1, d+y(t) S q(s)ds+y(t=T1, ) f] pi, (s)ds <0
1 1. g t_/zTi (o]

. o t=23 Eo o o

As in Theorem l.1., and taking
contradiction and the proof is

Theorem 4.2. Consider equation

ti 1,

1

lim inf p.(s) ds> 0
t + 1

E

Then every solution of (4') osc

holds:

t+ri
(lim inf [ Pi(S)dS)
t -+ oo t
t+1 n
(lim inf if z p.(
t - o t i=1 *
where = min{T 100"

7

A\,
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complete.

(4') with the conditions.

s for i=1,2,...,n (30")
illates if one of the following conditions

LT,

g
exp(l+lim inf i q(s) ds) >1 . (31") 3
£+ o E
t+T
s)ds ) exp(l+lim inf { q(s)ds) >1 ;(32)
t > o '
,rn]}.
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n n t+T4 n ‘ t+T
n 1§1 lim inf f pi(s)ds exp(nt I 1lim dinf /" q(s)ds) >1 .
i=1 ¥ “ty t 1=1 £ ® t
]
t+T (335
n 1 i t+-‘ti
Y[ Qiminf [ q(s) ds) + (Lim inf [ * p,(s)ds)]
i=1 " oo t » t
n 1 t+T t+Tj !!
+2 ¢ [+ @ninf S dq(e)ds) +(iminf /) p (s)ds)]
.o 1,3=1 " e . t > ot
. i j
. tHT By L m
X [ (lim inf  J “q(s) ds+ (1im inf [ p.(s)ds) ] > = . (34")
A - t > 5. 4 °

Proof. We give the proof of the condition (34) . The other cases can be
treated similarly. Assuming contrary ,there exists a solution y(t) of (4')
such that for to sufficiently large y(t) >0 for all t> ty
Dividing both sides of (4') by y(t) and using (26) , we get

n

}L'_ﬁ - q(t) - L Pi(t) zi(t) =0 . (*)
y(t) i=1

Define Ai,i=1,...,n as in Theorem 3.1. We show that all Ai,i=1; «..yn, are
finite. Otherwise, assume that for i=iO,Ai = + o, hence
o

lim zy (t) = 4o, 1.e.
ien o}
y(t+”[io)
1im ——(—tT— = + 0
t>o y

.From Eq.(4') , we have.

y'(0)-q(B)y(e)-py (&) y(t+ry ) 20, t> ¢t

o
T

i
Integrating both sides of this inequality from t to t+ —52 and using the
fact that y(t) is increasing, we obtain
t+%11° t+5rio
y(e+ s 1y ) -y(t)-y)(t) S a(s)ds-y(t+14 ) s p,(s)ds 30
t t
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As in Theorem 3.1, and taking into account condition (34') , we are led to

a contradiction. Hence allki,i=l,...,n are finite. Integrating both sides of

equation (*) from t to t+Tk for k=1,2,...,n, we find after some calculation

t+Tk . t+Tk
log Ak;lim inf J q(s)ds+ T Ai (1im inf S pi(s)ds),k=1,..,n.
t > o t i=1 t+ o t
. t+Tj (35)
Denote by a,= lim inf [ q(s)ds, for j=1,...yn, and
* 3 t> o« t
t+T
bji = lim inf s j pi(s)ds, for L¢ i,j< n,
t >
t

(35) and the fact that max [iog w/wﬂ = é yield,

w 21
n A n a A n A
1 1 i 1 i
—2— a+ I b, — = I L —= 4+ 1 p A6 -
e )\J j i=1 ji )\_'] i=1 n)\i Aj‘ 1=1 ji Aj
= Zn £ —h- j =1,2 n
= . T Ly &y ’
=1 I A
where
" a‘i :
= — 3 < i <n. '
fji “Ai bji’ tor 1g1, j<n
Adding the last inequalities, we get
n p n Ai AL
- T E. & I (f,, v—+ £, —1
e gy I i,j=1 i 4 j ij Ai
i<j
Using that fact _that
Xi A, -
e il .
TR VR PT T wak IR PP PR :
3 i .
the last inequality holds for all Xl,...k 2 1. Hence,
n
ttt t+1
R | . i . I
= igl[-g (im inf | q(s)ds+(lim inf p;(s)ds)]
= t-> o t > o
n
t+T, t+T
2 I 1 ]
+‘E g dg=il = (1im inf [ : q(s)ds) + (lim inf [ . ) (s)ds)]1
iéi N t+ o t .

t+T t+T1
] Vll (14 & r i e T b | DU R PR | M
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$ut this cuntradicts (34'). The proof is completg.

The following examples illustrate that the conditions (13) ,(14),(19) and
(25) are independent. They are chosen in such a way that only one of them is
satisfied. These examples consider the equations of two time-delays only 1i.e.
of the form :

y'(t) + q y(&)+p) y(t-1)) + Py (t-1,) =0 (3")

y'(t)=q y(t) -p; y(t+1,) - p, y(t+1,)= 0 (4")

EXAMPLE 4,1, Take pl = —%g- ,p2=% y Tl= Y, T,= 1 and q = —%6 . Then, only

condition (13) is satisfied.

EXANPLE 4.2.:

The differential equation with retarded arguments
. ™ m
y'(t)+a y(t)+ exp [—(a+b)-3] y(t- E-) + b exp [— (atb) Zn] y(t-2m ) =0

has the oscillatory solutions
yl(t) = [exp—(a+b) t] sint, s
yz(t) =[ exp-(a+b) t] cost.

While the differential equation with advanced arguments
y'(t)-ay(t)-exp [(atb) %] y(t+12'- )-b exp[ (a+b) 2n]y(t+2m) = 0

has the oscillatory solutions

y,(t) =[exp (a+b) t] sint,

y,(t) =[exp (a+b)t]cos ¢,
‘The condtion (14) now becomes

(pl+p2)T exp (14+qT) ={exp[—(a+b) %] + b exp[ -(at+b) 21] }( %')exp(l+a-%)>l.
It is easy to see that for 0 ga<wand 0< b<-§ [1 + log %J ;

the last condition is satisfied. Hence for these ranges of the parameters a

and b the existance of the oscillatory solutions of each af the preceding equations

|isguaranteed;qua= —— and b = %%3 condition (14) only 4 cardefdo.3
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1 1

ZAM e = =L [ S i
EXAMPLES 4.3. Take pl 1 P, =% ’Tl 0 T 30
condition (19) is satisfied.

1 1
EXAMPLE 4.4, Take P1 = 708 ° Py, =

1
,T.= 1, T2=2 and q = 10 * Then ,

only condition (25) is satisfied.
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