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OSCILLATIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS 

GENERATION BY SEVERAL RETARDED AND ADVANCED ARGUMENTS 

Medhat El ZANFALY, 

ABSTRACT 

• In this paper I study the oscillatory behaviour of equations 
(*) y i (t)+qy(t)+±17  piy(t- ri).0 and (**)y i (t)-gy(t) - 

i=1 	 i=1 
where q?, 0, pi> 0 and ti 	0, are constants, i=1, 	,n. It 
each of the following conditions (1)pit 	exp(14-q ti) > 1 fo 

, n, (2) ( 	l  pi) exp (1+q )2-  >1, where 	= min Iry  t2, 
A 

*Military Techinical College, Cairo. Egypt. Department of MatheMatics . 

of the forms 
p.y(t+r.

1 
 )=D s   

is proved that 

r some i,1=1,2, 

../tn),(3) 

t(17p.)( S. )exp(n+q 	t i) 1, or (4)  CZ' (q/n+ . ) 	j i > e implies iri i 	 i i 	 pi  i T
12 2 n impli

es 
 

i=1 	 i=1 
that every solution of (*) or (**) oscillates. A generalization in the 
case where the coefficients q>, 0, pi ) 0 1=1,...,n are continuous functions 
of t is also presented. 
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1. INTRODUCTION 

In studying the oscillatory behaviour of equations of the forms 

n 
y'(t) + E p.

1
y(t-T.) =0 
 1 i=1 

and 

n 
30(0.-zp.

1
y(t + Ti) = 0, 

1=1 

where p
i and T, i=1,2,...,n, are positive constants, Ladas and Stavrou-

lakisHproved that each of the following conditions 

(cl)  PiTi> 1 e 
	for some i, i=1,2,...,n, 

(c2) (En  p.)I>I  1 	e i=1 
where T=min IT1' ''''T n l ' 

(c3 (H
n 	

pi)
l/n 

 (E. 	. 	)) 	 
i=1 
	1=1 1 

n 	
% 

(C4) ( 1 
	

1 ( E.=1  (13.1Ti  ) 2 
2 

> e 
1 

• 

' implies that every solution of (1) or (2) oscillates. 

In this paper, the work is extended to the equations of the forms: 

n 

	

and y'(t)+qy(t) + E 	piy(t-Ti) =0 , 
i=1 

n 

	

y'(t)-qy(t) - E 	piy(t+Ti) = 0 , 
1=1 

(1)  

(2)  

(3)  

(4)  
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where q >0,pi  >9, 	are constants. It is clear that (1) and 

(2) are spec.ial cases of (3) and (4) when q=0 . Thus, it is expected that 

the derived conditions should depend on q, and should be reduced to condi-

tions (c1)-(c4) if q=0. The paper is terminated by a generalization to the 

case q(t) >0, and pi(t) >0 are continuous functions for i=1,2,..,n, and by 

examples. 

By an oscillatory solution it is meant a solution which has arbitra-

rily large zeros. It is also assumed that all solutions are defined for all: 

t >0. 

The following two theorems are extentions of the corresponding theor-

ems of Ladas [2] and Kusano [3] , which were given for the case q=0, 

Theorem 1.1. The first-order inequality 

	

{y'(t)+qy(t)+p y(t—r)) sgn y(t-T) 	(5) 

where cp0,p >0 and T>0 are constants, has no nonoscillatory solution if and 

only if p Texp(l+q T) >1. 

Proof. without loss of generality, let y(t) be a solution of (5) which: 

is positive on [t0,00 ). Then we have 

y 1(t), -q y(t) - p y(t-T) , t 3t1 	(6) 

where t
1
=t
o
+T. Since y'(t)< 0,y(t) is decreasing and so y(t) y(t-T) for 

t>, tl. Put w(t) = y(t-T)/y(t) and let w=lim inf w(t). We show that w is 
t 	co 

finite. Otherwise, let w be infinite. Then lim w(t)= co. Integrating (6) from 
t -* CO 

(t - 1/2T ) to t, we have 

	

t 	 t 
y(t)-y(t-1/2 	-q f 	y(s) ds-p 	f 	y(s-T) ds, 

t-1/2T 

-1/2 qTy(t) -1/2 pt y(t-T), 

which gives for t>t
1+1/2 T 

y(t-1 T) 
1; 	qT + 	pT y(t-T)  

y(t) (7) y(t) 
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1- 
y(t) 	

% q T y(t) 	
1/2 PT 	

y(t-T)  
> 

y(t-1/2T) " 	y(t-1/2T) 	y(t - iT) 

From (7) it follows that lim y(t- 1/2T)/y(t) =00  . But this is in 
t -+ CO 

contradiction with (8). Hence w is only finite. 

Now, dividing (6) by y(t) and integrating from t -T to t we get 
t 

- log w(t) -qT- p I w(s)>ds, t ;ti  
t-T 

.hence 
t 

log w(t); qT+ p I 	w(s) ds;. qT + pTw , t> t 
1-  

t-T 

Taking the lower limit as t+cowe get 

log w qT + p Tw. 

Let F(w) = log w -qT - pT w. 

d 
Then it is clear that F(w). 0 for some w 	

F 
and 

71-1.:7 = Ti-pT = 0, for 

1 	d2F 
w C p 
- — . Since — 	—12 

(), then the maximum of F at the critical point 
dw
2 w 

w
c 
is nonnegative, that is 

log 	1 -1 	, 	or 	pT4.; exp(-1-qT) , or 	pT exp(l+qT)0. 
pt 

On the other hand, suppose that pT exp(l+qT)E 1. Then as easily verified, 

y(t) = exp r_ ( T  +q)t ]is a solution of (5) . Thus the proof is complete. 

By exactly the same way we can prove the next theorem, which I give its 

proof for completeness. 

Theorem 1.2.The first - order inequality 

fy'(t) -qy(t)-p y(t+T)} sgn y(t+T) 0, 	(9) 

where q ;0, p> 0 and T>0 are constants, has no nonoscillatory solution if 

and only if pT exp(l+qT)› 1. 

Proof. Without loss of generality, let y(t) be a solution of (9) which 

is positive on [to,c0). We then have 

y' (t)3 q y(t) + p y(t+T ), 	to. 	(10) 

(8) 



qi 	PT 

(12) y(t)  
y(t+1/21) 

v(t+T) 
y(t) 

v(t+T) 	 
11 PTyt+1/2 T) 

v(t+1/2 T) — 1 
y(t) 

and 1- -- 
v
---- 

1 

y(t+1/2
(t)
T) 
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Since y'(t)> 0,y(t) is increasing and so y(t+T)3 y(t) for t>,. t
o, Put w(t) :1 

y(t+T)/y(t) and w=lim inf w(t). We show that w cannot be infinite. Suppose 

t -4- 00 
that w is infinite, so lim w(t) =00 .Integrating (10) from t to t+ IIt, we 

t .+ 00 

obtain 
t+41 T 	t+15T 

y(t + 15_ T) -y(t) .q f 	y(s) ds + p 	I y(s+T) ds, 

t 	 t 

q Ty(t) + 	p Ty(t+T) , L> to  

which gives, for t> to 

from (11) it follows that lim y(t+15 ) /y(t) = 00, which is 
in contradiction 

t 	co 

with (12) , hence w is finite. 

Now dividing (10) by y(t) and integrating from t to t +T we get 

t+T 

	

log w(t); qT + p f 	w(s) ds 	qT + pTw , 	tl. 

t 

	

Taking the lower limit as 	00, we get 

log w=; qT + p Tw. 

Now if we consider the function 

F(w) = log w - qT - pT w, 

which is non-negative, as exactly we did in the previous 
theorem we arrive 

at the conclusion that 

p Texp(l+q T) 	1 . 

On the other hand, suppose that pT exp(l+q ).:; 1. Then, we can easily 
verify 

that y(t) = exp [( 1  + q) t] is a solution of (9). 

Thus the proof is complete. 

In what follows we shall study the case of several deviating argume- 

A11 4 Fnllnwing nrocqs are modifications of Ladas and 
Stavroulakis, 

-" - 
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[Throats adapting them to the required generalization. 	-1 

The preceding results gives : 

Theorem 1.3. Every solution of equations (3) or (4) oscillates if one of the 

following conditions holds: 

p
i 
T
i 

exp (1+q T.) >1, for some i,i=1, 

or 
i=11 

P.)T exp(1+qT)>1,I=min Ifs 	.,T
n
1 • 

:Proof. Otherwise, and without loss of generality, we assume that there 

exists an eventually positive solution y(t) of (3). Then for every j=1,2,..:,n 

we obtain from Eq.(3), and for t sufficiently large 

yt(t)+qy(t)+p.y(t-T.).;0, 

(13)  

(14)  

and also, y v(t) + q y(t) p,
1
) y(t-T) < 0 . (16) 

Hence from Theorem 1.1., neither (13) nor (14) can hold. Hence, each of (13) 

and (14) is a sufficient condition for the oscillation of all solutions of 

( 3). 

Similarly, if y(t) is an eventually positive solution of (4), then for 

every j=1,2,..,n, we obtain from equation (4), and for sufficiently large t 

y(t)-.13 .y(t +T.) ?-0, 
	 (17) 

and 
	

Y'(t)-(4 Y(t)-Z1=1 ? 	Pi  Y(t+Ti 
 ) O. 
	 (18) 

By the same arguments, Theorem 1.2 gives that (13) and (17) are in contradi-

cation, and that (14) and (13) are also in contradiction. The proof is 

complete. 	 • 

2. RETARDED DIFFERENTIAL EQUATIONS 

Theorem 2.1. Every solution of (3) oscillates if 

( 	.111 
	1  
p.) ( E

i=1  Ti  )
n  exp(n+q 

i=1 
 T.) >1. 

1= 	 1 
	(19) 

Proof. It suffices to show that if Eq.(3) have eventually positive 

solution then the negation of (19) holds. So, assume that y(t) is a 
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solution of (3) for which y(t)> 0, t. to, for sufficiently large to  . 

Chooseati>to suchthatY 1 	
, i=1,2,..,n, for t> tl. 

From (3), y t (t) <0 for t >tl. Next choose a t2> ti  such that 

y(t)< y(t-Ti
), i=1,2, ...,n, for t >t2. 

Set w.(t) = y(t Ti)  , 1=1,2, ...,n for t>  t2, 	(20) 
1 	y(t) 

1 

and 

w. = lim inf w.(t), i=1,2,..,n. 1 
m 

Then wi
(t) >1 and wi 

1 for i=1,2,...,n . Dividing both sides of (3) by 

y(t) for t >t 2, we obtain 

y'(t)  
+ q+ E 	p w (t) 	0 , 

y(t) 	1=1 i i 
=1,2,.., 

Integrating both sides of the last equation from t-Tktot for k=1,2,..,n, 

we find that 

log y(t)-log y(t-Tk) +q 	Li=1  p, I w.(s) ds = 0 
T 	A  

'Weshowthatw.<mfor i=1,2,..,n. Otherwise, assume that w
i 
 = +00 for some • 
o 

i. 
0
-1,2,..,n. 

y(t-̀ 1U  

t 
From (3), 

y'(t)+qy(t) + pioy(t- Tio) 	t> tl. 

If we proceed exactly as in the proof of Theorem 1.1 taking T= Ti we 
lo 

arrive at the same contradiction. Hence all w<00 for i=1,2,..,n . 

Now, Eq.(22) in view of (20) and (21), yield 

 

n 
log wk(t);, q Tk+ Tk  E 	P.1w., i=1 

k=1,2,..,n. 

  

• 	Taking the lower limit as t„D, we obtain 

n 
log w >qT + Tk  E 	piwi, 	k=1,2,...,n, 	(14) 

i=1 

6 

(21)  

(22)  

Hence lim 
y(t) 

4- 0 (23)  



el1/2 	SECOND A.M.E. CONFERENCE 

V. 6 - 8 May 1986 , Cairo 
I

CA-18 1190 1 

r 
and adding we find 

1
.E

1 	' 
log w

1
,> q(.E1 T

i)
. + ( 1i1 1 pw.) ( i1  I.) = 	1= = = 1  

Set 

F0,1 	w 	log 	() -( 	P.w.)( 	T.)- I" 	1 	j1 1 1 i1 1 
i=1 	i=1 

Clearly 

F(w
1 	

w
n
) 	for some wi, 

Noting that 

DF 	1 
Bw.
1 	

W. 	 1 
1 	1 

	

- pi( 7, 	= 0, 
n 

for 

 

1 

 

, 1=1, ...,n. w. 
1 

p,
1
( E Ti) 
1 

At the critical point 

  

1 	1  

pi( 	P( 	n
1  

the function F has a maximum because the quadratic form 

n 	2 
F  

a a. 
i,j=1 

Bw
ij 	

i j 

is equal to 	7  
n 	a• 

- E 	
1 
2 ' 

i=1 W
i  

:Since F(w
1 	

w 
n
); 0, the maximum of F at the critical point should be 
" 

nonnegative. That is 

	

{-log [p.
1  ( 1 i 	1 

)]}-q ( 	7
i 
 ) - n?„. 0 

1=1 
n 	n 	 n 

i.e. 	-log [( lI p.) ( 	-q( 	Ti)-n >, 0 
1=1 1  1 -1-  

which contradicts(19).The proof is complete. 



W. 
 

1 	p  1/e. (I 
	

+ r 
w. • i1

n 	
w. j T i  

3 

n qt. 	w. 	n 

	

= 7 ___1_ 	1 
L., 11W. 	W. 1=1 j J 

+ p)i. 1 	W. 
1 

-I- 7 
i=1 p. j 

n 

i=1 
nw. 

1 

  

I

CA -181 191 
SECOND A.M.E. CONFERENCE 

6 - 8 May 1986 , Cairo 

  

Theorem  2.2. Every solution of equation (3) oscillates if 
{ L 	f(+ P )T 	1/2 j '2  j=1 	n  

Proof. Otherwise there exists a solution y(t) of (3) such that for t 
 

sufficiently large 

y(t)> 0 , t> to  

Definingw.,i=1, 2, ..,n as in Theorem 2.1, we arrive at the inequalities 

; log W 
'(24) . Using (24) and the fact that ma., 	j = 1/e,we find that • w 

w:;1-  

w. 
1 

1 j to 

where 

c+ p,, 
c. nw. 

1 
i=1,2,..,n. 

:Adding these inequalities, we obtain 

w. 	w. 
c. + c T. —1—  ) • 

e 	
L 

• 	

(c .1 . • • 1 1 	1 j 	j 	1 w. 

	

i=1 	i,j=1 	1 

Using the fact that 

	

w. 	W. 
C.T. Ti  C.T. —1–  >2 	c

i
c
j 

T
i
T
j j 1 j  w. 

:the last inequality yields 

• n 	 '5 2 1 	+ 2 	• 	,.c c r T = ( " (c  i;j=1 ijij 	1 i 
ij 

Hence 

( E 	[(+ p.) 
nw  

i=1 

9 
1'2  )- 

• • 	• 

n 
e 

(25) 

for all w13  1, i=1,2, ...,n, and therefore 
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k -2 
n  > ( 	pi )T i ] Ec 	+ 	)T i  j 	, 

i=1 

in contradiction with (27). The proof is complete. 

3. ADVANCED DIFFERENTIAL EQUATIONS 

Theorem 3.1. Every solution of the equation (4) oscillates if 

r 

( H pi) ( E li)n  exp (n+q 

i=1 	i=1 
i=1

T)> 1. (19) 

• 	Proof. Otherwise there exists a solution y(t) of (4) such that for to 

sufficiently large 

y(t)> 0 , t >to
. 

Then from (4) ,y 1 (t) >0 for t> to
. Hence y(t+ Ti) >y(t) ,i=1,2,..,n, for 

t >t
o
. 

y(t 	 .) 
Set 	z ( t) = 	y(t) 	

, i=1,2,..,n for t 'to, 

and 

= lim inf z
i
(t), 	i=1,2,...,n. 	(27) 

*Thenzi(0>landA.>1 for i=1,2,...,n. Dividing both sides of (4) by 

y(t) for t> to
, we obtain 

y'(t) 
Y 	-q 	E Pi

z.(t) = 0, 
1=1   

i=1,2,...,n. 

Integrating the last equation from t to 	 Tk  for k=1,2,...,n, we have 

log y(t+ T
k
)-log y(t) =q Tk  + E pi 	I k  zi(s) ds, k=1,2,...,n. 

i=1 	(28) 

We show that+mfor any i=1,2,...,n. Otherwise, let Ai  = +,co for som,:,. 
1 

io 
= 1,2, ...,n. Then, 

y(t+Tio) 

CO 
	y(t) 

From Eq.(4) we have 

(26) 

n 	t+T 

lim 
t .+  
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y i(t)-qy(t)-pio  y(t+Tio)> 0, 	t> t
o
. 
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Integrating the last inequality from t to t + 	Tio  and using the fact 

that y(t) is increasing and proceeding exactly as in the proof Theorem 1.2., 

with T=T io  we arrive at the same contradiction. Therefore wf+00 for all 

i=1,2,..,n. Then(28), in view of (26) and (27) ,yields 

log zk(t)3 q Tk+Tic 	E pi  1.i, 	k=1,2,..,n. 
i=1 

'Taking the lower limit as ty  y, we obtain. 

log )‘lc q  Tk+Tk 
1'11 

P.1  >S .,  1 
k=1,...,n. 	(29) 

Adding up, we get 

	

n- 	n 	n 	n 
E log A. q ( ET.) + ( F. p.A.)(ET.) 

	

i=1 	
. 

1 	
1 1 
	

1 	1 
i i 	1 

Set 

n
) = ( • -q 	-(  

1 1 1 	1 Ti
).

1 

:Then, as in the proof of Theorem 2.1., we are led to a contradiction. The 

proof is complete. 

Theoron 3.2. Every solution of equation (4) oscillates if 

( 	E 	[( 	
: 

q + p.) T 
1
.1 	) .)> 

i=1 
	 (30) 

Proof. Otherwise there exists a solution y(t) cf (4) such that for t
o 

.sufficiently large 

y(t)> 0, t> t
o
. 

Define
i,i=1,2,...,n as in Theorem 3.1. Then, as we proved in that theor- 

em, all die
1 	are finite. From inequality (29) and using the 

fact that 	max [log w/w 3= 
w?..1 

A. 	' diTj 

1 
e 

we get 
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where d.
I  = nX 

q 
 Pi 	

i=1,2,...,n. 

Adding these inequalities and using the fact 

X. 	X. 
1 • 

d T  	d Ti 	<2 Vd
i
d
j 
X
i 

A , T.  i X 	A  1 

then as in Theorem 2.2., we are led to a contradiction. 

.The proof is complete. 

4. GENERALIZATION 

In this section we generalize the preceding results to differential 

equations with variable coefficients of the forms 

n 
y'(t) +q(t) y(t) + E p.(t) y(t-T.

1
) = 0 

i=1 
(3') 

and 	y'(t) -q(t) y(t) 	p.(t) y(t+ 17.
1
)= 0 	(4') 

i=1 

where 	are positive constants, p.(t).> 0 and qi(t)0 0 are 1 	 1 

.continuous functions. 

Theorem 4.1. Consider equation (3') with the conditions 

t 

lim inf 	j 	p(s) ds >0, 	i=1,2,...,n 	(30) t-:.00 
1 

Then every solution of (3') oscillates if one of the following conditions 

holds. 

t 	 t 
(urn inf 	f p

i
(s) ds) 	exp(1+ lim inf 	r , 	q(s) ds) >1 

	

t—T. 	r. op 

	

1 	 t—T
i 

(lim inf 	JE P.(s) ds) exp(1+ lim inf I
t 
 q(s) ds) > 1 t co 	t-T 

where t =minfT1,...,Tn1 . 

n 	n 	t 	n 	t 
11 ( E lim inf 	I 	p

i(s)ds) exp(n+ E lim inf f 	q(s) ds ) >1 
1=1 f=1 t+ 00 	t-T. 	1=1 t-* 0, 	

±—T
1 

J 

t 	 (31) 

ti A 	t —T 
(32) 

(33) 



t 
inf 	q(s)ds 

t-T, 
1 

lim 
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• 	• 	• r- 	n
t 

E [ 
n 

(lim inf 	I q(s)ds) + (lim inf 	I pi(s)ds )] 
i=1 	t -4-0° 	t—T . 	 t 	t—T 

	

1 	 1 

nt 	t 	,1-4 + 2 	E 	r 1 (lim inf 	I q(s)ds)+(lim inf 	I pi(s)ds )1 'n  i,j=1 	t 4- 00 	t -T . 	t-4,,, 	t—T . 
i j 	J 	1 

X [ 	(lim inf I 	q(s)ds)+(lim inf 	I 	v1/2 n 
n 	t 	co 	t —T . 	 t —T 	

P.(s)ds)j 
J 

i 

Proof. We present the proof when condition (33) is satisfied. The other . 

	

cases can be treated in 	similar way. To this end suppose there exist 

a solution y(t) of (3') such that for t
o sufficiently large, 

y(t) >0, t >t 
o
, 

Dividing both sides of (3') by y(t) and using (20) we obtain 

211D '. 
y(t) 4(0 	Pi(t)wi(t)= 0 • 

Definew.
1,i=1,2,..,n, as in Theorem 2.1, and assume that all of them are 

finite. Integrating both sides of the above equation from t- T to t for 

k=1,2,...,n, we find 

	

t 	 n 	 t 
log wk 	

1 

	

>, lim inf .1 	q(s)ds + .=
=1 w. 1 (1im inf J 	p(S)ds),k71,2,...,n 

t. co 	t—T k 	 t -+ 0, 	t - T
k 

Adding the above inequalities, we have 

1 

(34) 

E 
log w.. 	 (lim inf 	I 	q(s)ds) + . 	, 

1=1 	i=1 	t-4-00 	t-- 	i=1 11 
▪ lim inf f

t—T. 1 p.(s)ds). 
t m 

Set 

n n 
F(w 	

' w n 	1 
) = E

1 	
log w 

= 
i=1 

n n 
--..E u 	( 	lim inf 	.' 	p.(s) ds ). 1=1 i j=1 -)- 	t'- i' t-4- 0-, 	1 Then F(w ... w )) 0 On the other hand, 1" n / ' 
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t n 	n 	 n 	t 
max F (w1,...•,4

n
) = - log .1-1 ( E lim inf 	I 	pi(s) ds)- E 	(lim inf I q(s) 1=1 	. 	t-T 	1 

11.).1 	 J=I t + 00 	 t-T 
i j 	i=1 	t4-  c° i 

Hence 
n 	n 

. 1= 
J=1 

lim inf 
t Y co 

ds-14r,0 

t- 
f 	p

i 
 (s)ds),:cexp(-n- E lim inf I 	q(s)ds), T  

i=1 	t-T 

which is in contradiction with (29) 

• Finallyweshowthatilone of the ,,i=1,...,n, can be infinite. Otherwise 

Consider wi
o 

= + co , for some i=i
o, i=1,2,...,n. 

y(t-Ti
o 

y(t) 
Hence lim  	4.(x) 	 (23) 

t + 00 

From Eq.(3') and for i= i
o
, we have 

y'(t) +q(t)y(t)+pi(t) 	y(t-Ti) 	. 

Integrating both sides of this inequality from t - I  i
o to t and using the 

fact that y (t) is decreasing, we get 
t 

y(t)-y(t- Ti  )+y(t) 	I 	q(s)ds+y(t-T i  
o 	t-1; T

o 	
0 - 1 

t 

O 

pio  (s)ds 

As in Theorem 1.1., and taking into account condition (23) , we are led to a' 

contradiction and the proof is complete. 

Theorem 4.2. Consider equation (4') with the conditions. 

1 
lim inf 	I 	pi(s) ds) 0 , for i=1,2,...,n 
t co 

Then every solution of (4') oscillates if one of the following conditions 

t+T. 	 t+T. 1 	 1 
(lim inf 	I 	pi(s)ds) exp(l+lim inf 	I 	q(s) ds) >1 . (31') 

t 	-- 00 	t 	 t-)- co 

t+T 	n 
(lim inf 	I 	E 	pi(s)ds ) exp(l+lim inf 

t -4- co 	t 	i=1 	t 	m 

where T= min{T 

t+T 

q(s)ds) >1 ;(32) 

( 3 0 ) 



CA-181197 I 
SECOND A.M.E. CONFERENCE 

6 — 8 Nay 1986 , Cairo 

r • • • 1 
t+Ti 	n 	t+Ti  

11 	( i
E1 
 lim inf 	I pi(s)ds exp(n+ E 	lim inf 	I 	q(s)ds) >1 . 

= 
1=1 	t4- co 	 1=1 	t 	co 

t 	 (33') 

n 	 4   
[ 1 + 2 E 	L — (lim inf 	f

t+T 
 J ci(s)ds) +(lim inf 	I

t+T 
 ' p

i
(s)ds)] 11  

• i,j=1 n 	t+ co 	t 	t 4.  co 	t 
i j 

t+T 	
t+T 

ri 	j 	 1 
X 	(lim inf 	I q(s) ds+ (lim inf 	I 	

j 
p(s)ds) 1> 	. 

t  
t 	00 	t 	t + m 

(34' ) 

Proof. We give the proof of the condition (34) . The other cases can be 

treated similarly. Assuming contrary ,there exists a solution y(t) of (4') 

such that for to 
sufficiently large y(t) >0 for all t> t

o. 

Dividing both sides of (4') by y(t) and using (26) , we get 

n 

- q(t) - E 	p(t) z (t) = 0 . 	 ( * ) 
y(t) 	i=1 

Define Xvi=1,...,n as in Theorem 3.1. We show that all Xvi=1 ...,n, are 

finite. Otherwise, assume that for i=i0,Xi  = + 00, hence o   

lim zio 	= +0). i.e. 
t 400 

y(t+Ti
o) lim +Go 

y(t) 
t ico 

.From Eq.(4') , we have. 

y'(t)-q(t)y(t)-pio  (t) y(t+Tio) 	t> to  

Ti  
Integrating both sides of this inequality from t to t+ 2°  and using the 

fact that y(t) is increasing, we obtain 

t+1/2Tio 	t+1/2Tio  

y(t+ 1/2 Tio) -y(t)-y)(t) 	I 	q(s)ds-y(t+Tio) 	I 	p (s)ds )0 
t 	 t 

n 	t+T 
	 t+T 

I: E= (lim inf 	I 	q(s) ds) + (lim inf 	I 	p(s)ds)) 
—1 1 n 	t co 	t 	t i co 
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As in Theorem 3.1, and taking into account condition (34') , we are led to 

a contradiction. Hence allX1,i=1,...,n are finite. Integrating both sides of 

equation (*) from t to t+Tk  for k=1,2,...,n, we find after some calculation 

t+T. 
i 

Denote by a
i 
 = lim inf 	I q(s)ds, for j=1,...,n1  and 

	

t÷ - 	t 
t+T. 

bii = lim inf 	1 3  p
i(s)ds, for 1., i,j* n„ t -)- 0° 

t 

(35) and the fact that max [log w/w] = I yield, 
e w ?-1 

1 1 	n 	A i n a. A. n 	X 4  
4 	a + 	b 	- E 	--1--

i 	
1-  +E 	b

ji
"" e A, j i=i  ji Aj  

	

J 	
i1 nX X

j 	1=1 	i 

	

n 	X
i 

	

= i 	f ji ?k J 

	

1-1 	
j =1,2 , 	n 

where 
a. 

f .1  - 	+ b ji , for 1 	j ji nA i 
Adding the last inequalities, we get 

X
i 	

X. 
- E 

	f ,1+ E(f 	+ f 	--) 
e 	• 1 i= 	ili=1 	

ji A. ij A. 
-2 

 

i<j 

Using that fact that• 

A
i +f 	

A. 
--1  2 /f  f

ii-A.ij 	
> 

Ai ' 	
ji f ij 

J 

the last inequality holds for all A1,...A11:>1. Hence, 

	

t+T 	t+T 1 n 	1 	r i 	r t+T1 
-2---  E E -2-- 	(lim inf 	J 	q(s)ds+(lim inf 

t
' 	p

i
(s)ds)) n i=1 	n 	t, ,,,,, 	t 

t + co 
n 

C-1-I j 	t +Ti 	-„14 2 E 	1 +-
t71 i,j=1E

-
171 
(lim inf 	I 	q(s)ds) + (lim inf 	I 	p

i
(s)ds)j' 

	

i<j 	
t + m 	t 	t+ co 	t 

	

t+T 	 t-1-1" I 	VII (14m 4.1f 	r 	f" \ 	_Eft 4- .1— C 	r 	 sl 1/2_ 1 
i  

t+T
k 	n 	t+T

k 
log Xit;lim inf 	f 	q(s)ds+ E Xi  (lim inf I 	p

i(s)ds),k=1,..,n. t+ co 	t 	 1=1 	t+ co 	t 
(35) 

A-18 1198 I 
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1 
*lit this contradicts (34'). The proof is complete. 

The following examples illustrate that the conditions (13) ,(14),(19) and 

(25) are independent. They are chosen in such a way that only one of them is 

satisfied. These examples consider the equations of two time-delays only i.e. 

of the form : 

y'(t) + q y(t)+p, y(t-T1) + p2y(t-T2) = 0 
	

( 311) 

y'(t)-q y(t) -p1  y(t+T1) - p2  y(t+T2)= 0 

1 EXAMPLE 4.1. Take ID 	n "4[ 	T 	7 
'1 = 16 ""2-' ' '1=  " "2=  

condition (13) is satisfied. 

1 and q 

(4") 

1 
Then, only 40 • 

EXAMPLE 4.2.. 

The differential equation with retarded arguments 

y'(t)+a y(t)+ exp [-(a+b) 121 y(t- 2 ) + b exp [- (a+b) 27] y(t-2n ) = 0 

has the oscillatory solutions 

y
1  (t) = [exp-(a+b) t] sint, 

y2(t) =[ exp-(a+b) t] cost. 

While the differential equation with advanced arguments 

y'(t)-ay(t)-exp [(a+b) 	y(t+ 	)-b exp[ (a+b) 2dy(t+2n) = 0 

has the oscillatory solutions 

yi(t) =[exp (a+b) t] sint, 

y2(t) =[exp (a+b)t]cos t, 	 • 

The condtion (14) now becomes 

(pl+p2)T exp(l+qT) =fexpka+b) 21 + b exp[ -(a+b) 2n]}(-7-r2  )exp(1+a i)>1 . 
r 

	

It is easy to see that for 0 :a<coand 	0: b< 2 LI + log I2] , 

the last condition is satisfied. Hence for these ranges of the parameters a 

and b the existance of the oscillatory solutions of each of the preceding equations 

is guarant eed..Par a = 1 
1 

110 and b - 	condition (14) only to entief4..1 
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EXAJIPLES  4.3. Take pl  =1, p2  =1/4 ,Ti = 

10 • 
T
2 
=1 and q - 	. Then only 

30 

condition (19) is satisfied. 

1 	1 
EXAMPLE  4.4. Take p1 

	10e 	P2 	4e , 
= T1= 1, 12=2 and q - 

• 	 10 	Then , • 

only condition (25) is satisfied. 
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