3

4

Nonlinear Multiparameter Problems in Banach Space

By

M.A. Amer

B.S.H.A hemed

ABSTRACT

In this paper we study the problems of existence and uniqueness of solution to the nonlinear multiparameter problems of the form

Au +
$$\sum_{j=1}^{n} \lambda_j B_j u = f$$
,

where A, B_j : $X \to X^*$ are mappings from a reflexive Banach space X into its dual space X^* , satisfying certain monotonicity conditions, $f \in X^*$, and λ_j (j=1,2,...,n) are in general complex parameters.

^{*} Department of Math., Military Technical College, Cairo, Egypt.

Departement of Math. University Collage of Women, Ain Shams University, Cairo, Egypt.

1. <u>Introduction</u>

In this paper we study the problems of existence and uniqueness of solution to the nonlinear multiparameter problems of the form

$$Au + \sum_{j=1}^{n} \lambda_{j} B_{j}u = f,$$

where A, B_j: $X \rightarrow X^*$ are mappings from a reflexive Banach space X into its dual space X^* , satisfying certain monotonicity conditions, $f \in X^*$, and λ_j (j=1,2,...,n) are in general complex parameters.

Application of the developed theory to the nonlinear Sturm Liouville's problem for ordinary differential equations in \mathbf{L}^p spaces is also given.

The study of multiparameter systems of equations has also been discussed as a straightforward extension to the case of a single multiparameter problem.

Our analysis in this paper is an extension, to the Banach space case, of that given by Amer[3], Amer and Roach[4].

2. Definitions And Basic Results

Let X be a real Banach space, X^* its conjugate space. For y in X^* , x in X, denote the value of y at x by (y,x). If T is a mapping (in general nonlinear) with domaine D(T) in X and range R(T) in X^* . We recall the following definitions.

Definition 2.1. (1) The mapping T: $X \supseteq D(T) \rightarrow X^*$ is said to be monotone if

 $(Tx-Ty,x-y) \geqslant 0$, for all $x,y \in D(T)$.

- (2) We call that T is strictly monotone if (Tx-Ty,x-y)>0, for all $x,y\in D(T)$, $x\neq y$.
- (3) We call that T is strongly monotone if (Tx-Ty,x-y) > c||x-y||, for some c > 0.

<u>Definition 2.2.</u> The mapping $T: X \rightarrow X^*$ with D(T)=X is called coercive from X to X^* iff there exists a continuous function $\alpha: \mathbb{R}^+ \to \mathbb{R}$ with $\alpha(r) \to +\infty$ as $r \to +\infty$ and such that

 $(Tx,x) \geqslant \infty(||x||) ||x||,$ for all $x,y \in D(T)$.

<u>Definition 2.3.</u> The mapping T: $X \ge D(T) \to X^*$ is said to be hemicontinuous if T is continuous on every line segement s of D(T) (with respect to the strong topology on s and the weak topology in the range) i.e. if the function $f : R \rightarrow R$ defined by

 $f(\lambda) = (T(x+\lambda y),z), x,y \in D(T), z \in X, \lambda \in R$ is continuous function of λ .

For the sake of completeness we introduce without proof the following result given by Browder [1], [2]. Theorem 2.1. Let X be a real reflexive Banach space. If T: $X \rightarrow X^*$ is monotone, hemicontinuous and coercive mapping defined on the whole of X, then the range R(T) is all of X^* . Theorem 2.2. If in addition to the assumption of Theorem 2.1. that T is strictly monotone, then the mapping T is bijective.

SECOND A.M.E. CONFERENCE 6 - 8 May 1986, Cairo

3. Main Results

We shall use Theorem 2.1. and Theorem 2.2. for establishing the existence and uniqueness of solution for two-parameter problems of the form

(3.1)
$$(A + \sum_{j=1}^{2} \lambda_{j} B_{j})x = f \in X^{*},$$

where the mapping A, $B_j(j=1,2)$: $X \rightarrow X^*$ are assumed to be strongly monotone and hemicontinuous from X to X^* with domains the whole space X. Extension of the obtained results to the case of n-parameter $(n \geqslant 3)$ is straightforward. Moreover, treating each equation sperately we can extend our results to examine two-parameter systems of the form

$$(A_k + \sum_{s=1}^{2} \lambda_{ks} B_{ks}) x_k = f_k \in X_k^*, x_k \in X_k, k=1,2.$$

Theorem 3.1. Let X be a real reflexive Banach space and assume that the mappings A, $B_j(j=1,2): X \rightarrow X^*$ satisfy the following conditions

(i)
$$D(\bar{A}) = D(B_j) = X, j=1,2.$$

(ii)
$$A(\theta) = B_{j}(\theta) = \theta, \quad j=1,2.$$

(iii) A ,B $_{j}$ (j=1,2) are hemicontinuous mappings from X to X * .

(iv) A, $B_{j}(j=1,2)$ are strongly monotone with constants c,c_{j}

: (j=1,2) respectively.

Then for every $f \in X^*$ and $\lambda_1, \lambda_2 \in R$ satisfying

(3.2)
$$(c^{i} + \sum_{j=1}^{2} \lambda_{j} c_{j}) > 0$$

equation (3.1) has one and only one solution $x \in X$.

Proof. Define a mapping T: $X \to X^*$ by

$$Tx = (A + \sum_{j=1}^{2} \lambda_j B_j)x.$$

We have by (i), $T(\theta) = \theta$.

. By condition (i), (iii) it follows that

$$D(T) = D(A) \bigcap_{j=1}^{2} D(B_{j}) = X,$$

and T is hemicontinuous from X to X^* . Assume that λ_j (j=1,2) are chosen such that (3.2) holds, then

$$(Tx-Ty,x-y) = (Ax-Ay,x-y) + \sum_{j=1}^{2} \lambda_{j} (B_{j}x-B_{j}y,x-y)$$

$$\Rightarrow (c + \sum_{j=1}^{2} \lambda_{j} c_{j}) ||x-y||, \text{ for all } x,y \in D(T).$$

Therefore, T is strongly monotone and hence strictly monotone mapping from X to X^* . Furthermore, we have from (ii), (iv)

$$(\mathbf{T}\mathbf{x},\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{A}\boldsymbol{\theta}, \mathbf{x} - \boldsymbol{\theta}) + \sum_{j=1}^{2} \lambda_{j} (\mathbf{B}_{j}\mathbf{x} - \mathbf{B}_{j}\boldsymbol{\theta}, \mathbf{x} - \boldsymbol{\theta})$$

$$\geqslant (\mathbf{c} + \sum_{j=1}^{2} \lambda_{j} \mathbf{c}_{j}) \|\mathbf{x}\|.$$

If we define a function $\infty: \mathbb{R}^+ \to \mathbb{R}^+$ by

$$\propto (||x||) = (c + \sum_{j=1}^{2} \lambda_j c_j) ||x||,$$

then, T is coercive from X to X*. Therefore by Theorem 2.1. and 2.2. applied to the mapping T we have the required result.

Remark 3.1. (1) Theorem 3.1. still valid if the constants

Г

c, $c_{j}(j=1,2)$ are only assumed to be real numbers.

(2) If the strong monotonicity of A is replaced by only monotonicity assumption, then Theorem 3.1. still holds provided that (3.2) is replaced by the condition

$$(3.3) \qquad \qquad \sum_{j=1}^{2} \lambda_{j} c_{j} > 0.$$

- (3) If all the mappings A, B_j (j=1,2) are supposed to be strictly monotone then, Theorem 3.1. still valid provided that λ_1 , $\lambda_2 > 0$.
- (4) If all the mappings A, $B_j(j=1,2)$ are assumed to be monotone, then we still have existence of solution of equation (3.1) provided λ_1 , $\lambda_2 \geqslant 0$ while uniqueness of solution is not guaranteed, since in this case the mapping T is no longer strictly monotone.
- (5) Assumption (ii) of Theorem 3.1. can be dropped without affecting the result of the theorem, by defining the mappings

A,
$$B_{j}(j=1,2) : X \rightarrow X^{*}$$
 by
$$Ax = Ax - A\theta,$$

$$B_{j}x = B_{j}x - B_{j}\theta, \quad (j=1,2).$$

4. Practical Example

Consider the two-parameter Strum Liouville's problem for ordinary differntial equation of the form

(4.1)
$$(-|\dot{y}(x)|^{p-2}\dot{y}(x)) + \sum_{j=1}^{2} \lambda_{j} a_{j}(x)|y(x)|^{p-2}y(x)=f, x \in [a,b]$$

Subject to the homogeneous boundary condition

$$(4.2)$$
 $y(b) = y(a) = 0,$

where $\geqslant 2$, $\lambda_j \in \mathbb{R}$, a_j , $f \in C[a,b]$, j=1,2.

Let

$$(v,u) = \int_{a}^{b} u(x) v(x) dx$$

be the natural pairing between u in $X=L^p[a,b]$ and v in $X^*=L^q[a,b]$ with q=p/(p-1) and define the mappings

A,
$$B_j(j=1,2) : X \rightarrow X^*$$
 as follows

$$Au = (-|u(x)|^{p-2}u(x)),$$

$$B_{j}u = a_{j}(x)|u(x)|^{p-2}u(x), \quad (j=1,2).$$

For each u, v & X we have

$$(Au-Av,u-v) = \int_{a}^{b} -(|u(x)|^{p-2}u(x)-|v(x)|^{p-2}v(x)) (u(x)-v(x)) dx$$

Thus integ rating by parts we get

$$(Au-Av,u-v) = \int_{a}^{b} (|u(x)|^{p-2}u(x)-|v(x)|^{p-2}v(x)) (u(x)-v(x)) dx$$

$$= \int_{a}^{b} (|u'(x)|^{p-1} \operatorname{sgn} u'(x) - |v'(x)|^{p-1} \operatorname{sgn} v'(x)) (u'(x) - v'(x)) dx$$

Using the inequality

$$(x-y) (|x+u|^{r-1} sgn(x+u)-|y+u|^{r-1} sgn(y+u)) > |x-y|/2^r$$
 [5].

SECOND A.M.E. CONFERENCE 6 - 8 May 1986, Cairo

we get

$$(Au-Av,u-v) \ge \int_{a}^{b} |u(x)-v(x)||^{p} 2^{p-1} dx$$

= $||u(x)-v(x)||^{p} 2^{p-1} > 0$

Therefore, A is strictly monotone mapping from X to X^* .

Similarly, we can prove that $B_{j}(j=1,2)$ is a strictly monotone

mapping from X to X* when assuming that

$$c_j = \min a_j(x) > 0.$$

Hence, equation (4.1) with the boundary condition (4.2) reduces to an equation of the form

Au +
$$\sum_{j=1}^{2} \lambda_j B_j u = f \in X^*$$
,

which by Remark 3.1. (3) has for every element $f \in X^*$ exactly one solution $u \in X$ provided that $\lambda_1, \lambda_2 > 0$.

5 . Concerning The Complex Case

Now we extend the result of Theorem 3.1. by allowing the Banach space X as well as the parameters λ_1 , λ_2 to be complex. To this end we introduce the following generalized definitions.

Let X be a complex Banach space, X^* its conjugate space with pairing between y in X^* and x in X denoted by (y,x) and let $T: X \rightarrow X^*$ be the mapping with domain $D(T) \subseteq X$. We denote by Re(y,x) and Im(y,x) the real and imaginary parts of (y,x), respectively.

Del mition 5.1. (1) The mapping T: $X \ge D(T) \rightarrow X^*$ is said to be monotone if

Re(Tx-Ty,x-y)> 0, for all $x,y \in D(T)$.

(2) T is said to be strictly monotone if Re(Tx-Ty,x-y)>0, for all x,y \in D(T), x \neq y.

(3) We call that T is strongly monotone if Re(Tx-Ty,x-y)> c ||x-y||, for some c > 0.

<u>Definition 5.2.</u> The mapping $T: X \rightarrow X^*$ with domain the whole space X is called coercive from X to X iff there exists a continuous function $\alpha: \mathbb{R}^+ \to \mathbb{R}$ with $\alpha(r) \to +\infty$ as $r \to +\infty$ and such that

 $Re(Tx,x) \geqslant \propto (||x||) ||x||$, for all $x \in X$.

We are now able to state the following theorem Theorem 5.1. Let X be a complex reflexive Banach space. . Let $T:X \to X^*$ be a monotone, coercive and hemicontinuous mapping from X to X^* , then the range of T is the whole space X^* If in addition T is strictly monotone, then T is one-to-one. Theorem 3.1. can also be extended to the following theorem Theorem 5.2. Let X be a complex reflexive Banach space, and let A, $B_{j}(j=1,2): X \rightarrow X^{*}$ be mappings such that

(i) $D(\bar{A}) = D(B_j) = X$, (j=1,2).

(ii) $A(\theta) = B_{j}(\theta) = \theta$, (j=1,2).

(iii) A is hemicontinuous from X to X^* .

(iv) A, $B_j(j=1,2)$ are strongly monotone from X to X^* with constants c, $c_j(j=1,2)$ respectively.

(v) $B_j(j=1,2)$ satisfies a Lipschitz condition from X to X* with a Lipschitz constants $L_j(j=1,2)$.

Then for every given element f C X the equation

(5.1) Ax +
$$\sum_{j=1}^{2} \lambda_j B_j x = f \in X^*, x \in X, \lambda_1, \lambda_2 \in C$$

has a unique solution $x_0 \in X$ provided that $\lambda_j = \xi_j + i \gamma_j \in C$, j=1,2. are such that

(5.2)
$$c + \sum_{j=1}^{2} (c_j \xi_j - L_j \gamma_j) > 0, \xi_j > 0, j=1,2.$$

Remark 5.1. $(\frac{1}{2})$ If $\lambda_j(j=1,2) \in \mathbb{R}$, then the requirement that the mapping $B_j(j=1,2)$ should satisfy Lipschitz condition can be relaxed to requiring that $B_j(j=1,2)$ should be hemicontinuous from X to X^* . The assertion of Theorem 5.2. then remains valid provided that condition (5.2) is replaced by the condition

$$c + \sum_{j=1}^{2} \lambda_{j} c_{j} > 0.$$

(ii) If the mapping B_j (j=1,2) are assumed to be linear, then the requirement of Theorem 5.2. that B_j (j=1,2) should satisfy a Lipschitz condition reduces to requiring that B_j (j=1,2) should be bounded in X.

References

(1) F.E.Browder, Nonlinear maximal monotone operators in Banach space, Math. Ann. 175, (1968), 89-113.

- (2) F.E.Browder, Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 69(1963), 862-874.
- (3) M.A.Amer, Monotone operators and nonlinear multiparameter problems. Ph. D. Thesis Strathclyde, Glasgow. (1982).
- (4) M.A. Amer and G.F. Roach, Monotone operators and nonlinear non-homogeneous multiparameter problems, Rev. Roumaine Math. Pures Appl. 30(1985), 165-171.
 - (5) W.S.Hall, On the existence of periodic solutions for the equation $D_{tt}u + (-1)D_x u = ef(.,.,w)$, J.Differeential Equations 7(1970), 509-526.

