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 ملخص البحث

التقميدي الذي يعطي نتائج ضعيفة  للإحصاء ىو مقاربة بديمة   Robustمن النوع  الإحصاءان 
  Outliers)  فييا قيم متطرفة ) عند دراسة معطيات

عمى  QMLEالسلاسل الزمنيو المالية والتي تعرف ب  فيلمتقدير التقميدية  يقةتعتمد الطر 
ضيات بشكل كبير والتي قد لا تتحقق عمى أرض الواقع. حيث أنو يفترض أن البيانات موزعة الفر 

كفاءة متدنية جداً. ليذه الطريقة في البيانات يكون  متطرفةبشكل طبيعي ، إلا أنو عند وجود قيم 
أو طرق تحاكي الطرق التقميدية إلا أنيا لا تتأثر بالقيم الشاذة  Robust يقدم الإحصاء المتين

 .الخروج الطفيف عن افتراض النموذج لمبيانات

إلى توزيعات  لثقيلذيل االتتراوح بين التي توزيعات الخطأ  محاكاة لعدد مندراسة تم في ىذه ال
توزيعات الثقيمة الذيل في وجود اللتقييم متانة  ممتويةخفيفة الذيل ومن توزيعات متماثمة إلى توزيعات 

استخدام وىو ما كشف عن الحاجة إلى  .Innovativeو   Additiveنوعين من القيم المتطرفة 
 في وجود تمك القيم المتطرفة. GARCHفي تقدير معاملات  طرق تقدير قوية
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ABSTRACT 

In financial time series, the conventional fitting procedure (QMLE) suffers 

from the outlier problem. Estimation of the parameters in GARCH model, 

can be adversely affected by a single outlier. 

 simulation studies will not only demonstrate the robustness of this 

estimate, but will provide evidence as to the utility, efficiency, and validity 

of this estimate  as a robust procedures. 

 A large Monte Carlo study over error distributions ranging from 

heavy-tailed to light-tailed distributions and from symmetric distributions 

to skewed distributions is conducted to evaluate the robustness of heavy 

tailed distributions in the presence of additive or innovative outliers which 

revealed the need of robust estimator other than QMLE in estimating 

GARCH coefficients in the presence of those outliers. 
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INTRODUCTION 

A popular method for estimating the unknown parameters in univariate and 

multivariate GARCH models is to use the Gaussian likelihood of the 

innovations and the resulting estimator is called the quasi-maximum 

likelihood estimator (QMLE). 

Traditional methods of estimation and testing, such as the QMLE method, 

are efficient if the normality assumption of the error distribution and other 

assumptions about a model are not violated. In particular, stock market data 

comes along with some skewness, tail weights, outliers and unknown 

distributions that violates some underlying assumptions for which the 

estimates from QMLE is efficient.  

Most studies employing ARCH and GARCH models document the 

existence of severe excess kurtosis in the estimated residuals. This non-

normality may be due to model misspecifications or outliers. Outliers can 

affect all the stages of time series analysis: model identification, estimation 

and forecasting. Outliers may have significant impact on the results of 

standard methodology for time series analysis, therefore it is important to 

detect them, estimate their effects and undertake the appropriate corrective 

actions. A couple of common outliers that may occur in time series data are 

additive outliers (AO) and innovation outliers (IO). 

In this paper we try to prove that the QMLE method is non-robust to the 

presence of outliers even with fat-tailed and skewed distributions and to 

analyze the effects of outliers on estimated GARCH volatilities and To 

study the impact of outliers on the Gaussian QML estimator of GARCH 

models and some distributions and  to study the impact of outliers on the 

Gaussian QML estimator of GARCH models and some distributions. 

(Grané, et al., 2014) studied the impact of additive outliers (level and 

volatility) on the estimation of MCRRs
1
 for short and long trading 

investment positions.  Through simulation and empirical studies, they 

compared six proposals to reduce the effects of outliers in the estimation of 

risk measures when using a symmetric volatility model, GARCH(1,1) and 

                                                           
1
MCRR is minimum capital risk requirements 
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an asymmetric one, GJR(1,1)  by (Glosten, et al., 1993) they investigated 

several Methods to deal with outliers:  

[1] Correcting for significant outliers. This approach included the proposal 

by (Grané, et al., 2010) with hard and soft thresholding, which proceeds by 

detecting and correcting outliers before estimating these risk measures with 

symmetric and asymmetric GARCH-type models and also they analyzed 

the proposal by (Franses, et al., 1999) only for the GARCH model.  

[2] Accommodating outliers using fat-tail distributions. This approach 

consisted in fitting, respectively, t-distributed or skewed t-distributed 

GARCH-type models directly to the data.  

[3] Accounting for outlier effects by the robust estimation of (Muler, et al., 

2008).  

In the simulation they studied two situations. In the first one, they 

considered that there was no uncertainty about the data generating process 

(DGP), whereas in the second one, they analyzed the impact of uncertainty 

on the MCRRs when the data generating process was unknown. In this 

case, they considered two sources of uncertainty; functional form and error 

distribution. They started by simulating return series of different sample 

sizes. The outliers were placed randomly in the series then they described 

the considered situations:  One isolated ALO of three different magnitudes 

in simulated series ,Two isolated ALOs in simulated series and Patches of 

three ALOs in series simulated from the considered model. The beginning 

of the patch was placed randomly in the series.  And they also considered 

one isolated AVO in series simulated from the considered model. They also 

considered original simulated series (with no outliers) with two cases. In 

the first The MCRRs were calculated with the same model used to simulate 

the series.  In the second the MCRRs were calculated with a different 

model from that used to simulate the series. This situation used to analyze 

the impact of model uncertainty. 

 Capital risk requirements are estimated for a 1 day investment horizon for 

the simulated data. They also examined four daily stock market indexes: 

the FTSE-100 index, the Nasdaq index, the NYSE composite index and the 

S&P 500 index. For a full evaluation of the results, they performed out-of-
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sample conditional tests on the MCRRs calculated. The most important 

findings in this paper are: Firstly, outliers affected seriously the estimates 

of MCRRs and the effects depended on outlier magnitudes. Secondly, the 

detection proposal by  (Grané, et al., 2010) with hard thresholding 

correction almost eliminates the biases on the MCRR estimates, whereas 

the highest biases are obtained when applying (Muler, et al., 2008) 

proposal or, in the case of asymmetric models, when considering more 

complex error distributions. Thirdly, the impact on MCRRs is extremely 

high in the presence of additive volatility outliers. Fourthly, the results 

from the study of model uncertainty supported that fitting asymmetric 

GARCH-type models to simulated series from a GARCH(1,1) led to 

similar MCRRs (the contrary statement does not hold). Finally, the 

empirical application and the out-of-sample results for four international 

stock market indexes indicated that all the methods under study provided 

statistically equivalent failure rates in estimating the MCRRs for 95% 

coverage during the last global financial crisis. However, using more 

general models and more complex distributions generated failure rates 

closer to 5%. 

Generalized ARCH (GARCH) Model 

Because ARCH(p) models are difficult to estimate, and because they decay 

very slowly, Four years after Engel’s introduction of the ARCH process, 

(Bollerslev, 1986), proposed the Generalized ARCH (GARCH) model as a 

natural solution to the problem with the  high ARCH orders. This model is 

based on an infinite ARCH specification and it allows to dramatically 

reducing the number of estimated parameters from an infinite number to 

just a few. 

In Bollerslev’s GARCH model the conditional variance is a linear function 

of past squared innovations and earlier calculated conditional variances. 

The GARCH model has become more popular, because with just a few 

parameters it can fit data better than a more parameterized ARCH model. 

Over the years, the GARCH family has become more efficient in fitting the 

volatility data as they consist of the second order moment that measures the 

time-variant of the volatility data. The initial studies by (Engle, 1982) and 
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(Bollerslev, 1986)turn out to be the better models for volatility (financial) 

data as the residuals of the data form fatter tailed.  

Definition [GARCH(p, q)] 

The process (  )     , is GARCH (p, q), if: 

                   (       )    
  

The basic model that GARCH type models fit is the following: 

     
 
    (1) 

         (2) 

   
    ∑       

  
    ∑       

  
     (3) 

where  
 
  (       ) ,      denotes the information set available at time 

t-1 and     is a sequence of i.i.d. random variables with mean 0 and 

variance 1. 

   is generally assumed to follow Standard Normal Distribution, 

Standardized Student-t Distribution or Generalized Error Distribution. 

The covariance-stationary condition for GARCH process is:  

 ∑   
 
    ∑     

 
     (4) 

The level of persistence is given by   +  . 

The main idea of the GARCH model is that the conditional variance of 

returns given information available up to time t-1, has an autoregressive 

structure and is positively correlated to its own recent past and to recent 

values of the squared returns. This captures the idea of volatility 

(conditional variance) being persistent which means that large (small) 

values of   
  are likely to be followed by large (small) values. 

Following (Drost, et al., 1993) we can give three interpretations to 

GARCH(p,q) model: 

The strong form GARCH(p,q) process arises when: 
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              ⁄           (5) 

The semistrong form arises when: 

                   
  (6) 

Finally, there is a weak form in which   
  is defined as a projection on a 

certain subspace: 

  (  
                    

      
   )    

  (7) 

Definition [GARCH (1, 1)] 

In a GARCH (1,1), the variance (  
 ) is a function of an intercept ( ), a 

shock from the prior period ( ) and the variance from the last period ( ):  

   
          

   
 
    

  (8) 

Outliers in GARCH Models 

Additive Outlier; an additive outlier appears as a surprisingly large or 

small value occurring for a single observation. Subsequent observations are 

unaffected by an additive outlier. (For example, a data coding error might 

be identified as an additive outlier). Consecutive additive outliers are 

typically referred to as additive outlier patches.  They are a group of two or 

more consecutive additive outliers, selecting this outlier type results in the 

detection of individual additive outliers in addition to patches of them. 

Additive outliers are the result of adding a value of some magnitude to 

some of the data points. 

Innovational Outlier; an innovational outlier is characterized by an 

initial impact with effects remaining for a long time over subsequent 

observations. The influence of the outliers may increase as time proceeds. 

For stationary series, an innovational outlier affects several observations. 

For nonstationary series, it may affect every observation starting at a 

particular series point. 

Outliers can cause both the excess kurtosis in the GARCH residuals 

and the bias in the estimated coefficients and their statistical inferences. 

GARCH volatilities depend on the unconditional variance, which is a non-
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linear function of the parameters. Consequently, they can have larger biases 

than estimated parameters. One approach to estimate GARCH models in 

the presence of outliers is to trim iteratively the outliers and fit the model to 

the remaining data until no more outliers are detected (Franses, et al., 

1999). Another approach is to use an estimator that is robust to outliers 

(Sakata, et al., 1998) , (Park, 2002) and (Peng, et al., 2003)) estimate the 

GARCH model by minimizing a robust measure of scale of the residuals. 

(Muler, et al., 2002) and (Muler, et al., 2008) proposed a robust M-

estimator that assigns a much lower weight to outliers than the Gaussian 

ML estimator does. 

 

Distributions in GARCH Model 

Normal Distribution 

The following log-likelihood function needs to be maximized: 

     
2

2
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(9) 

Where   the vector of the parameters to be estimated  
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(10) 

 

Where    is the degrees of freedom and  

  
 
   [((   ) )

    
 (

 

 
)
  

 (
   

 
)]  (11) 

Where  ( ) is the gamma distribution. The Student-t distribution 

incorporates the standard normal distribution as a special case when     

and the Cauchy distribution when     . So, a lower parameter , yields a 

distribution with fatter tails. 
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The log-likelihood function for the standard GED is defined as 

     
υ

n
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(12) 

Where   is defined as : 

   [      (  ⁄ )  (  ⁄ )]
   

  (13) 

And  

  
 
 (     )  ( )    ( (   ))    (

 

 
)  (14) 

GED incorporates the normal (   ), the Laplace (   ) and the uniform 

(    ) distribution as special cases, where fatter tails than the normal 

distribution is obtained for    . 

 

The phenomenon of skewness has been recognized in the empirical 

financial literature for several years and it is well-know the stock return 

distributions exhibit negative skewness and kurtosis. 

(Fernandez, et al., 1998) proposed Skewed Distribution, which allows 

skewness in any continuous and symmetric distribution by changing the 

scale at each side of the model 
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) ( )] 

(15) 

 

In above model   is a shape parameter which is positive and describes 

the degree of asymmetry.   1 is the symmetric distribution 

with  (     )   ( ).  ( )  (      ( ))     is the Heaviside unit 

step function. 

If a skewed distribution functions with zero mean and unit variance, it 

is called Standardized Skewed Distribution. 

The probability function  (   )of a Standardized Skewed Distribution 

can be written as: 



00 
 

  (    )  
  

  
 

 

 (     
| )  (16) 

Where      
      (      )(      ),  ( ) is any standardized 

symmetric distribution function, like the Standard Student-t Distribution, 

the Standard Generalized Error Distribution or Standard Normal 

Distribution. 

In above equation,   is location parameter,   is the standard deviation 

parameter,   is a shape parameter which model the skewness,   is an 

optional set of shape parameter that models higher moments of even order 

like   in GED and Student-t Distribution. 

 

Skewed-Normal Distribution 

The probability density function of the Skewed-Normal Distribution 

with parameter   is given by 

 

  ( )    ( ) (  ) (17) 

 

Where    is a fixed parameter called the shape parameter that control the 

different shape of density function. 

 

 ( )     (    ⁄ ) √  ⁄   

 (  )  ∫  ( )   
  

  
  

 

Skewed-Student-t Distribution 

Based on the Standard Skewed Distribution, the Skewed-Student-t 

Distribution pdf is: 

 

  (      )  {

  

     
    (     )          

 

 

  

     
   (     )           

 

 

  (18) 
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  is non-symmetry parameter,   test the fat tail，  and    are the mean and 

variance of non-Standard Student-t Distribution. 

 

 

Standardized Skewed-Generalized Error Distribution 

The density function of the Standardized Skewed-Generalized Error 

Distribution is 

  (      )   (    (  ⁄ ))
  

    ( 
       

       (    )     )  (19) 

 

Where 

   (  ⁄ )    (  ⁄ )     ( )   

       ( )   

 

 ( )  √            

 

   (  ⁄ ) (  ⁄ )     (  ⁄ )     

 

Where the shape parameter   controls the height and fat-tail of the density 

function with constraint     , while   is a skewness parameter of the 

density with        . In the case of positive skewness, the density 

function skews toward to the right, vice versa. When        , the 

SGED distribution turns out to be the standard normal distribution. 

 

Quasi-Maximum Likelihood  Estimation (QMLE) 

As it is stated in (Huang, et al., 2008) the quasi-maximum likelihood 

(QML) method is particularly relevant for GARCH models because it 

provides consistent and asymptotically normal estimators for strictly 

stationary GARCH processes under mild regularity conditions, but with no 

moment assumptions on the observed process. 

Conditional Quasi-Likelihood is given by 
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The GARCH (1,1) shown in Equation (2.14) can be expressed as 
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 )    

    
  

  
          

       
           

  
     (   )     

           

Where      
    

  and the conditional mean of    is zero  (       )   . 

For deriving the unconditional variances of    , the conditional variance for 

the GARCH (1, 1) return process is given by 

   (  )   (  
 )  ( (  ))

 
  (  

 ) 

   (  )      (   )    
            

   (  )      (   )    
   

   (  )  
 

  (   )
 

since  (  
 )   (    

 ) The requirements for stationarity are such that 

1− −  > 0,   ≥ 0,   ≥ 0 and  > 0. 

The estimation of parameters of the GARCH (1, 1) model is carried in a 

similar fashion as (Bollerslev, 1986) suggested that the unconditional 

variance for    should be considered as a starting value for variance. That 

is, 

  (  
 )  

 

     
 (21) 

Under the normality assumption, the likelihood function of the GARCH 

(1, 1) model is expressed as 

 (          
      

 )

  (     
 |    ) (         

 |    )  (     
 |  ) (     

   ) 

where            is the vector of unknown parameters and  (     
   ) is a 

probability density function. Since  (     
   ) is complicated, it is 

commonly dropped from the conditional likelihood function, especially 
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when the sample size is sufficiently large. Hence, the conditional likelihood 

function is expressed as follows: 

  (          
      

 |    
    

 )  ∏
 

√    
 
   , 

  
 

   
 -

 
     (22) 

And is considered to estimate  . The maximum likelihood estimates are 

obtained by directly maximizing this expression or, equivalently the log-

likelihood function given by: 

  (       
 )  ∑   ( )

 
     (23) 

where   ( ) is the log-likelihood function of observation t and is calculated 

as 

   ( )   
 

 
  (  )  

 

 
  (  

 )  
  
 

   
   (24) 

 

Studying the Effect of Additive and Innovative Outliers on 

GARCH (1,1) Model  

Financial time series generally have the characteristics of being 

leptokurtotic, fat-tailed with skewness and volatility clustering. So it 

violates the Normal distribution assumption for the errors. Most of 

Literatures suppose that the errors follow Normal distribution, but for many 

financial series, it cannot describe the character of the fat tails, so using 

other distribution to describe fat-tail distribution is needed. In this 

simulation a comparison of GARCH(1,1) Model based on Different 

Distributions is done based on  Normal Distribution, Student-t Distribution, 

Generalized Error Distribution and their skewed version.  

First a simulation of uncontaminated series is  generated with 

specifications that accounts for heavy tails and skewness that are characters 

of financial time series and then are contaminated with outliers with 

different numbers and magnitudes to study the effect of outliers either 

additive or innovative on those series. 
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The initial parameters of the GARCH(1,1) models are set within the 

stationary region and selected to represent three cases of volatility 

persistence. The persistence indicates how fast the volatility decays and 

regain normalcy. A weak persistence shows quick decay of volatility. A 

strong persistence shows slow decay of volatility.   and   are coefficients 

of conditional squared residuals and conditional variance.  (  +  ) 

determines the volatility persistence.  The sample sizes N are varied as 250, 

500 and 1000. Large sample sizes (1000) are chosen to approximately 

represent heavy set of real life financial data and also to observe the 

structure more accurately.  

The  main purpose of the this simulation is to investigate effects of 

additive outliers and innovative outliers on the performance of the GARCH 

(1,1) model with various error distribution (Normal Distribution, Student-t 

Distribution, Generalized Error Distribution) and their skewed version for a 

total of 36 different specifications for uncontaminated series and series that 

is contaminated with outliers of different types ( AO and IO ) with different 

numbers (1,2%,5%) and magnitudes (    ,    ,     ) and to choose the 

best distribution for the innovations for such series. 

The second purpose of this simulation is to study the robustness of various 

distributional assumption in the previously stated cases. From Standardized 

Residuals Diagnosis it can be  concluded that the estimates of the 

underlying volatility in a GARCH(1,1) model can be seriously affected by 

outliers through their effect on the estimates of the parameters and that fat 

tailed distributions didn't provide robust estimate of GARCH (1,1) 

parameters. 

A 1000 replications is used in each model to study the performance. All the 

simulations are performed using R. 

 

Data Generating Process (DGP) 

The Monte Carlo experiment is set up using the GARCH(1,1) DGP: 

  
         

       
  

 

Parameter values 

1. High persistence                      
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2. Medium persistence                      

3. Low persistence                      

 

The distributions 

The error distribution         where    is assumed to follow different 

distributions: (   indicates degrees of freedom while   is the skewness 

parameter) 

1. Normal distribution (N). 

2. Student t distribution (std)     3. 

3. Student t distribution (std)     5. 

4. Student t distribution (std)     7. 

5. Student t distribution (std)     9. 

6. Generalized Error Distribution (GED)     1. 

7. Generalized Error Distribution (GED)      1.5. 

8. Generalized Error Distribution (GED)      2. 

9. Generalized Error Distribution (GED)      2.3. 

10. Skewed normal distribution (SN)      . 

11. Skewed normal distribution (SN)       . 

12. Skewed normal distribution (SN)       . 

13. Skewed Student t distribution (sstd)     3,      . 

14. Skewed Student t distribution (sstd)     3,      . 

15. Skewed Student t distribution (sstd)     3,      . 

16. Skewed Student t distribution (sstd)     5,      . 

17. Skewed Student t distribution (sstd)     5,      . 

18. Skewed Student t distribution (sstd)     5,      . 

19. Skewed Student t distribution (sstd)     7,      . 

20. Skewed Student t distribution (sstd)     7,      . 

21. Skewed Student t distribution (sstd)     7,      . 

22. Skewed Student t distribution (sstd)     9,      . 

23. Skewed Student t distribution (sstd)     9,      . 

24. Skewed Student t distribution (sstd)     9,      . 

25. Skewed Generalized Error Distribution (SGED)     1 ,      . 

26. Skewed Generalized Error Distribution (SGED)      1 ,        

27. Skewed Generalized Error Distribution (SGED)      1 ,        
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28. Skewed Generalized Error Distribution (SGED)       1.5 ,        

29. Skewed Generalized Error Distribution (SGED)       1.5 ,        

30. Skewed Generalized Error Distribution (SGED)       1.5 ,        

31. Skewed Generalized Error Distribution (SGED)      2 ,      . 

32. Skewed Generalized Error Distribution (SGED)      2 ,        

33. Skewed Generalized Error Distribution (SGED)      2 ,        

34. Skewed Generalized Error Distribution (SGED)      2.3 ,      . 

35. Skewed Generalized Error Distribution (SGED)      2.3 ,        

36. Skewed Generalized Error Distribution (SGED)      2.3 ,      . 

 

Model Selection Criteria 

Various evaluation measures are employed to evaluate the parameter 

estimates contaminated and uncontaminated  series.  

According to (Akaike, 1973), a model should be evaluated on the basis of 

good results when it is used for prediction. The author suggested a method 

for evaluating model in terms of Kullback-Leibler information, which is 

based on the concept of closeness between generic distribution g(x) defined 

by the model and the true distribution f(x), besides the more commonly 

used method of simply minimizing the prediction error. The Kullback-

Leibler information I(f, g) is the information lost when model g(x) is used 

to approximate f(x); this is defined for continuous functions as the integral 

 (   )  ∫ ( )  *
 ( )

 (   )
+     

There will be two types of tests performed on the series to see which 

distributions  is considered most fitting on the contaminated GARCH time-

series. The tests are : 

 

Akaike Information Criteria (AIC): 

The Akaike Information Criteria (AIC) has commonly been used and 

significantly known method in the model selection for decades. The AIC 

compares models from the perspective of information entropy, as measured 

by Kullback-Leibler divergence. The AIC for a given model is: 

AIC = −2 ln L + 2k 
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L is the maximized value of the likelihood function and k is the number of 

free parameters used in the model. When comparing AIC values for 

multiple models, smaller values of the criteria are better.  

 

Bayesian Information Criteria (BIC): 

(Schwarz, 1978) developed a consistent criteria for models defined in terms 

of their posterior probability (Bayesian approach). The main difference 

between the AIC and BIC is that BIC penalizes models more when number 

of parameters increases. The BIC, also known as Schwarz information 

criteria, compares models from the perspective of decision theory, as 

measured by expected loss. The BIC for a given model is : 

BIC = −2 ln L + k ln T 

where T is the number of observations. The preferred model will show the 

lowest values of this criteria.  

The verification of the robustness in the estimation with various 

distributional assumption is achieved through studying the Quantile-

Quantile Plot of Standardized Residuals. 

QQ plot is a way to visually examine if empirical data fits the reference or 

hypothesized theoretical distribution. The process graphs the quantiles at 

regular confidence intervals for the empirical distribution against the 

theoretical distribution. As an example, if both the empirical and theoretical 

data are drawn from the same distribution, then the median (confidence 

level = 50%) of the empirical distribution would plot very close to zero, 

while the median of the theoretical distribution would plot exactly at zero. 

Continuing in this fashion for other quantiles (40%, 60%, and so on) will 

map out a function. If the two distributions are very similar, the resulting 

Q-Q plot will be linear. 

The QQ-plots for standardized residuals show the estimated innovations 

against the sample quantiles from a normal distribution. If the plotted 

scatters fall on the straight line, the estimated innovations follow a normal 

distribution. 

 

Conclusions and Recommendations 

Overall results from this study provide evidence to show that skewed fat 

tail distributions are more appropriate for the financial time series. 
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1. It is important to incorporate fat-tailed innovations in fitting all the 

asset prices series to account for leptokurtosis into GARCH 

processes 

2. The performance of the considered types of fat-tailed distributions 

and there skewed versions in fitting the financial data is quite 

different according to degree of persistence and sample size and type 

of outlier included, and the skewed student -t  distribution dominates 

the other type of distribution. 

Recommendations 

GARCH models with the skewed student -t  distribution perform very well 

and therefore recommended for financial time series in QMLE estimation. 
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