
Correctness, Strength and Similarity Evaluation of
Stemming Algorithms for Arabic

Daoud Daoud*1, Christian Boitet**2
*Princess Sumaya University for Technology, Jordan

1d.daoud@psut.edu.jo
**GETALP, LIG, Université Joseph Fourier, France

2Christian.boitet@imag.fr

Abstract: In this paper, we present a comprehensive evaluation of four Arabic stemmers, based on metrics for correctness, strength
and similarity. Two data sets were used in this study. For correctness evaluation, we used a list of 8697 Arabic words grouped into
1606 conceptual classes. For similarity and strength evaluation, we used a list of 72,000 unique Arabic words. Conclusions about
correctness, strength and similarity of the four Arabic stemming algorithms are reported.

Key Words: Arabic Stemmer, Direct Evaluation, Information retrieval, Stemmer Correctness, Stemmer strength, Inter-stemmer
similarity

1 INTRODUCTION
Detecting the surface variations of the same word is one of the main challenges of any type of natural language
processing system. Specifically, the effectiveness for information retrieval depends on its ability to map all those
variations to the same form.
Stemming is the process of automatically revealing a word’s stem. In other words, stemming a word is actually the
removal of all the inflectional morphemes from the word's surface-form. Lemmatization goes a step further in identifying
the citation form of the word, also often called its lemma, typically used to access dictionaries. In many languages, the
inflected or derived wordforms of a lemma have several stems.
Most researchers in the field of Arabic information retrieval evaluated their systems on IR performance, using a testing
system and a ‘test collection' of documents, queries and relevance judgments. This involves substituting different
stemmers to see which gives the best results in terms of performance metrics such as Precision, Recall, and F-measure
[1]. Such task-specific evaluation makes it impossible to identify typical errors a stemmer would commit. Consequently,
this type of evaluation hinders the efforts to devise appropriate solutions and enhancements.
To address this, we use an intrinsic, task-independent evaluation based on correctness, strength and similarity, and apply
it to four Arabic stemmers.
This is the first step in tackling current challenges facing Arabic search engines and developing effective search tools that
could suit the non-concatenative character of the morphology of Arabic.

2 STEMMER CORRECTNESS EVALUATION
The concept of stemmer correctness refers to the capacity of a stemmer to actually merge term variants into a single stem
[2]. Because merging processes are prone to error, diverse studies have been carried out to identify the sources of error.
In stemming procedures, the inaccuracies appear in the form of under-stemming errors, which occur when words that
refer to the same variants are not reduced to the same stem; and over-stemming errors, which occur when words are
stemmed incorrectly because they are not actual variants. An assessment approach for stemming algorithms was
developed by Paice [3], who evaluates the accuracy of a stemmer by counting the under-stemming and over-stemming
errors it commits. His measure provides insights which might help in stemmer and optimization. He introduces three
performance evaluation indices: under-stemming index, over-stemming index, and stemming weight. The under-
stemming index UI is computed as the proportion of pairs from the sample that are not merged even though they belong
to the same group, whereas the over-stemming index OI is computed as the proportion of pairs that belong to different
groups among those that are merged to the same stem.

Given a sample of W different words (wordforms) divided into concept groups, he computes the following for each
group:

• Desired Merge Total (DMT), given by the following formula:

DMT = 0.5n(n-1)

• Desired Non-Merge Total (DNT), given by the following formula:

17Egyptian Journal of Language Engineering, Vol. 1, No. 1, January 2014

DNT = 0.5n(W-n)

where n is the number of words in the group.
The sum of the DMT over all groups produces the Global Desired Merge Total (GDMT) and, likewise, the sum of
DNT’s over all groups yields the Global Desired Non-merge Total (GDNT).
The Unachieved Merge Total (UMT) counts the number of under-stemming errors for each group and is given by the
following formula:





s

i

ii unuUMT
1

)(5.0

where s is the number of distinct stems, ui is the number of instances of each stem. The sum of UMT for all groups yields
the Global Unachieved Merge Total (GUMT). The under-stemming index (UI) is given by:

GDMT

GUMT
UI 

The number of over-stemming errors for each group is counted by the Wrongly-Merged Total (WMT) and is given by:





t

i

isi vnvWMT
1

)(5.0

where t is the number of original groups that share the same stem, ns is the number of instances of that stem, and vt is the
number of stems for group t. The sum of WMT for all groups is the Global Wrongly Merged Total (GWMT). The over-
stemming index (OI) is given by:

GDNT

GWMT
OI 

The Stemming Weight (SW), which is a measure of the strength of the stemmer, is calculated by dividing the Over-
stemming Index OI by the Under-stemming Index UI. Low SW values indicate a weaker stemmer and higher values
indicates a stronger stemmer. A strong stemmer merges a much wider variety of forms, therefore committing many over-
stemming errors. A light stemmer fails to merge semantically related words, therefore committing many under-stemming
errors. Under-stemming errors tend to decrease the Recall in the IR search, while over-stemming errors will deteriorate
Precision. Therefore, correctness metrics facilitate specifying the type of errors made by the stemmers. Consequently, it
helps devising appropriate solutions and enhancements with regard to retrieval systems.

3 STEMMER STRENGTH
The degree to which a stemmer changes words that it stems is called stemmer strength [4]. Stemmer strength is important
because it helps to anticipate recall and precision. There are several ways to measure stemmer strength:

 Number of Words per Conflation Class (WC)—This is the average number of words that are reduced to the

same stem. If the conflation of 100 different words resulted in 25 distinct stems, then the mean number of
words per conflation class would be 4. Stronger stemmers will have more words per conflation class.

 The Index Compression Factor represents the fractional reduction in index size accomplished through the
stemming process, the idea being that the heavier the stemmer, the greater the Index Compression Factor.
This can be calculated by:

IC = Index Compression Factor
N = Number of unique words before stemming
S = number of unique Stems after stemming
IC = (N – S)/N

 The mean Levenshtein distance (LD) between words and their stems1. For example, the Levenshtein distance
between “استعان” and “يستعينون” is 4. Our measure will be the average LD for every word in the original
sample.

1 The Levenshtein distance between two strings is the minimum number of operations needed to transform one string into the other,

where an operation is an insertion, deletion, or substitution of a single character [5].

18 Egyptian Journal of Language Engineering, Vol. 1, No. 1, January 2014

4 INTER-STEMMER SIMILARITY
It is possible to compare two separate stemmers by comparing their outputs. This provides a measure of the similarity (or
conversely, the dissimilarity) between the two algorithms. The approach is to take a set of words and apply both
algorithms in turn, thus producing two output lists [1]. Corresponding stems in the two output lists are then compared to
give a measure of similarity between the stemmers.
Inter-stemmer similarity could provide valuable information for the designers of IR systems by helping them understand
the performance of different stemmers. This type of comparison also helps in developing more efficient stemmers.














































−
−

−=
∑

N
VUMD
VULD

VUSSM
w ww

ww

)(
)(

1100),(

where
U & V are the stemmers being compared,
N = Number of words in the sample
LD = Levenshtein distance
MD = Maximum Distance
Arabic Stemmers under Consideration
Table 1 summarizes the Khoja [5], Light10 [6, 7], Buckwalter [8, 9], and APIR [10] stemming algorithms.

TABLE 1: SUMMARIZATION OF THE FOUR STEMMING ALGORITHMS

Stemmer Type Algorithm Lexical resources
Khoja Root-based Longest-match affix removal Yes
Light10 Stem-based Longest-match affix removal No
Buck++ Stem-based Longest-match affix removal Yes
APIR Stem-based Longest-match and dynamic

normalization
Yes

Khoja’s stemmer removes diacritics, stop words, punctuations, and numbers. It then removes the longest suffix and the
longest prefix. Finally, it matches the remaining word with verbal and noun patterns, to extract the root. It makes use of
several linguistic data files, namely a list of all diacritic characters, punctuation characters, definite articles, and 168 stop
words. A major problem with this type of stemmer is that many word variants are different in meaning, though they
originate from one identical root [11].

Larkey's Light10 stemmer is used not to produce the linguistic root of a given Arabic surface form, but to remove the
most frequent suffixes and prefixes [11].

Buckwalter developed an Arabic morphological analyzer that returns the possible segmentations of an Arabic word. This
analyzer uses three lexicons of possible Arabic prefixes, stems and suffixes, and three compatibility tables to validate the
prefix-stem, stem-suffix, and prefix-suffix combinations. It accepts an Arabic word and produces its possible
segmentations (transliterated into English characters). It cannot be used directly for stemming, as it provides more than
one possible solution for the same word. Thus, we decided to modify it (Buck++) to return the longest stem out of all the
stems that might be generated.

Arabic Parsing for Information Retrieval (APIR) was developed by the first author recently. APIR implements the
longest-match and dynamic normalization approach. It implements a lexical, or dictionary-based, segmentation which
utilizes a lexicon accessed by morphs of the language being analyzed. The input text is scanned (in the right-to-left
writing direction) and matches are returned. The longest (or “maximal”) match at any given point is returned.
The segmentation part uses the strategy of maximal match segmentation, or “best” segmentation. The maximal match
segmentation attempts to minimize the number of words in a sequence of characters by finding the longest matches in the
dictionary at each point in the input. APIR employs as-needed normalization to handle internal inflections and boundary
distortions. In other words, if there is a mismatch at a point caused by one of the long vowels characters (،ى آ، و، ي، ا) or
hamza forms (،ئ ؤ، أ), it will try with another character from each group before starting again.
The lookup dictionary contains only valid Arabic stems without any grammatical or morphological features. Thus, the
cost of building this lexical resource and maintaining it is kept minimal.

19DAOUD & BOITET: Correctness, Strength and Similarity Evaluation of Stemming Algorithms for Arabic

5 EXPERIMENTAL DATA
The word sample we used in testing the correctness of the four stemmers consisted of 8697 distinct inflectional
wordforms collected from Arabic Web sites. We manually categorized them into 1606 conceptual groups. Each group
contains only inflectional wordforms (not derivational variations) and has clear-cut semantic boundaries. As shown in
Table 2, سقط “to fall (Verb)” is not grouped with سقوط “falling (Noun)”. In the same line, سفارة “embassy” is not
grouped with “traveling”, although they are derived from the same root.

TABLE 2: SAMPLES OF CONCEPTUAL GROUPS

Group # n Group # n+1 Group # n+2 Group # n+3 Group # n+4
 تؤید
 تؤیده
 تؤیدھا
 ستؤیده
 سیؤیدونھ
 نؤید
 نؤیدك
 وتؤید
 ونؤید
 ویؤید
 یؤید

 السفارات
 السفارة
 بالسفارة
 سفارات
 سفاراتھا
 سفارة
 سفارتھا
 للسفارات
 للسفارة
 والسفارات
 والسفارة

 السفر
 بالسفر
 سفر
 سفرنا
 سفرھا
 للسفر
 والسفر
 وسفر

 سقط
 سقطت
 سقطوا
 فسقط
 فسقطت
 وسقط
 وسقطت
 وسقطوا

 السقوط
 بالسقوط
 سقوط
 سقوطھ
 سقوطھم
 لسقوط
 للسقوط
 والسقوط
 وسقوط
 وسقوطھم

Regarding the wordlist used for inter-similarity and strength evaluation, we have collected 72,000 Arabic words from the
Web. This wordlist contains different categories of Arabic words, such as nouns, adjectives, verbs, proper names and
transliterated names.

6 STEMMER CORRECTNESS COMPARISONS
A computer program has been written to calculate the UI, OI and SW indices. The program reads the file containing the
words sample in addition to the outputs generated by the Khoja, Light10, Buck++ and APIR stemmers. The results are
listed in Table 3.

TABLE 3: STEMMING PERFORMANCE INDICES FOR THE FOUR STEMMERS

 UI OI SW
Khoja 0.200 0.002286 0.011418
Light10 0.708 0.000236 0.000333
APIR 0.044 0.000025 0.000568
Buck++ 0.161 0.000332 0.002051

Light10 has the highest under-stemming errors, followed by Khoja and Buck++. APIR has the lowest under-stemming
errors at 0.044. The magnitude of differences is significant between APIR and the other three stemmers. With regard to
the over-stemming index, Khoja’s stemmer has the highest value, followed by the Light10 stemmer and then by Buck++.
The lowest OI is recorded by the APIR stemmer, with a very significant difference compared to the other three stemmers.
These results are graphically shown in Figure 1.

UI-OI

0

0.0005

0.001

0.0015

0.002

0.0025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

UI

OI

light10

Khoja

Buck
APIR

Figure 1: UI vs. OI for the four stemmers

We can say that Light10 commits fewer over-stemming errors compared to Khoja’s and Buck++ stemmers, but leaving
many words under-stemmed. On the other hand, Khoja’s stemmer makes fewer under-stemming errors compared to
light10 stemmer, but making huge over- stemming errors. This is reflected in the stemmer weight index (SW), SW index

20 Egyptian Journal of Language Engineering, Vol. 1, No. 1, January 2014

of Khoja’s stemmer is very larger compared to the other stemmers, indicating that Khoja’s stemmer is the strongest one.
What is interesting is the SW of APIR. Its value is less than Khoja and Buck++ but more than light10, indicating that it
makes less over-stemming error and less under-stemming errors (more ideal stemmer). In summary the order of stemmer
strength is:

Khoja> Buck++>APIR>light10

Stemming Weight

0

0.002

0.004

0.006

0.008

0.01

0.012

Khoja Light10 APIR Buck++

Stemmer

SW

Figure 2: Stemmer strength

7 STRENGTH COMPARISONS
In this section, we analyze the strengths of the four stemmers using 3 measures: Levenshtein Distance, Words per
Conflation Class, and Index Compression.

TABLE 4: RESULTS OF STEMMER STRENGTH MEASURES

Stemmer LD WC IC
Light10 1.59 2.14 0.53
APIR 1.89 4.30 0.76
Buck++ 1.95 4.48 0.77
Khoja 2.84 7.17 0.86

The three metrics listed in Table 4 are consistent in ordering the relative strengths of the stemmers. Based on these
metrics, we found that Khoja is the strongest stemmer. We also noticed that both Buck++ and APIR are considerably
weaker than Khoja’s stemmer. This is because Khoja’s stemmer extracts roots, while Buck++ and APIR are stem-based
algorithms. Certainly, on average, the distance between a word and its stem is less than the distance between a word and
its root. Light10 stemmer is a weak stemmer compared to other three stemmers.

Each measure places the stemmers in the following order:

Khoja> Buck++>APIR>light10

 These results correspond exactly with the Stemming Weight results obtained using correctness measures.

8 INTER-STEMMER SIMILARITY COMPARISONS
We have applied the wordlist containing 72,000 entries to the four stemmers. We then calculated the average distance for
all pairs of stems. The results are listed in Table 5 for each pair.

TABLE 5: SIMILARITY MEASURES

Pairs Inter-stemmer similarity Percentage of same stems
APIR-Buck++ 91.23 68.41
Light10-Buck++ 81.6 40.43
APIR-Light10 81.47 39.17
Khoja-Buck++ 69.11 20.07
APIR-Khoja 66.10 15.06
Light10-Khoja 64.01 14.63

21DAOUD & BOITET: Correctness, Strength and Similarity Evaluation of Stemming Algorithms for Arabic

The results suggest that the inter-similarity pairings from most similar to least similar are: APIR-Buck++, Light10-
Buck++, APIR-Light10, Khoja-Buck++, APIR-Khoja and Light10-Khoja.
These results are validated by stemmer strength evaluation. We have seen that APIR and Buck++ are closer to each other
in terms of strength metrics. This is also valid for the inter-similarity metric, as the APIR-Buck++ pair has the highest
relatedness.
We also notice that Light10 is more similar to both Buck++ and APIR than to Khoja, which is also apparent in the
strength measures. The lowest similarity is detected in the pairs involving Khoja’s stemmer which has a very high
strength compared to other stemmers.
Hence, the inter-stemmer similarity measure is in total agreement with the results obtained from strength measures.
However, the inference of similarity pairings from the correctness indices discussed above is not straightforward. In
terms of under-stemming errors, APIR is more similar to Buck++, then to Khoja and finally to Light10. With regard to
over-stemming errors, APIR similarity with Light10 is higher than with Buck++, and its similarity with Khoja is the
lowest.
To demonstrate this, we will try to find the Correctness Similarity metric (CSM). The correctness similarity between two
stemmers can be calculated by finding the difference of UI ratio and OI ratio of the two stemmers. For identical
stemmers, the CSM would be 0. The CSM is given by the following formula:







 −=

v

u

v

u

OI
OI

UI
UIVUCSM),(

where
U & V are the Stemmers being compared,
UI = Under-stemming index
OI = Over-stemming index

TABLE 6: CORRECTNESS SIMILARITY RESULTS

Pairs Correctness Similarity
APIR-Buck++ 9.6
Light10-Buck++ 3
APIR-Light10 6.5
Khoja-Buck++ 5.6
APIR-Khoja 86.9
Light10-Khoja 6.15

Table 6 summarizes the results obtained and compares them with the distance-based similarity in Table 7. We observe
that there is no agreement between the two lists. For example, the APIR-Buck++ pair is very similar in terms of distance,
but not similar in terms of correctness. Hence, we conclude that, as in the case of stemmer strength, inter-stemmer
similarity is not directly related to correctness. Thus, one could have two stemmers which are very similar and yet which
are virtually different in their ability to conflate related words [1].

TABLE 7: CORRECTNESS-BASED VS. DISTANCE-BASED SIMILARITY

Correctness Similarity (high to low) Distance Similarity (high to low)
Light10-Buck++
Khoja-Buck++
Light10-Khoja
APIR-Light10
APIR-Buck++
APIR-Khoja

APIR-Buck++
Light10-Buck++
APIR-Light10
Khoja-Buck++
APIR-Khoja
Light10-Khoja

9 CONCLUSIONS
In this paper we evaluated the correctness, strength of four stemming algorithms (Khoja, Light10, Buck++ and APIR),
and their mutual similarities.
Stemmer correctness, that is, the ability of the stemmer to conflate related words accurately is important, because it
provides insight into the types of errors stemming algorithms commit, and helps devise solutions and enhancements with
regard to retrieval experimentation. Based on the number of under- and over-stemming errors, APIR outperforms other
stemmers significantly.
Stemmer strength measures the amount of alteration on wordlist a stemmer can make. Using stemmer strength is useful
in predicting index size, recall and precision in IR systems. We found that all metrics are consistent in ranking the
relative strength of the four stemmers. Remarkably, this ranking corresponds precisely with the Stemmer Weight (SW)
results.

22 Egyptian Journal of Language Engineering, Vol. 1, No. 1, January 2014

These evaluation methods are not alternative but complementary, and the results presented provide a baseline for further
enhancement and development.

REFERENCES
[1] R. Hooper and C. Paice, "Evaluation Techniques," vol. 2010: Lancaster University, 2006.
[2] C. Galvez and F. d. Moya-Anegón, "An evaluation of conflation accuracy using finite-state transducers,"

Journal of Documentation, vol. 62, pp. 328-349, 2006.
[3] D. P. Chris, "An Evaluation Method for Stemming Algorithms," in Proceedings of the 17th annual international

ACM SIGIR conference on Research and development in information retrieval. Dublin, Ireland: Springer-Verlag
New York, Inc., 1994.

[4] B. F. William and J. F. Christopher, "Strength and Similarity of Affix Removal Stemming Algorithms," SIGIR
Forum, vol. 37, pp. 26-30, 2003.

[5] S. Khoja and R. Garside, "Stemming arabic text." Lancaster, UK. Computer Science Department, Lancaster
University, 1999.

[6] L. S. Larkey and L. Ballesteros, "Improving Stemming for Arabic Information Retrieval: Light Stemming and
Co-occurrence Analysis," presented at SIGIR 2002, 2002.

[7] L. S. Larkey, L. Ballesteros, and M. E. Connell, "Light Stemming for Arabic Information Retrieval " in Arabic
Computational Morphology, A. Soudi, A. v. d. Bosch, and G. Neumann, Eds.: Springer Netherlands, 2007.

[8] T. Buckwalter, "Arabic lexicography," QAMUS, 2002.
[9] LDC, "Buckwalter Morphological Analyzer Version 1.0," Linguistic Data Consortium, 2002.
[10] D. Daoud and H. Qais, "Stemming Arabic Using Longest-Match and Dynamic Normalization," presented at

Arabic Language Technology International Conference (ALTIC) 2011, Bibliotheca Alexandrina (B.A.),
Alexandria, Egypt, 2011.

[11] T. Naglaa, "Stemming the Qur'an," in Proceedings of the Workshop on Computational Approaches to Arabic
Script-based Languages. Geneva, Switzerland: Association for Computational Linguistics, 2004.

BIOGRAPHY

 Daoud M. Daoud received his BSc degree in electrical and computer engineering from Kuwait
University in 1988, his MSc in Computing Science from Glasgow University- UK and his PhD in
Computing Science from Joseph Fourier University – France. Daoud is currently an assistant professor at
PSUT. Recently, he co-founded Ddad IT which a specialized company for Arabic Natural Processing and
Information Retrieval. He also served in Institute of Advanced Studies- United Nations University (1998-
1999). He also worked as a principal investigator for the Arabic part of Universal Networking Language

project (1996-1999). He also served as a director for Next Generation Services department at Paltel (1999-2001). His
main research interests are Natural Language Processing, machine translation, Information Extraction, Information
Retrieval and analysis of Arabic Social Media and Big Data.

 عربية استناداالى قياسات الصحة و القوة والتشابهتجذيع ال وارزمياتختقييم
 كريستيان بواتيت٢** - داوود داوود١*

 جامعة الأميرة سمية، الأردن*
ساجامعة جوزيف فوريير، فرن**

1d.daoud@psut.edu.jo
2Christian.boitet@imag.fr

 :خلاصة

 correctnessصحةال قياسات، استنادا إلى العربية" stemmers"المجذعات ربع منتقييم شامل لأ، قمنا بفي ھذه الورقة
 من قائمة، استخدمنا صحةال لتقييمف .ھذه الدراسة في مجموعتين من البيانات مناواستخدsimilarity. التشابهو strengthوالقوة
الكلمات من ٧٢٠٠٠ تضم والقوة،استخدمناقائمةتشابه لولقياس ا .المفاھيمية التبويباتمن ١٦٠٦ مجمعة في كلمة عربية ٨٦٩٧

 .العربية لتجذيع اللغة خوارزميات أربعالتشابه في والقوة و صحةال الاستنتاجات حول ونعرض في ھذه الورقة. العربية المختلفة

DAOUD & BOITET: Correctness, Strength and Similarity Evaluation of Stemming Algorithms for Arabic 23

