
Correctness, Strength and Similarity Evaluation of 
Stemming Algorithms for Arabic 

Daoud Daoud*1, Christian Boitet**2 
*Princess Sumaya University for Technology, Jordan 

1d.daoud@psut.edu.jo 
**GETALP, LIG, Université Joseph Fourier, France 

2Christian.boitet@imag.fr 

Abstract: In this paper, we present a comprehensive evaluation of four Arabic stemmers, based on metrics for correctness, strength 
and similarity. Two data sets were used in this study. For correctness evaluation, we used a list of 8697 Arabic words grouped into 
1606 conceptual classes. For similarity and strength evaluation, we used a list of 72,000 unique Arabic words. Conclusions about 
correctness, strength and similarity of the four Arabic stemming algorithms are reported.  
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1 INTRODUCTION 
Detecting the surface variations of the same word is one of the main challenges of any type of natural language 
processing system. Specifically, the effectiveness for information retrieval depends on its ability to map all those 
variations to the same form.  
Stemming is the process of automatically revealing a word’s stem. In other words, stemming a word is actually the 
removal of all the inflectional morphemes from the word's surface-form. Lemmatization goes a step further in identifying 
the citation form of the word, also often called its lemma, typically used to access dictionaries. In many languages, the 
inflected or derived wordforms of a lemma have several stems.  
Most researchers in the field of Arabic information retrieval evaluated their systems on IR performance, using a testing 
system and a ‘test collection' of documents, queries and relevance judgments. This involves substituting different 
stemmers to see which gives the best results in terms of performance metrics such as Precision, Recall, and F-measure 
[1]. Such task-specific evaluation makes it impossible to identify typical errors a stemmer would commit. Consequently, 
this type of evaluation hinders the efforts to devise appropriate solutions and enhancements. 
To address this, we use an intrinsic, task-independent evaluation based on correctness, strength and similarity, and apply 
it to four Arabic stemmers.  
This is the first step in tackling current challenges facing Arabic search engines and developing effective search tools that 
could suit the non-concatenative character of the morphology of Arabic.  

2 STEMMER CORRECTNESS EVALUATION 
The concept of stemmer correctness refers to the capacity of a stemmer to actually merge term variants into a single stem 
[2]. Because merging processes are prone to error, diverse studies have been carried out to identify the sources of error. 
In stemming procedures, the inaccuracies appear in the form of under-stemming errors, which occur when words that 
refer to the same variants are not reduced to the same stem; and over-stemming errors, which occur when words are 
stemmed incorrectly because they are not actual variants. An assessment approach for stemming algorithms was 
developed by Paice [3], who evaluates the accuracy of a stemmer by counting the under-stemming and over-stemming 
errors it commits. His measure provides insights which might help in stemmer and optimization. He introduces three 
performance evaluation indices: under-stemming index, over-stemming index, and stemming weight. The under-
stemming index UI is computed as the proportion of pairs from the sample that are not merged even though they belong 
to the same group, whereas the over-stemming index OI is computed as the proportion of pairs that belong to different 
groups among those that are merged to the same stem. 

 
Given a sample of W different words (wordforms) divided into concept groups, he computes the following for each 
group: 

• Desired Merge Total (DMT), given by the following formula: 
 

DMT = 0.5n(n-1)  
 

• Desired Non-Merge Total (DNT), given by the following formula: 
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DNT = 0.5n(W-n)  

 
 

where n is the number of words in the group. 
The sum of the DMT over all groups produces the Global Desired Merge Total (GDMT) and, likewise, the sum of 
DNT’s over all groups yields the Global Desired Non-merge Total (GDNT).  
The Unachieved Merge Total (UMT) counts the number of under-stemming errors for each group and is given by the 
following formula: 
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where s is the number of distinct stems, ui is the number of instances of each stem. The sum of UMT for all groups yields 
the Global Unachieved Merge Total (GUMT). The under-stemming index (UI) is given by: 

GDMT
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The number of over-stemming errors for each group is counted by the Wrongly-Merged Total (WMT) and is given by: 
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where t is the number of original groups that share the same stem, ns is the number of instances of that stem, and vt is the 
number of stems for group t. The sum of WMT for all groups is the Global Wrongly Merged Total (GWMT). The over-
stemming index (OI) is given by: 

 

GDNT

GWMT
OI   

The Stemming Weight (SW), which is a measure of the strength of the stemmer, is calculated by dividing the Over-
stemming Index OI by the Under-stemming Index UI. Low SW values indicate a weaker stemmer and higher values 
indicates a stronger stemmer. A strong stemmer merges a much wider variety of forms, therefore committing many over-
stemming errors. A light stemmer fails to merge semantically related words, therefore committing many under-stemming 
errors. Under-stemming errors tend to decrease the Recall in the IR search, while over-stemming errors will deteriorate 
Precision. Therefore, correctness metrics facilitate specifying the type of errors made by the stemmers. Consequently, it 
helps devising appropriate solutions and enhancements with regard to retrieval systems.  

3 STEMMER STRENGTH  
The degree to which a stemmer changes words that it stems is called stemmer strength [4]. Stemmer strength is important 
because it helps to anticipate recall and precision. There are several ways to measure stemmer strength: 

 
 Number of Words per Conflation Class (WC)—This is the average number of words that are reduced to the 

same stem. If the conflation of 100 different words resulted in 25 distinct stems, then the mean number of 
words per conflation class would be 4. Stronger stemmers will have more words per conflation class. 

 The Index Compression Factor represents the fractional reduction in index size accomplished through the 
stemming process, the idea being that the heavier the stemmer, the greater the Index Compression Factor. 
This can be calculated by:  

IC = Index Compression Factor  
N = Number of unique words before stemming  
S = number of unique Stems after stemming  
IC = (N – S)/N 

 The mean Levenshtein distance (LD) between words and their stems1. For example, the Levenshtein distance 
between “استعان” and “يستعينون” is 4. Our measure will be the average LD for every word in the original 
sample.  

 

                                                 
1 The Levenshtein distance between two strings is the minimum number of operations needed to transform one string into the other, 

where an operation is an insertion, deletion, or substitution of a single character [5]. 
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4 INTER-STEMMER SIMILARITY 
It is possible to compare two separate stemmers by comparing their outputs. This provides a measure of the similarity (or 
conversely, the dissimilarity) between the two algorithms. The approach is to take a set of words and apply both 
algorithms in turn, thus producing two output lists [1]. Corresponding stems in the two output lists are then compared to 
give a measure of similarity between the stemmers. 
Inter-stemmer similarity could provide valuable information for the designers of IR systems by helping them understand 
the performance of different stemmers. This type of comparison also helps in developing more efficient stemmers.  
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where 
U & V are the stemmers being compared,  
N = Number of words in the sample  
LD = Levenshtein distance  
MD = Maximum Distance 
Arabic Stemmers under Consideration 
Table 1 summarizes the Khoja [5], Light10 [6, 7], Buckwalter [8, 9], and APIR [10] stemming algorithms.  
 

TABLE 1: SUMMARIZATION OF THE FOUR STEMMING ALGORITHMS 

Stemmer Type Algorithm Lexical resources 
Khoja Root-based Longest-match affix removal Yes 
Light10 Stem-based Longest-match affix removal No 
Buck++ Stem-based Longest-match affix removal Yes 
APIR Stem-based Longest-match and dynamic 

normalization 
Yes 

 
Khoja’s stemmer removes diacritics, stop words, punctuations, and numbers. It then removes the longest suffix and the 
longest prefix. Finally, it matches the remaining word with verbal and noun patterns, to extract the root. It makes use of 
several linguistic data files, namely a list of all diacritic characters, punctuation characters, definite articles, and 168 stop 
words. A major problem with this type of stemmer is that many word variants are different in meaning, though they 
originate from one identical root [11].  

 
Larkey's Light10 stemmer is used not to produce the linguistic root of a given Arabic surface form, but to remove the 
most frequent suffixes and prefixes [11].  

 
Buckwalter developed an Arabic morphological analyzer that returns the possible segmentations of an Arabic word. This 
analyzer uses three lexicons of possible Arabic prefixes, stems and suffixes, and three compatibility tables to validate the 
prefix-stem, stem-suffix, and prefix-suffix combinations. It accepts an Arabic word and produces its possible 
segmentations (transliterated into English characters). It cannot be used directly for stemming, as it provides more than 
one possible solution for the same word. Thus, we decided to modify it (Buck++) to return the longest stem out of all the 
stems that might be generated.  

 
Arabic Parsing for Information Retrieval (APIR) was developed by the first author recently.  APIR implements the 
longest-match and dynamic normalization approach. It implements a lexical, or dictionary-based, segmentation which 
utilizes a lexicon accessed by morphs of the language being analyzed. The input text is scanned (in the right-to-left 
writing direction) and matches are returned. The longest (or “maximal”) match at any given point is returned.  
The segmentation part uses the strategy of maximal match segmentation, or “best” segmentation. The maximal match 
segmentation attempts to minimize the number of words in a sequence of characters by finding the longest matches in the 
dictionary at each point in the input. APIR employs as-needed normalization to handle internal inflections and boundary 
distortions. In other words, if there is a mismatch at a point caused by one of the long vowels characters (،ى آ، و، ي، ا) or 
hamza forms (،ئ ؤ، أ), it will try with another character from each group before starting again. 
The lookup dictionary contains only valid Arabic stems without any grammatical or morphological features. Thus, the 
cost of building this lexical resource and maintaining it is kept minimal.  

 

19DAOUD & BOITET: Correctness, Strength and Similarity Evaluation of Stemming Algorithms for Arabic



5 EXPERIMENTAL DATA 
The word sample we used in testing the correctness of the four stemmers consisted of 8697 distinct inflectional 
wordforms collected from Arabic Web sites. We manually categorized them into 1606 conceptual groups. Each group 
contains only inflectional wordforms (not derivational variations) and has clear-cut semantic boundaries. As shown in 
Table 2, سقط “to fall (Verb)” is not grouped with سقوط “falling (Noun)”. In the same line, سفارة “embassy” is not 
grouped with “traveling”, although they are derived from the same root. 

 

TABLE 2: SAMPLES OF CONCEPTUAL GROUPS 

Group # n Group # n+1 Group # n+2 Group # n+3 Group # n+4 
 تؤید
 تؤیده
 تؤیدھا
 ستؤیده
 سیؤیدونھ
 نؤید
 نؤیدك
 وتؤید
 ونؤید
 ویؤید
 یؤید

 السفارات
 السفارة
 بالسفارة
 سفارات
 سفاراتھا
 سفارة
 سفارتھا
 للسفارات
 للسفارة
 والسفارات
 والسفارة

 السفر
 بالسفر
 سفر
 سفرنا
 سفرھا
 للسفر
 والسفر
 وسفر

 سقط
 سقطت
 سقطوا
 فسقط
 فسقطت
 وسقط
 وسقطت
 وسقطوا

 السقوط
 بالسقوط
 سقوط
 سقوطھ
 سقوطھم
 لسقوط
 للسقوط
 والسقوط
 وسقوط
 وسقوطھم

 
Regarding the wordlist used for inter-similarity and strength evaluation, we have collected 72,000 Arabic words from the 
Web. This wordlist contains different categories of Arabic words, such as nouns, adjectives, verbs, proper names and 
transliterated names.  

6 STEMMER CORRECTNESS COMPARISONS 
A computer program has been written to calculate the UI, OI and SW indices. The program reads the file containing the 
words sample in addition to the outputs generated by the Khoja, Light10, Buck++ and APIR stemmers. The results are 
listed in Table 3. 

 

TABLE 3: STEMMING PERFORMANCE INDICES FOR THE FOUR STEMMERS 

 UI OI SW 
Khoja 0.200 0.002286 0.011418 
Light10 0.708 0.000236 0.000333 
APIR 0.044 0.000025 0.000568 
Buck++ 0.161 0.000332 0.002051 

 
Light10 has the highest under-stemming errors, followed by Khoja and Buck++. APIR has the lowest under-stemming 
errors at 0.044. The magnitude of differences is significant between APIR and the other three stemmers. With regard to 
the over-stemming index, Khoja’s stemmer has the highest value, followed by the Light10 stemmer and then by Buck++. 
The lowest OI is recorded by the APIR stemmer, with a very significant difference compared to the other three stemmers. 
These results are graphically shown in Figure 1.  
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Figure 1: UI vs. OI for the four stemmers 

 
We can say that Light10 commits fewer over-stemming errors compared to Khoja’s and Buck++ stemmers, but leaving 
many words under-stemmed. On the other hand, Khoja’s stemmer makes fewer under-stemming errors compared to 
light10 stemmer, but making huge over- stemming errors. This is reflected in the stemmer weight index (SW), SW index 
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of Khoja’s stemmer is very larger compared to the other stemmers, indicating that Khoja’s stemmer is the strongest one. 
What is interesting is the SW of APIR. Its value is less than Khoja and Buck++ but more than light10, indicating that it 
makes less over-stemming error and less under-stemming errors (more ideal stemmer). In summary the order of stemmer 
strength is: 

 
Khoja> Buck++>APIR>light10 
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Figure 2: Stemmer strength 

7 STRENGTH COMPARISONS 
In this section, we analyze the strengths of the four stemmers using 3 measures: Levenshtein Distance, Words per 
Conflation Class, and Index Compression.  

 

TABLE 4: RESULTS OF STEMMER STRENGTH MEASURES 

Stemmer LD WC IC 
Light10 1.59 2.14 0.53 
APIR 1.89 4.30 0.76 
Buck++ 1.95 4.48 0.77 
Khoja 2.84 7.17 0.86 

 
The three metrics listed in Table 4 are consistent in ordering the relative strengths of the stemmers. Based on these 
metrics, we found that Khoja is the strongest stemmer. We also noticed that both Buck++ and APIR are considerably 
weaker than Khoja’s stemmer. This is because Khoja’s stemmer extracts roots, while Buck++ and APIR are stem-based 
algorithms. Certainly, on average, the distance between a word and its stem is less than the distance between a word and 
its root. Light10 stemmer is a weak stemmer compared to other three stemmers.  

Each measure places the stemmers in the following order: 
 
Khoja> Buck++>APIR>light10 
 

    These results correspond exactly with the Stemming Weight results obtained using correctness measures. 

8 INTER-STEMMER SIMILARITY COMPARISONS 
We have applied the wordlist containing 72,000 entries to the four stemmers. We then calculated the average distance for 
all pairs of stems. The results are listed in Table 5 for each pair. 

 

TABLE 5: SIMILARITY MEASURES 

Pairs Inter-stemmer similarity Percentage of same stems 
APIR-Buck++ 91.23 68.41 
Light10-Buck++ 81.6 40.43 
APIR-Light10 81.47 39.17 
Khoja-Buck++ 69.11 20.07 
APIR-Khoja 66.10 15.06 
Light10-Khoja 64.01 14.63 
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The results suggest that the inter-similarity pairings from most similar to least similar are: APIR-Buck++, Light10-
Buck++, APIR-Light10, Khoja-Buck++, APIR-Khoja and Light10-Khoja.  
These results are validated by stemmer strength evaluation. We have seen that APIR and Buck++ are closer to each other 
in terms of strength metrics. This is also valid for the inter-similarity metric, as the APIR-Buck++ pair has the highest 
relatedness.  
We also notice that Light10 is more similar to both Buck++ and APIR than to Khoja, which is also apparent in the 
strength measures. The lowest similarity is detected in the pairs involving Khoja’s stemmer which has a very high 
strength compared to other stemmers. 
Hence, the inter-stemmer similarity measure is in total agreement with the results obtained from strength measures. 
However, the inference of similarity pairings from the correctness indices discussed above is not straightforward. In 
terms of under-stemming errors, APIR is more similar to Buck++, then to Khoja and finally to Light10. With regard to 
over-stemming errors, APIR similarity with Light10 is higher than with Buck++, and its similarity with Khoja is the 
lowest.  
To demonstrate this, we will try to find the Correctness Similarity metric (CSM). The correctness similarity between two 
stemmers can be calculated by finding the difference of UI ratio and OI ratio of the two stemmers. For identical 
stemmers, the CSM would be 0. The CSM is given by the following formula: 
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where 
U & V are the Stemmers being compared,  
UI = Under-stemming index  
OI = Over-stemming index  
 

TABLE 6: CORRECTNESS SIMILARITY RESULTS 

Pairs Correctness Similarity 
APIR-Buck++ 9.6 
Light10-Buck++ 3 
APIR-Light10 6.5 
Khoja-Buck++ 5.6 
APIR-Khoja 86.9 
Light10-Khoja 6.15 

 
Table 6 summarizes the results obtained and compares them with the distance-based similarity in Table 7. We observe 
that there is no agreement between the two lists. For example, the APIR-Buck++ pair is very similar in terms of distance, 
but not similar in terms of correctness. Hence, we conclude that, as in the case of stemmer strength, inter-stemmer 
similarity is not directly related to correctness. Thus, one could have two stemmers which are very similar and yet which 
are virtually different in their ability to conflate related words [1]. 

TABLE 7: CORRECTNESS-BASED VS. DISTANCE-BASED SIMILARITY 

Correctness Similarity (high to low) Distance Similarity (high to low) 
Light10-Buck++ 
Khoja-Buck++ 
Light10-Khoja 
APIR-Light10 
APIR-Buck++ 
APIR-Khoja 

APIR-Buck++ 
Light10-Buck++ 
APIR-Light10 
Khoja-Buck++ 
APIR-Khoja 
Light10-Khoja 

9 CONCLUSIONS  
In this paper we evaluated the correctness, strength of four stemming algorithms (Khoja, Light10, Buck++ and APIR), 
and their mutual similarities.  
Stemmer correctness, that is, the ability of the stemmer to conflate related words accurately is important, because it 
provides insight into the types of errors stemming algorithms commit, and helps devise solutions and enhancements with 
regard to retrieval experimentation. Based on the number of under- and over-stemming errors, APIR outperforms other 
stemmers significantly.  
Stemmer strength measures the amount of alteration on wordlist a stemmer can make. Using stemmer strength is useful 
in predicting index size, recall and precision in IR systems. We found that all metrics are consistent in ranking the 
relative strength of the four stemmers. Remarkably, this ranking corresponds precisely with the Stemmer Weight (SW) 
results.  
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These evaluation methods are not alternative but complementary, and the results presented provide a baseline for further 
enhancement and development. 
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  :خلاصة

 correctnessصحةال قياسات، استنادا إلى العربية" stemmers"المجذعات  ربع منتقييم شامل لأ، قمنا بفي ھذه الورقة
 من  قائمة، استخدمنا صحةال لتقييمف .ھذه الدراسة في مجموعتين من البيانات مناواستخدsimilarity. التشابهو  strengthوالقوة
الكلمات من ٧٢٠٠٠ تضم والقوة،استخدمناقائمةتشابه لولقياس ا  .المفاھيمية التبويباتمن  ١٦٠٦  مجمعة في كلمة عربية ٨٦٩٧

 .العربية لتجذيع اللغة خوارزميات أربعالتشابه في والقوة و صحةال الاستنتاجات حول ونعرض في ھذه الورقة. العربية المختلفة
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