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ABSTRACT 

The paper considers the problem of stabilizing and control of a linear 
time invariant multivariable system, representing power system dynamics, 
using two techniques : The first technique adopts the decentralized 
stabilization approach, while the second depends upon the decomposition 
coordination approach. Both techniques arc applied to an interconnected 
power system consisting of three synchronous machines. The simulation 
results proved the capability of both techniques in stabilization and control of 
the system under consideration. 

1. INTRODUCTION 

Economics in system design are achieved with large unit sizes, higher 
per unit reactance for generating and transmission equipment designs. These 
modern trends however reduce the dynamic stability of synchronous 
machines so that the phenomenon of their stability under small perturbations 
has received a great deal of attention. Previous work has been devoted to a 
study of the optimal control of multimachine power systems. This is done by 
controlling all the machines by one optimal controller called centralized 
controller [1•3,7]. However due to .he exponential rise in power system 
interconnections, this centralized control is practically undesirable for large 
power systems due to : 





2. POWER SYSTEM MODEL DESCRIPTION 
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1) Computational difficulties encountered in solving a single Riccati equation 
of large order. 

2) High costs of the communication system need for transmitting all the state 
variable's to the centralized controller. 

3) The stability of the system may be lost if a. fault occurs in the 
communication system. 

The above difficulties can be alleviated by decomposing the original 
problem into several subproblems, which are much easier to solve. In the first 
part of this paper, a decentralized stabilization technique [8-10] is presented 
and examined through its application to an interconnected power system. The 
second part of this paper focuses on elaborating of decentralized control 
using decomposition-coordination technique. The later one is also examined 
by applying the elaborated control to the same system. The second technique 
is characterized by its simplicity of algorithm and its applicability for 
practical implementation. 

Figure (1) 

Figure (1) shows the configuration of an interconnected power system, 
earzh subsystem is assumed to have one synchronous machine.. This is used as 
.n example in this styudy. The details of this system is found in appendix (1). 
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In [2], it is shown that the dynamics of the interconnected power 
system of Figure (1) may be described by the following state equation (for 
small disturbances about a given operating point). 

A 
).( (t ) = A • x (t ) + B 	u (t ) 	 ( 1 ) 

x(to) = xo  

Where : 

x(t) is an n-dimensional composite state vector, 

u(t) is an m-dimensional composite control vector, and 

A and B are constant matrices of dimensions n x n and n x m respectively. 

This composite system, S, may be described as an interconnection of N 
subsystems S 1  , S2, ... SN  [3]. 

(t ) = [A + H] • x 	) + B • u 	) 	( 2 ) 

Where : 

uT {uT T u 	T] xT = [x1
T  x2

T  . . . xn  1 2 	un and 

A=A+H.  

N 
For subsystem S-, xi(t) is an n.-dimensional state vector with n = 	ni 

N 
and UP) is an m;-dimensional vector with m = E mi  . Also, 

1=1 
A = block diagonal [A1 , A2, ... AN], 
B = block diagonal [B1 , B2, ... BN], and 
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- 0 	Al2 •• • Ain 
H = A21 0 	... A2n 

A ni An2 . • 0 

H2 
• • • 

Hn 

is the interconnection matrix. Where A1, A1 , and 13, are ni x n, , n, x , and n, 
x mi  constant matrices, All pairs (A1 , and B,) are assumed controllable. All 
matrices I3, are assumed to be of full rank mi. 

Associated with each subsystem S, is a performance index J, of the form : 

00 
J 	 (x 	Q 	X ' + UT.  R 	tii)dt • 

2 0 
(3) 

Where Q is an n, x rt, positive semidefinite matrix and It, is an nt, x 
positive definite matrix. 

The problem is how to find the u1  (i = 1, 2, ... , n) which minimize 
and guarantee the stability of the overall system S. 

3. DECENTRALIZED STABILIZATION STRATEGY 

Our objective is find the U1  of the form : 

Ui  = - K, X, , i = 1, 2, . . . , N. 	 (4) 

Which minimize equation (3) and guarantee the stability of the overall 
system S given by : 

(t ) 	[ A + H — B K ] • x 	) 	 ( 5 ) 

With K = block diagonal [K1 , K2, ... KA. This is given in literature [3]. 

The regulators of equation (4) are called static controllers. The 
necessary condition for stabilization by local static regulators is that the 
decentralized fixed modes to be stable. These modes are the eigen-values of 
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the closed loop matrix (5) that are common with the eig en-values of A for 
any matrix K [4]. However, this condition is in factnecessary and sufficient 
for stabilization by local dynamic controller [4]. 

Sufficient conditions for solving this problem using loost static 
controllers is derived [4], consider the decoupled subsyste.:-ns SI , S2, ... SN in 
which the interaction matrix FI is assumed, for a white, to be zero and 
described by : 

k(t) = A • x(t) + 	B i • 	(t), i = 1, 2, . . . , N 	( 6 ) 

Also, the notion of exponential stability is adopted [5] for the isolated 
subsystems of equation (6). i.e., the solution of equation (6) should satisfy 

—> 0 as t -+ co where a > 0. In other words, the closed loop system poles 
will be to the left of Re (s) = - a. 

In this case, the system will be exponentially stable with degree a. 
Each subsystem Si  ( I = 1, 2, ... , N ) described by equation (6) can be 
exponentially stabilized with degree a and minimizes : 

(x 1,7  Qi Xi + ui Ri ui) e 2a• 	d t 	( 7 ) 
2 0 

When the control vectors are given by : 

ui  = - Ri 	BiT  Pi  Xi 	i = 1, 2, 	, N 
( 8 ) 

Where Pi  is the symmetric positive definite solution of the algebraic matrix 
Riccati equation : 

Pi  ( Ai  + a I ) + ( Ai  + a I ) T  P, + 	- Pi  Bi  F., 1  BiT  Pi 	0 
( 9 ) 

Using the control ui  of equation (8), the composite system represented by 
equation (2) is described by : 
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)c (t ) = [ A — B R 	P + H] 	x (t.) 	( 1 0 ) 

Where R-' = block diagonal [ 	], P = block diagonal [ Q1  ], ( I = 1, 2, ... , 
N). The response of the interaction will change the stability, and it is needed 
to obtain a sufficient condition to guarantee the stability of the overall 
systems. This is given in [3]. 

However this technique solves the problem of design of decentralized 
of control laws which guarantee the stability of the system, it suffers from 
high computational effort and requirements. 

In the next part, we shall offer simple algorithm to overcome the above 
mentioned drawbacks. The algorithm depends on decomposition 
coordination approach. 

4. DECENTRALIZED CONTROL STRATEGY 

In this case, the dynamic model must be represented in discrete form 
arid it is assumed fhat the control structure is formed of local agents, acting 
directly on the process [6]. Each of them (Which may• present a mini or 
microcomputer) applies a part of control law. The process itself decomposed 
into subsystems, each is characterized by state NI(  evolving under the control 
and U,k and interconnections Vi k due to the other subsystems is then : 

Xik+ 1 = Aii Xik Bii uik Vik 

With : 

Vik = X Aij Xi k 
j#1 

The criterion to be minimized is : 

1  

j 	 (Xik +1 Qi Xik + 1 + utk Ri uik 
k 

(12) 
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For simplicity, the matrices Q, Rare blockdiagonal. The part of the global 
criterion affected by each agent is then [6] : 

1  
2 Xik + 1 + 	Ri ulk [Xik+ 1 Qi 

So, the local optimization problem becories 

Min Cik = Jik Pik Uik 

Subjected to Xi 1(.1_1 = A11 Xik 0" 	Uik 	Vik. This is true :.fJ is convex 
function. The local control lay is simply given by : 

Uik = - [ Bii  Q, Eiji + R11]-1 l BiiT  Qi Ali Xik Bii Q Vik rik 

= G, Xi k + Li Vik 

Pik is called the coordination vector. For more details, see I 61 

5. APPLICATION OF STABILIZATION Al\ D CONTROL 
STRATEGIES TO POWER SYSTEMS 

The above decentralized control and stabilization techniques are 
applied to an interconnected power system shown in figure (1). Each 
subsystem is assumed to be represented by one synchronous machine. The 
system model is described in the state variable form by the equations : 

X = AX + Bu and 
Y = CX 

The vectors X, Y and U are given by : 

X = [AS, M2 M3 Acof Aco2 Aco3 Ain Aif2 Aif3 Avn Avf2 Aiff3]t , 
y= [AS! A62 A83 Acoi Aco2 Aco3 Avt, Av(2 Avo it, and 
u = [tin uf2 uf3 ]t. 

(13)  

(14)  

The control tin, uf2, and uf3 are field regulator stabilizing signals. The 
disturbance is assumed as an initial perturbation of 0.02 radians in A. 
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Several studies have to be investigated from the viewpoint of 
performance. Figures (2), (3), and (4) display the dynamic behavior of M1, 
M2, and 083  respectively using the previous strategies given in sections (3) 
and (4). 

The figures point to good 'damping and minimum steady state errors of 
the responses when using the proposed controllers. 

CONCLUSION 

The problem of stabilization and control of interconnected power 
systems has been considered in this paper. Two strategies are developed for 
constructing the required decentralized control laws,. These techniques are 
useful for large scale power systems where the global solution is not possible 
either from computation or implementation view points. 

It is evident that the second technique does not require high 
computational requirements and also more applicable than the first technique. 
Moreover, the control law obtained by the first technique is quasioptional in 
case of cutting the links between the two levels. 

Figure (2) : Dynamic response A6,. 
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Figure (3) : Dynamic response 462. 

Figure (4) : Dynamic response 453. 

Decentralized standard controller without coordination 
Decentralized standard controller with coordinaton 
Decentralized stabilization 
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APPENDIX (1) 

machine parameters are : 

Network and loads •  
R12 

X13 X23 

Pb2 = 
VD3 

P12 = 
Q13 

0.025 
0.5 

0.5 
0.0 
0.5 
0.5 

X12 = 0.25 
Pb1 = 0.5  

Qb2 = 0.3 
P11 = 0.5 
Q12 = 0.5 

R13 = R23 = 0.05 
Qbi = - 0.2 

VD3 = 1.0 
Q11 = 0.0 
P13 = 1.0 

Machine and regulators :  
The three machines are identical and their parameters are given by : 

Xd = 1.2 
ra  = 0.02 
f = 50 c/s 

Note :  
All quantities are in p.u. unless otherwise stated. 
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Nomenclature 

0 
r 
p. u. 
8; 
A6 
Ao) 

Vti 

Pti 
Qti 

Fibl Qbi 
Ph Qii 

Subscript refers to subsystem No. i. 
Subscript denotes an infinite condition. 
Subscript denotes a reference condition. 
per unit. 
Rotor angle, radians. 
Rotor angle deviation, radians. 
Angular velocity deviation, radlsec. 
Rated angular velocity, rad/sec. 
Magnitude of machine terminal voltage. 
Active power output of the machine. 
Reactive power output of the machine. 
Active and reactive power at network bus. 
Active and reactive power of a load. 
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