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Abstract 
This paper presents an extension to the predation model using the optimal control theory 

to obtain the optimal paths for the prey and predator levels for each type. These levels were 

represented as state variables for the optimal control problem, and also for the optimal 

paths for the levels of other prey and predator which were represented as control variables. 

In this direction, we will use the Maple program to solve the numerically controlled system 

based on nonlinear ordinary differential equations and using some constraints on the prey 

and predator numbers. The objective function is determined to reduce the lost numbers of 

all prey and predator at the end of the predation period to a minimum value in specific area. 

There are three different cases examined to reflect the effect of presence or absence the 

carrying capacity for the prey, and the effect of presence non-natural deterioration for the 

two species, and finally the effect of additional migration of two species. 

 

 

1 Introduction:   
The simple type of the predation model is describing the process of predation between the 

prey and the predator at the specified area. The model equations frequently are used to 

describe the dynamics of biological systems in which two species interact, one as a 

predator and the other as a prey. This model makes a number of assumptions, not 

necessarily realizable in nature, about the environment and evolution of the predator and 

prey populations: 

The prey finds ample food at all times. The food supply of the predator depends entirely 

on the size of the prey. The rate of change of population is proportional to its size. During 

the process, the environment does not change. The predators have limitless appetite. 

________________________________________________________________________ 

Keywords: Predation model, Natural deterioration, Migration rate, Optimal control problem, 

Nonlinear ordinary differential equations, Minimization. 
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As nonlinear ordinary differential equations, the solution is deterministic and continuous. 

This implies that the generations of both predator and prey are continually overlapping. 

 

The next equations represent the instantaneous growth rates of the prey and the predator: 

 

 

 

 

dy
y x y y

dt
        

 

Where {x , y } represent the numbers of prey and predator respectively, and {dx
dt

, }dy

dt
 

represent the instantaneous growth rates of prey and predator respectively, and { , ,  

and  } are real positive parameters. The prey are assumed to have an unlimited food 

supply, and to reproduce exponentially unless subject to predation. This exponential 

growth is represented above by the term { x }. The rate of predation upon the prey is 

assumed to be proportional to the rate at which the predators and the prey meet. This is 

represented above by the term { x y   }. If either x or y is zero then there can be no 

predation process. With these two terms the equation above can be interpreted as follows: 

the rate of change of the prey's population is given by its own growth rate minus the rate 

at which it is preyed upon. In the second equation above, the term { x y   } represents 

the growth of the predator population. Note the similarity to the predation rate. However, 

a different constant is used as the rate at which the predator population grows, is not 

necessarily equal to the rate at which it consumes the prey. The term { y  } represents 

the loss rate of the predators. It leads to an exponential decay in the absence of prey. Hence 

the equation expresses that the rate of change of the predator's population depends upon 

the rate at which it consumes prey minus its intrinsic death rate. In the model system, the 

predators thrive when there is plentiful the prey but, ultimately, outstrip their food supply 

and decline. As the predator population is low the prey population will increase again. 

These dynamics continue in a cycle of growth and decline.  The predation model is referred 

as Lotka–Volterra model. The equations of this model  is an example of 

Kolmogorov model [7, 5, 12] which is a more general framework that can model the 

dynamics of ecological systems with predator–prey interactions, competition, disease, and 

mutualism. The Lotka–Volterra model was initially proposed by Lotka in the theory of 

autocatalytic chemical reactions in 1910 [14, 10].  The model was later extended to include 

density dependent prey growth and a functional response of the form developed, a model 

that has become known as the Rosenzweig and McArthur model [17].  Both the Lotka–

Volterra and Rosenzweig-MacArthur models have been used to explain the dynamics of 

dx
x x x y

dt
     
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natural populations of predator and prey [9, 13]. In the late 1980s, an alternative to the 

Lotka–Volterra predator-prey model is Arditi and Ginzburg model [2]. The Lotka–Volterra 

equations have a long history of use in economic theory [1,6,8,11]. 

Alexandra [3] proposed two extensions of the Lotka-Volterra competition model [15, 18]. 

The first one is inspired by the innovation component that is a fundamental part of the 

standard Bass model [4] and permits one of the principal drivers of adoptions in the markets 

to be taken into account.  

The second extension allows that the Lotka-Volterra model may become diachronic by 

simply adjoining a standard Bass model [4] that is able to capture the diffusion of the first 

competitor in its stand-alone period. 

We could cite, among others, a work by Morris and Pratt [16] that proposed an application 

of the Lotka-Volterra competition model in a market in which populations are competitors 

that contend for market shares to obtain a competitive advantage. Their analysis describes 

the evolution of the diffusion model of the second competitor that invades the market with 

respect to the first competitor as a function of parameters of the models, classifying the 

final situation in defined classes. In this case, they consider forcedly the two competitors 

as if they were synchronous, even if it is not clearly so. 

The carrying capacity of a biological species in an environment is the maximum 

population size of the species that the environment can sustain indefinitely, given the 

food, habitat, water, and other necessities available in the environment.  

The carrying capacity was originally used to determine the number of animals that could 

graze on a segment of land without destroying it. Later, the idea was expanded to more 

complex populations, like humans. The carrying capacity of an environment may vary for 

different species and may change over time due to a variety of factors including: food 

availability, water supply, environmental conditions and living space.  

 

This paper presents the predation model with some modifications using the optimal control 

theory. We presented an objective function which represents the lost numbers of all species 

during the predation period. Also, specifying the states variables which represent the levels 

of two origin species.  

The control variables are represented as another prey and predator at the same specified 

area. We will use three cases for this model. The first one presents the model without 

carrying capacity for the prey, and, without non-natural deterioration for two species and 

additive migration for the two species. The second one presents the non-natural 

deterioration for the two species, additional to the presences of carrying capacity for the 

prey. Note that: the deterioration rates are non-natural deterioration rates but resulting in 

the predation process and any circumstances in the environment. Finally, the third one 

presents the model, additional to the presences of carrying capacity for the prey, with 

deterioration and migration.  

https://en.wikipedia.org/wiki/Arditi%E2%80%93Ginzburg_equations
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Species
https://en.wikipedia.org/wiki/Natural_environment
https://en.wikipedia.org/wiki/Habitat
https://en.wikipedia.org/wiki/Drinking_water
https://en.wikipedia.org/wiki/Resource
https://en.wikipedia.org/wiki/Environment_(biophysical)
https://en.wikipedia.org/wiki/Food_security
https://en.wikipedia.org/wiki/Food_security
https://en.wikipedia.org/wiki/Water_supply
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Note that: the migration rates are additive migration that exceeds the numbers of two 

species.  

 

This paper is organized as follow: Sections 2, 3 and 4 present the first, second and third 

cases respectively with a numerical examples for each case. Finally, Section 5 summarizes 

the results and gives some conclusions. 

 

2. First Case 
In this section, we will present the model without deterioration, migration and carrying 

capacity for the prey. We will use the variable 
1x  to represent the numbers of prey and the 

variable 
2x  to represent the numbers of predator. An objective function is minimizing the 

total lost numbers, 0x (T), of all species at the end of the predation period T according to 

some constraints on the rates of growth of prey and predator. 

 

 

We can use the following notations: 

1( )x t  : Prey's numbers at the time t. 

( )
2

x t : Predator's numbers at the time t. 

1( )u t  : Another prey's numbers at the time t . 

2( )u t :  Another predator's numbers at the time t. 

   : Growth rate of prey. 

   : Ingestion rate of predators. 

   : Prey's and predator's assimilation efficiency. 

   : Predator's mortality rate. 

1q  : Presence rate of another prey. 

2q : Presence rate of another predator. 

t :  Time. 

T :  Length of predation period. 

( )0x t :  Lost numbers of all species at time t. 

 

The total lost function,  which we need to minimize, is determined as: 

 

1 2

2 2

0 1 2 1 2 1 2(T) ( ) ( ) ( ) ( ) ( ) ( ) .[ ]
T

o

x x t x t x t x t q q tu t t du          (1) 

 

Subject to: 

https://en.wikipedia.org/wiki/Predation
https://en.wikipedia.org/wiki/Predation
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1
1 1 1 12 .[ ]dx

x x x
d

u
t

q                                         (2) 

 

 
2

2 2 2 21 .[ ]dx
x x x

dt
q u                                            (3) 

 

For All parameters 1, , , ,q    and 
2q are positive real values. 

 

According to the law of Forest, the predator may kill the prey and not eat it, and may eat 

another prey, and may itself dies, for one reason or another, after killing it. For this reason 

there may be some or all parts of the prey or the predator endless. They end only by the 

end of the predation period. This may be resulted in the presence of the some negative 

values of both prey and predator. Because of the lost here is considered the death of the 

prey or the predator not eat them. But the body did not end yet and of course this reflects 

on the eating process for each one. So, it is not strange that occurrence some negative 

values in the state variables X's or the control variables U's during the predation period.  

 

As an optimal control problem, we will use the Pontryagin Principle to solve this problem. 

Let us define 0( )dx T

dt
= 0x , and  introduce the co-state variables 0( )t , 1( )t  and 2( )t  

corresponding to the state variables 0( )x t , 1( )x t  and 2( )x t  respectively.  We can write 

the Hamiltonian function  from equations (1), (2) and (3) as follows:  

 

0 0 1 1 2 2=H x x x                                                  (4) 

 

In addition, we obtained the co-state equations and the Lagrange function as follows:  

 

1 1 2 2 3 1 4 2=L H x x u u                                        (5) 

 

where, )(),(,)(),( 4321 tttt   are known as Lagrange multipliers.  

 

These Lagrange multipliers satisfy the conditions:  

1 1 2 2 3 1 4 2= 0, = 0, = 0, = 0.x x u u   
                     (6) 

We can easily obtain the co-state equations  
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0,1,2,=,=)( i
x

L
t

i

i





           

                                                       (7) 

 then, 

  

0 1 2
0 1 2

= = 0, = , = ,
L L L
x x x

    
  
  

                                          (8) 

 

The first equation of the system (8) shows that the co-state variable )(0 t  remains constant 

along the optimal trajectory, and the Pontryagin principle requires that this constant should 

be a negative value (Minimization problem) as: 

 

0( ) = 1.t                                                                                    (9) 

 

Since  1 2 1 2( ), ( ), ( ), ( ) 0x t x t u t u t  , then from the constraint (6), we have 

1 2 3 4= = = 0    .                                                            (10) 

 

We can write the Lagrange function L  from the equations (1),(2),(3),(4),(5),(9) and (10) 

as  following : 

2 2

1 1 2 1 2

1 2

2 2

1 1

21 2

( )

( [ ] )

( [ ] )

2 1 2

1

L x - x - x x q q u u

x q u

q

x

ux x

  

  

  

  

  

  

      
(11) 

 

From the equations (8) and (11), we have : 

  

1 1 2 2 2 1 2
1

= 2( )L
x x x x

x
       

    


 ,                       (12) 

2 1 1 2 1 2 1
2

= 2( )L
x x x x

x
       

    


 ,                       (13) 

with terminal conditions:    ( ) 0, =1,2i T i  .  

 

To obtain the optimal levels of control variables
 

( ), =1,2iu t i , we differentiate the 

Lagrange function (11) with respect to 21,uu  respectively and put it equal to zero, we get 
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1 2 2 1 1
1

= 0,
L

q q u q
u


  

  

1 2 1 2 2
2

= 0.
L

q q u q
u


  

  

Then, the obtimal conctrol variables are become                                        

* *2 1
1 2 1 2

1 2

( ) ( )
( ) = , ( ) = , , 0

t t
u t u t q q

q q

 
 .                               (14) 

From equations (2),(3),(12),(13) and (14) we have the controlled system of non-linear 

ordinary differential equations as: 

1 1 2

2 2 1

1 1 2 2 2 1 2

2 1 1 2 1

2

2

1

1

.

= 2

= 2

( )

( )

( )

( )

x x x

x x x

x x x x

x x x x

 

 

       

 



   



 

  




   




   


   





           (15) 

 

The total lost function can be determined using (1) and (14) as: 

1 2

2 2

0 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) .[ ]
T

o

x T x t x t x t x t t t dt         

The system (15) can be used to describe the time evolution of numbers of the species in 

the first case.  

This system can be solved numerically using Runge-Kutta method with initial values and 

terminal conditions: 

1(0)x
 2 (0)x

 0 (0)x
 1( )T

 2( )T
 

1 1 0 10 10 

 

2.1 Numerical  Example 
We solve the system (15) numerically depending parameter's values: 

 

 

 

        
1q  2q  T  

0.9 0.1 0.1 0.5 0.1 0.1 10 
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Figure 2.1 shows the behavior of Prey and Predator numbers during the predation period 

in the first case (absence of the deterioration and migration without carrying capacity for 

the prey). 
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Figure 2.2 shows the behavior of A. Prey and A. Predator numbers during the predation 

period in the first case (absence of the deterioration and migration without carrying 

capacity for the prey). 

 

 
Figure 2.3 shows the behavior of total lost numbers function during the predation period in 

the first case (absence of the deterioration and migration without carrying capacity). 

 

3. Second Case 
In this case we will use the deterioration rates for the two species and the carrying capacity 

for the prey. In this section, we add the deterioration rates ( 1 2,  ) for Prey and Predator 

respectively: 

Min   

2 2

1 2

1 2

1

2

0 2

1 2 1

( ) ( ) (

( )

) ( )

( )) .)( (

[

]

T

o

t t

q q u t

J x x x

x t x t du t t

   



 



 




          (16) 

Subject to: 

1 1
1 1 21 1 1( )( .1 )[ ]dx x

x
d

ux x
k

q
t

                                       (17) 

 

2 2
2

2 2 1 2 .[ ]dx
x x x q

t
u

d
                                                              (18) 
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For All parameters 1 2 1, , , , , ,q q     and 
2 are positive real values. 

 

Since: 

1 :  Non-natural deterioration of the prey. 

2 : Non-natural deterioration of the predator. 

k : Carrying capacity of the prey. 

In this case, the population of prey progressively increases to the limit k  when t → ∞. 

Also, we can write L  using the equations (16), (17) and (18): 

 

2 2

1 2 1 2 1 2

1 1

1 2 1 2

1
1 2

2 2 1

1

2 22

( ) ( )

( (1) )( [ ] )

( [ ]

]

.

[

)

1

L q q ux x x x

x
x x

k

x x

u

q u

q u

 

    

 

   

 

   

    



   

 
             (19) 

 

From the equations (8) and (11), we have :  

 

1
1 1 2 1 1 2 2

1

1 1 2

2( )
=

2( )

( )L
x x x

x k

x x

 
      

  


    


  


,            (20) 

 

2 1 1 2 2 1
2

2 2 1

=

2( )

( )L
x x

x

x x

     

  


  


  

 
,                (21) 

 

with terminal conditions
   

( ) 0, =1,2i T i  .  

The optimal levels of control variables
 

( ), =1,2iu t i , as in the equation (14).  

 

The controlled system of non-linear ordinary differential equations is become: 
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1
1 1 2

2 2 1 2

1
1 1 2 1 1 2

1

2

1 1 2

2 1 1 2 2 1

2 2

2

1

1

(1 )

2( )
= .

2( )

=

2( )

( )[ ]

[ ]

( )

( )

x
x x x

k

x x x

x x x
k

x x

x x

x x



  

 
      

  

     



 














    



   


 

   

  




 


   





 

  (22) 

 

The total lost function using (14) and (16) has become: 

0 1 2 1

2

1 2

2

2

1 2( ) ( ) ( ) ( ( ) ( )

.

)

( ) ( )

[

]

T

o

x x t t

t

x x t x t

dtt

    

 

   




 

 

The system (22) can be used to describe the time evolution of levels of species in the second 

case. This system can be solved numerically using Runge-Kutta method with initial values 

and terminal conditions: 

 

1(0)x  2 (0)x  0 (0)x  1( )T  2( )T  

1 1 0 10 10 

 

3.1 Numerical Example 
We will solve the system (22) numerically using the parameter's values:  

        
1q  2q  1  2  T  k  

0.9 0.2 0.2 0.5 0.1 0.1 0.01 0.01 10 10 
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From Figure 3.1, shows the behavior of Prey and Predator numbers during the predation 

period in the second case (exist of the deterioration with carrying capacity for the prey). 

 

 
From Figure 3.2, shows the behavior of A. Prey and A. Predator numbers during the 

predation period in the second (exist of the deterioration with carrying capacity for the 

prey). 



54 
 

 
From Figure 3.3, shows the behavior of total lost numbers function during the predation 

period in the second case (exist of the deterioration with carrying capacity). 

 

4. Third Case  
In this case we will use the deterioration rates for the two species and the additive migration 

rates of the two species, and the carrying capacity for the prey: 

In this section, beside to the deterioration rates        ( 1 2,  ), we add the rates of additive 

migration       ( 1 2,  ) for prey and the predator respectively: 

Min

1 21

2 2

1 2 2

1 2 1

0

1 2 2

( ) ( ) ( )

( )

( )

( ) ( ) .(t)

[

]

T

o

J x x t x

x t

t

q q ux t dt tu

     



     

 


          (23) 

 

Subject to: 

1 11 1 1
1 1

1 2( )(1 .)[ ]dx x
x

t
q ux x

d k
                                           (24) 

2 2 2
2

2 2 1 2( ) .[ ]dx
x x x q u

dt
                                          (25) 

 

For All parameters 1 2 1, , , , , ,q q     and 
2 are positive real values. 
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Since: 

1 : Migration rate of prey. 

2 : Migration rate of predator. 

 

Also, we can write L  using  the equations (23), (24) and (25) 

1 2

2 2

1 1 2 2

1 2 1 2

1 1 1 1

2 2

1 2

1
1 2

2 2 1 22

(

( )

1 )

( )

(

( )

)( [ ] )

( [ ] ).

[

]

1

q q

L x x

x x

x

u u

q u

q

x x

u

k

x x

     



 

   

 



 

   

  

   

 



 

                (26) 

 

From the equations (8) and (19), we have :  

 

1 1
1 1 2 1 1 1

1

2 2 1 1 1 2

2( )
=

2( ) ,

( )L
x x

x k

x x x

  
     

     

 
    


    


,          (27) 

 

 

2 1 1 2 2 2 1
2

2 2 2 1

=

2( ) ,

( )L
x x

x

x x

      

   


    


   


,              (28) 

 

with trerminal conditions
 

( ) 0, =1,2i T i  .  

The optimal levels of control variables
 

( ), =1,2iu t i , as in the equation (14).  

The controlled system of non-linear ordinary differential equations is become: 
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x x
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

  

  
     

     

      

   

   

 




    



    


  

   

    




   


   











        (29) 

The total lost function has become using (14) and (23): 

1 21 1 2 2

1

2 2

2 2

0

1

( ) ( ) ( )

( ) (

( )

( ) ( ) .t)

[

]

T

o

tx x t x

x t x t dtt

     

  

    

 

 
 

The system (29) can be used to describe the time evolution of levels of species in the third 

case. This system can be solved numerically using Runge-Kutta method with initial values 

and terminal conditions: 

1(0)x  2 (0)x  0 (0)x  1( )T  2( )T  

1 1 0 10 10 

 

4.1 Numerical Example  
We will solve the system (29) numerically using the parameter's values:  

        1q  2q  

0.9 0.3 0.3 0.5 0.1 0.1 

1  2  1  2  T  k  

0.01 0.01 0.1 0.1 10 10 
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From Figure 4.1, shows the behavior of prey and predator numbers during the predation 

period in the third case (exist of the deterioration and migration with carrying capacity for 

the prey). 

 
From Figure 4.2, shows the behavior of A. Prey and A. Predator numbers during the 

predation period in the third case (exist of the deterioration and migration with carrying 

capacity for the prey). 
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From Figure 4.3, shows the behavior of total lost numbers function during the predation 

period in the third case (exist of the deterioration and migration with carrying capacity for 

the prey). 

 

 

5. Conclusions 
From the numerical examples we can summarize all results for three cases about an optimal 

solution in the next table: 

 

 

 

We can conclude that: 

1)- The numbers of prey are almost equal in the second and third cases but increasing in 

the first case. Indicating that they are affected by the migration and the deterioration. 

Optimal 

Values 

First 

Case 

Second 

Case 

Third 

Case 

*

1X  16 10 10 

*

2X  0.49 0.43 0.36 

*

1U  100 100 100 

*

2U  100 100 100 

*

0x  86 46 48 
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2)- The numbers of predator decreases slightly in all three cases, indicating that the number 

of predators is relatively un-affected by the migration and the deterioration. 

 

3)- The numbers of A. prey and A. predator did not affect by the deterioration and migration 

and remained constant. 

 

4)- The lost numbers of all species have been affected by the rates of deterioration and 

migration. The maximum lost is happened in the first case when the deterioration and 

migration are absence, without carrying capacity. But the minimum lost has reached in the 

second case when the migration does not exist. 

 

5)- The numerical solution can only be achieved if the ingestion rate   and assimilation 

efficiency  are increased from 0.1 in the first case, to 0.2 in the second case, to  0.3 in the 

third case. This is justified because of existing the migration and the deterioration. 

 

6)- Finally, we noted that the carrying capacity of prey has affected on their sizes at the 

end of predation period. As we noticed in the second and the third cases that the levels of 

prey close to 10 in the case of presence the carrying capacity for the prey. But because of 

absence the carrying capacity, in the first case, we have found that the levels close to 16. 
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