Bacteriological and Histopathological Studies on Adult Shrimps (*Penaeus Japonicas*) Infected With Vibrio Species in Suez Canal Area

Khafagy, A.R.¹; El-Gamal, R.M.²; Somayah M. Awad²; Tealeb, A.M.³ and Shalaby, M.Z.⁴

 1- Faculty of Vet. Medicine, Suez Canal University.
 2- Fish Disease Department, Central Laboratory for Aquaculture Research, Abbassa, Agriculture Research Center, Ministry of Agriculture, Egypt.
 3- Pathology Department, Faculty of Medicine, Al-Azhar University, 4- General organization for export and import control, Damietta port.

Abstract

210 shell diseased shrimps (*Penaeus japonicas*) were collected and taken alive from port-said governorate. Shell diseased shrimps were taken monthly from January to October 2016 and subjected to clinical. postmortem, bacteriological and histopathological examinations. In addition of 15 apparently healthy shrimps, free from any shell lesions were collected and taken alive from port-said Governorate were used in the experimental infection (pathogenicity test). Results revealed that the isolated bacteria from shell diseased shrimps were identified as Vibrio alginolyticus and Vibrio parahemolyticus. The number of isolates for Vibrio alginolyticus was 568 isolates by incidence of 77.59%, Vibrio parahemolyticus was 131 isolates by incidence of 17.89%. It was found that Vibrio alginolyticus, Vibrio parahaemolyticus, were highly isolated from the muscles by ratio of 95.71%, the cuticle by ratio of 90% then from gills by ratio of 80% followed by the hemolymph by ratio of 51.90%, while it was less isolated from the hepatopancrease by pathogenicity ratio of 30.95%.The test of the isolated microorganisms showed nearly the same clinical picture and postmortem findings which observed in naturally infected shrimps and isolated vibrio species appear to be highly virulent gave 100% mortality in 60 hrs. of the experimental infected shrimps. Vibrio alginolyticus and Vibrio parahemolyticus were sensitive to Norofloxacin, Ciprofloxacin and Trimethoprim-Sulfamethoxazole and resistant to Amikacin and Rifamycin. The histopathological studies among naturally infected shrimps (penaeus japonicas) revealed changes in muscles, gills and hepatopancrease due to infection as intermuscular edema, inflammatory cells between muscle bundles and degeneration and necrosis of muscles, the gills

showed squamous metaplasia, and the hepatopancreas showed congestion in the hepatic vessels, advanced vacuolar degeneration with nuclear pyknosis of most hepatocytes were evident.

Key words: Shrimps, *Vibrio alginolyticus*, *Vibrio parahaemolyticus*, pathogenicity and Sensitivity.

Introduction

Bacterial disease outbreaks particularly vibriosis and black shell imposed disease a significant constrain on the sustainable production of shrimp, Manilal et al. (2010). A crisis in the shrimp industry over the last few years is due to largely to an increase in virulence of pathogens, especially bacterial diseases, *Lightner (1993)*. The cuticle of crustaceans consists of a thin outer layer, the epicuticle, consists of proteolipoidal material, covering three inner chitinous layer, the exocuticle, which is pigmented and calcified. the calcified endocuticle, and the non-calcified endocuticle. Dennell *(1947)*. Chemically chitin is а polysaccharide, the outer cuticular layer of the cuticle, the epicuticle is biochemically inert. and shell erosion can occur when this layer is breached by chemical attack, injury, abrasive action of sediments, or possibly enzymatic digestion. exposing the underlying chitinous layers to a adequate numbers of chitin-destroying microorganisms, Schlotfeldt (1972), Stewart (1980).

Because of the lipoidal nature of the epicuticle, microorganisms producing extracellular lipase may initiate lesions even in the absence of abrasions. In one series of

all experiments. microorganisms able to infect healthy non-abraded crustaceans were lipolytic, Cipriani et al., (1980). And may become opportunistic pathogens of stressed or damaged crustaceans, and may increase in numbers dramatically in aquaculture facilities or in polluted water. Participating microorganisms have been shown to produce extracellular lipase, chitinase and proteases, Lightner (1988a).

The black coloured lesions are the end-result of the melanization reaction, defense response triggered by cuticular damage. Pitting the top most layer of the exoskeleton in the form of irregular pits ranged from few millimeters up to different centimeters. In some cases, the pits coalesced or united together to form a foramen. The shells became soften and fragile so it was easily Lee and Söderhäll destructed. (2002). These mentioned above explained the occurrence of common clinical signs and postmortem lesions which observed in shell diseased shrimps in this study.

This study was planned to investigate the phenotypic characterization of vibrio species isolated from shrimps in Suez Canal area.

Material and methods

number of 210 A total shell diseased shrimps (Penaeus japonicas) were collected and taken alive from port-said governorate. Shell diseased shrimps were taken monthly from January to October 2016 and subjected to clinical, postmortem, bacteriological and histopathological examinations. In addition of 15 apparently healthy shrimps, free from any shell lesions were collected and taken alive from port-said Governorate were used in experimental infection the (pathogenicity test).

1. Clinical examination of naturally infected adult shrimps:

These were performed according to method described by Austin and (**1989**) to observe Austin the following. Abnormal coloration and lesions on carapace, Abnormal swimming movements, opacity of abdominal muscles tissue, erosions of appendages, eye abnormalities, abnormalities. gill hemolymph color. The external lesions then were recorded and photographed.

2. Postmortem examination of naturally infected adult shrimps:

According to Austin and Austin (1989) After cleaning the surface of cuticle by cotton socked in 70% ethyl alcohol using a pair of sterile scissors with fine points and a pair of fine tipped forceps, the carapace was separated from connective tissue and the hepatopancrease exposed in the situation the color and consistency were observed, examination of gills, foregut, midgut, hindgut, cardiac sinus, muscle, walking legs (periopods), swimming legs (pleopodes) and tail (uropods) were applied.

3. Bacteriological examination:

3.1. Collection of samples: taken from exocuticle, gills, hepatopancreas, haemolymph and muscles from adult shell diseased shrimps showing clinical symptoms of the disease. This is under full aseptic condition.

3.2. **Isolation:** adult shrimp exoskeleton was firstly cleaned with cotton socked in 70% ethyl alcohol. The following samples were separately collected; exocuticle, gills, hepatopancreas, haemolymph and muscles. The Hemolymph extracted from cardiac sinus by inserting insulin needle between cephalothorax and 1st abdominal segment after cleaning the site by ethyl Alcohol 70%, Brady and Ernesto (1992). Each sample were inoculated into Tryptic Soya broth, nutrient broth and peptone water (pH 8.2) all with 2% NaCl and incubated at 18-23°C for 24- 48 hrs. Then the inocula were streaked over Thiosulphate Citrate Bile Salt Sucrose agar (TCBS), nutrient agar with 2% NaCl and Tryptic Soya agar with 2% NaCl at 25-28°C for 48 hrs. The purified colonies were picked up and inoculated into nutrient agar slant and Tryptic Soya agar slant with 2% NaCl for further Identification.

3.3. Identification of bacterial isolates: the biophysical and biochemical characters were carried

according to *Bergey manual of* systematic bacteriology (2004). 4. Experimental infection:

A total number of 15 apparently healthy adult shrimp (*Penaeus japonicus*), free from any shell lesions were collected and taken alive from the Suez Canal area (port-said Governorate).

Aquaria: shrimps were kept in previously prepared 3 fiber glass aquaria. These aquaria were used for holding the experimental infection throughout the period of investigation, and all tanks were filled with seawater (temperature 25°C and salinity 28%). The adjusted temperature was thermostatically by using heaters and all tanks were aerated by electric aerator pumps. shrimps were divided into 3 equal groups, each group (5 shrimps) in separate glass. shrimps put in the tanks for 5 days for adaptation and will be fed regularly on cocklets and chopped whitefish.

Preparation of bacterial suspension: the identified bacteria which isolated from shell diseased shrimps in this study were used in experimental infection (Vibrio alginolyticus and Vibrio parahaemolyticus). Strains were prepared inoculation by into nutrient agar slant and incubated at $25^{\circ}C$ for 24 bacterial hrs. suspension 106cell/ml was estimated with (McFerland barium sulphate standard tube) (Difco). A dose of 0.05 ml of bacterial suspension using sterile distilled water containing 10⁶cell/ml was injected with 1 ml tuberclin syringe into muscle of 3rd abdominal segment, *Jiravanichpasial and Miyazaki* (1994).

Group (1) were injected with Vibrio alginolyticus strain suspension.

Group (2) were injected with *Vibrio* parahaemolyticus strain suspension. Group (3) were injected with sterile saline.

5. Antibiotic sensitivity tests:

Sensitivity tests were performed using the disc diffusion method on Mueller-Hinton agar (oxoid) according to the National Committee of Clinical Laboratory Standards (NCCLS) (2003).

5.1. Preparation of the inoculums: isolated strains on slope agar from shrimps were streaked into Muller-Hinton broth and incubated at 25-28°C overnight, the isolated strains were Vibrio alginolyticus, Vibrio parahemolyticus, Isolates were subculture on Muller - Hinton agar and incubated at 25-28°C overnight, 4 or 5 well isolated colonies selected with an inoculating needle or loop, and transferred to a tube of sterile saline vortexes thoroughly. The and bacterial suspension compared to 0.5 McFarland standards.

5.2. Inoculation procedures: within 15 minutes after adjusting the turbidity of the inoculums suspension, a sterile cotton swabs were dipped into the suspension. Pressing firmly against the inside wall of the tube just above the fluid level, the swab was rotated to

removes excess liquid, then the swab was streaked over the entire surface of the Muller- Hinton agar medium three times and the plate was rotated approximately 60 degrees after each application to ensure an even distribution of the inoculums. Finally, the edge of the agar surface was swabbed all around.

5.3. Antibiotic discs: sensitivity discs were stored in the refrigerator (4°C). Upon removal of the discs from the refrigerator, the package containing the cartridges should was left unopened at room temperature for approximately one hour to allow the temperature to equilibrate. The discs were dispensed on the surface of the medium. All of them were under complete aseptic precautions, plates were incubated aerobically at 25-28°C for 24h.

5.4. Recording and interpreting results: the results were recorded as resistant susceptible or bv measurement of the inhibition zone according the diameter to interpretive standard of National Committee Clinical for Laboratory Standards (NCCLS 2003) that would be susceptible or intermediate or resistant.

6. Histopathological studies:

Samples for histopathological examination were taken from shell diseased shrimps, organs and tissues which taken were muscles, cuticle, gills and hepatopancrease. The samples were fixed in phosphate buffer formalin 10% according to Nash et al., (1987), Nash et al., (1988) and Anderson et al., (1990) and in Davidson,s fixative Acetic Acid Formalin Alcohol (AFA), Humason (1967) and Bell and Lightner (1988), the samples fixed in (AFA) for 24 hrs then in 50% ethyl alcohol solution, then all samples fixed in phosphate buffer formalin 10% and Davidson,s fixative were embedded in paraffin wax and sectioned about 5 - 10 u and stained by Haematoxylin and examined Eosin (H&E) and histopathologically.

Result and discussion

The clinical examination of the moribund shrimps showed swimming lethargically, stop feeding, general weakness, loss of balance and whirling movement with varied degree of shell lesions, (photo 1) appeared as dark brown to black patches scattered all over the body surface including the cuticle abdominal of the carapace, segments, uropod, pereopod (walking legs) and pleopod (swimming legs), (photos 2). With necrotic focci most frequently located on the cuticle of the abdominal segments, Necrosis and destruction of the periopods, pleopods and the antennal flagellum, (photo 3). The eyes of moribund some shrimps were affected and became protruded and edematous (Exophthalmia), (photo drawn haemolymph 4). The changed their colour to reddish haemolymph). (bloodv These

results agreed with El-bouhy et al. who reported that (2006)the clinical examination of the naturally infected adult shrimp with vibriosis showed black spots to brown spots on the carapace and the abdominal segments. Erosions and black spots on the uropode, pleopds and pereiopods . Dirty appearance and total blackness of all body surfaces. Necrosis and destruction of the pereiopods, pleopods and uropods, slow motion, loss of the appetite, swim around the pond wall, and the shell was attached by algae. the destruction of the exoskeleton and appendages may be attributed to the chitinolytic and proteolytic enzymes produced by vibrio sp. As described by Sharshar and Azab (2008) who described shrimps suffered from Vibrosis showed dark brown focal lesions and necrosis of appendage tips. Moribund prawns assembled at the edges of ponds and swim slowly near the surface.

Similar finding was previously obtained by Zhang et al. (2014) recorded that infected shrimp showed lethargy, swimming near the water surface and close to pond edges, breaking of antenna, and reduction in food results consumption.These concomitant with the previously reported by Kumaran and Citarasu (2016) recorded that the diseased shrimps with vibriosis showed symptoms such as lethargy, loss of balance, whirling movement and general weakness.

The common postmortem findings in the moribund shrimps revealed that the gill lamellae adhered each other and changed their colour to black, (photo 5) and there were swelling and congestion of hepatopancreas and heart. These results agreed with *El-bouhy et al.*, (2006) mentioned that the naturally infected adult shrimp revealed that black spots of the gills. Hepatopancreas appears congested, swollen, soft and surrounded by congested fluid. Congestion of the heart and the intestine free from any food particles.

The isolates were identified according to the morphological and biochemical tests to Vibrio alginolyticus and Vibrio parahaemolyticus, as shown in (Tables 1& 2). The obtained results were nearly similar to that recorded several bv studies including Baticados et al., (1986) isolated chitinolytic bacteria from tiger prawn (penaeus monodon) from brackish water pond suffered from soft shell, the isolates were Vibrio and Aeromonas species, Thakur et al. (2003) identified four species of Vibrios from the hepatopancrease of moribund shrimp with vibriosis namely Vibrio parahaemolyticus, Vibrio alginolyticus and others vibrio sp. based on their cultural, morphological, biochemical characteristics. Ferrini et al. (2008) identified ninety two Vibrio strains which isolated over a period of nine vears from different sources (national and imported fishery

products, shellfish, seawater from aquaculture settings) and belonging to two species relevant for human health and fish pathology. V.alginolyticus and V.parahaemolyticus many and Vibrio species which have described as important fish and shellfish pathogens, Devi et al. (2009) identified Vibrio parahaemolyticus isolates from shrimp farms along the southwest coast of India, Heenatigala and Fernando (2016) identified 24 isolates belonged to Vibrio species which are responsible for vibriosis in shrimps. Those were Vibrio alginolyticus, V. parahaemolyticus and others Vibrio. Most frequently isolated species was V. parahaemolyticus during а bacteriological study which was undertaken in semi intensive shrimp (Penaeus monodon) culture ponds, Kumaran and Citarasu (2016) could isolate V. parahaemolyticus from the infected shrimp farms at Marakkanam, Kancheepuram district of Tamilnadu and Artemia franciscana culture tank at CMST campus, Mastan and Begum (2016) isolated five species of Vibrio bacteria from diseased shrimp, Litopenaeus vannamei with vibriosis, collected from commercial shrimp cultured ponds.The isolated bacterial species were identified Vibrio as parahaemolyticus, Vibrio alginolyticus vibrio and other species.

In this study, a total of 1050 Samples were collected from 210 naturally infected shrimp organs, 5 samples from each shrimp, as following, muscles, cuticle, gills, haemolymph and hepatopancreas. Results of isolation showed that the number of positive samples were 732 with rate of isolation 69.71%. The number of isolates for Vibrio alginolyticus was 568 isolates by incidence of 77.59% and Vibrio parahaemolyticus was 131 isolates by incidence of 17.89%. The result obtained showed that the highest prevalence of isolated bacteria was especially Vibrio species V. alginolyticus which explained by **Baffone** et al., (2001) and Saifedden et al., (2016) who mentioned that Vibrio alginolyticus, parahaemolyticus V_{\cdot} were а halophilic gram negative bacteria, widely spread geographically in marine and estuarine waters. And coincided with that obtained previously by Eduardo et al.. (1998) who isolated 172 bacterial isolates from the hepatopancreas of Penaeus monodon and found that most 90.12% were Vibrio species, moreover Sudheesh et al., (2002) recorded that V. alginolyticus and V. parahaemolyticus are two important pathogenic species. They considered opportunistic pathogens and isolated from shrimps suffering from vibriosis, meanwhile Elbouhy et al. (2006) isolated about 173 bacterial isolates from the 135 samples (larvae, adults and water samples) of diseased shrimp with

vibriosis: all of them were belonging to the Vibrio species and represented by 31.8% Vibrio alginolyticus, 23.7% Vibrio parahemolyticus, 27.7% Vibrio harveyi, 8.1% Vibrio anguillarum and 8.6% Vibrio campbelli. Vibrio alginolyticus was isolated in 50%, 40%, 30% and 30% from the examined Р. japonicus, Р. kerathurus, P. semisulcatus and respectively. larvae Vibrio parahemolyticus was isolated in 43.3%, 26.7%, 30% and 25% from the examined *P. japonicus*, Р. kerathurus, P. semisulcatus and larvae. respectively, finally bv Abraham et al. (2013) Isolated Vibrio spp., Aeromonas spp. and Pseudomonas spp. from the hepatopancreas, hemolymph, intestine, gills and eroded portion of the exoskeleton of the cultured shrimp Penaeus monodon. Vibrio species were the dominant bacterial flora in the affected organs, followed by Aeromonas spp.

The distribution and prevalence of infection in different organs and tissues of shrimp showed 201 positive samples from muscles by ratio of 95.71%, 189 positive samples from cuticle by ratio of 90%, 168 positive samples from gills by ratio of 80%, 109 positive samples from haemolymph by ratio of 51.90% and 65 positive samples from hepatopancrease by ratio of 30.95%, it was found that the highest sampled level of infection was the muscles followed by the cuticle then from the gills and the

haemolymph while it was less isolated from the hepatopancrease respectively. and the distribution of each bacterial isolates in different organs and tissues of shrimps as shown in (Table 3) revealed that Vibrio sp. was the predominant bacterial types in the muscles of infected shrimps, and these results were disagreed with *El-bouhy et al.* (2006) which recorded that Vibrio alginolyticus Vibrio and parahaemolyticus were highly isolated from hepatopancrease and less isolated from the muscles of infected adult penaeus japonicas. Results of experimental infection of with shrimp isolated V_{-} alginolyticus and V. parahaemolticus showed the Pattern of mortality in penaeus japonicus shrimp experimentally injected with isolated bacteria in relation to the time of death after inoculation was recorded within 4 days as shown in (Table 4) and it was clear that Vibrio species were highly pathogenic bacteria. V. alginolyticus causing 100% mortality within 60 hrs starts within 12 hrs postinjection, at 20% 12 hrs gave mortality, at 24 hrs 40% gave mortality, at 36 hrs gave 60% mortality and at 48 hrs gave 80% mortality. V. parahemolyticus causing 100% mortality within 60 hrs starts within 24 hrs postinjection, at 24 hrs gave 20% mortality, at 36 hrs gave 40% mortality and at 48 hrs gave 80% mortality. None of injected shrimp died in the control group. These

results agree with Lewis (1973a) recorded that vibrio who alginolyticus was pathogenic to normal adult shrimp within 24 hrs, also agree with Vera et al. (1992) who recorded that the intramuscular injection of adult shrimp with Vibrio alginolyticus and Vibrio parahaemolyticus resulted in 100% mortality, depend on the dose and time of exposure, also these results similar with Mastan and Begum (2016) who recorded that Vibrio parahaemolyticus is highly pathogenic and it produced disease symptoms within 24 hr. after injection, these results disagree with Thakur et al. (2003) who reported that V. alginolyticus causing 100% within mortality 96hrs postinjection while V. parahemolyticus causing 100% mortality within 24 hrs.

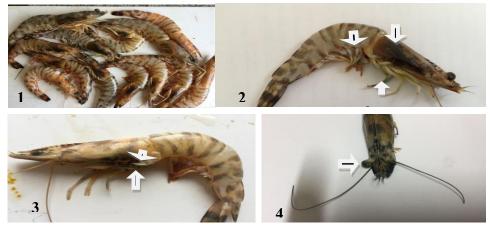
of the clinical picture the experimental infected shrimps was nearly similar to that present in naturally infected shrimps but varied only in the severity of the developed lesion, where the clinical abnormalities began to appear within 12 hrs post-injection, which includes weak antennal sensation, loss of escape reflex, weak limb sensation. swim lethargically, developed black spots on the the carapace and abdominal region, periopods, pleopods and uropods, these results simillar to that of Abou El-Atta (1998) who reported that, the clinical signs of experimentally infected prawns by the isolated Vibrio and Aeromonas strains were

loss of escape reflex, reducing of swimming swimming activity, lethargically, developed of brownish to black patches or spots on the periopods, pleopods, uropod , also agree with Hassanin (2007) who mentioned that the clinical finding of experimentally infected adult shrimp (Penaeus japonicus) showed reducing activity in some cases but swim lethargically or lay motionless, developed of brownish to black spots on the exoskeleton in region the abdominal and in cephalothorax area. Congestion of all body and black spots occur on the walking and swimming legs.

findings Post mortem of experimentally infected shrimps revealed black coloration of the gills. The heart and hepatopancreas were congested and swollen, these results agree with Abou El-Atta (1998) who reported that, the postmortem finding of experimentally infected prawns were congestion of the internal organs especially hepatopancreas, accumulation of reddish fluid in the pericardium. also agree with Hassanin (2007) who recorded that the post mortem finding of experimentally infected adult shrimp with Vibrio spp showed congestion of hepatopancreas and fine black spots on the gills.

In this work, antibiotic sensitivity test for the isolated bacteria was applied as *Vibrio alginolyticus* as shown in (Table 5) and (Photo 6&7)was sensitive to Norofloxacin, Ciprofloxacin and Trimethoprim-

Sulfamethoxazole and resistant to Erythromycin, Amikacin. Rifamycin, Gentamycin and Cephradine while Vibrio parahemolyticus as in (Table 6) and 8&9) was (Photo sensitive to Norofloxacin. Ciprofloxacin. Trimethoprim-Sulfamethoxazole, Gentamycin and Cephradine and intermediate to Erythromycin and resistant to Amikacin, Amoxicillin Rifamycin. These and investigations were nearly similar to, Lio-po and lavilla-pitogo (1990) reported that vibrio species isolated from tiger prawn were sensitive to sulphamethoxazole trimethoprim erythromycin, and resistant to Amikacin and streptomycin then by Ruangpan and kitao (1990) were found vibrio species isolated from diseased shrimp were highly sensitive ampicillin and to ciprofloxacin while were resistant to streptomycin.


Xu Bing et al. (1993) recorded that Vibrio alginolyticus isolated from cultured shrimp was sensitive to sulphamethoxazol, then by Lee et al. (1996) recorded that the Swy strain which isolated from the hepatopancreas of kuruma prawns and identified as Vibrio alginolyticus during an outbreak of vibriosis susceptible was to ciprofloxacin.

In this study, it is proved that the isolates were most sensitive to Norofloxacin and Ciprofloxacin compared with the other antibiotics, these result harmonies with the previously mentioned by several

studies including Vaseeharan et al. (2005) who mentioned that, thirteen species of Vibrio (N = 90) and two species of Aeromonas (N = 7)isolates were tested by agar disk diffusion. The results showed that Norofloxacin and Ciprofloxacin were found to be the most effective in controlling the isolates from hatcheries and ponds compared with the other antibiotics. Akinbowale et al. (2006) studied the resistance of bacteria isolated from crustaceans and found that all strains of Vibrio sp. and Aeromonas sp. were sensitive to Ciprofloxacin, Ttrimethoprime- sulfamethoxazole and resistant amoxicillin. to Jayasree et al. (2006) who studied the resistance of Vibrio spp. (V. alginolyticus and $V_{\rm c}$ parahaemolyticus) associated with diseased shrimp from culture ponds to antibiotics and they recorded that all bacterial isolates were sensitive to Norfloxacin and Ciprofloxacin and resistant to Rifampacin andAmoxicillin, then Jayasree et al. (2008) studied the antibacterial sensitivity of Six species of Vibrio and found that all isolates were sensitive to Ciprofloxacin and Norfloxacin and resistant to Amoxicillin and Rifampacin.

Histopathological pictures among naturally infected shrimps (*penaeus japonicas*) revealed the following; there were changes in muscles as intermuscular edema, Photo (10&11), inflammatory cells between muscle bundles, Photo (12,13&14) and degeneration and necrosis of muscles, Photo (15), showed The gills squamous metaplasia, photo (16) and the hepatopancreas showed congestion in the hepatic vessels, advanced vacuolar degeneration with nuclear pyknosis of most hepatocytes were evident. The necrotic cells were either ruptured or lacked their nuclei. The necrotic areas infiltrated with some hemocytes and mononuclear cells, photo (17), these were similar to those results mentioned by *Khuntia et al.*, (2008) who observed that histopathological changes due to Vibrio infection were showed the muscle bundles were severely degenerated. Gill tissues showed moderate necrotic changes in lamellae. **Branchial** arches were thickened at places due to hyperplasia and sever haemolytic in alteration. At times, the Branchial oedemateous arches were and infiltrated with haemocytes. Cellular changes in hepatopancreatic tissues were more

pronounced and characterized by dilation of tubules, vacuolation of hepatocytes and marked necrosis in acinar cells. There was necrosis of cells with acinar complete desquamation of haemocytes. There was severe infiltration of cells in spaces, intertubular then by Abraham et al. (2013) recorded that the histopathological examination of muscle of affected penaeus monodon which had symptoms of vibriosis, gill disease, shell disease, red discolouration showed bacterial infection resulting in edema. haemocytic infiltration and degeneration of cells and necrosis. Severe necrosis in hepatopancreas was noticed in the diseased shrimps, with hepatopancreatic epithelial cell damage and accumulation sloughed cells in the lumen. Hstopathological examination revealed extensive hepatopancreatic lesions. characterised by inflammatory sinuses with bacterial plaques and debris cell

Photo (1): *Dead adult penaeus japonicas shrimps showed different shell lesions (dark brown to black patches scattered all over the body surface).*

Photo (2): Diseased adult penaeus japonicas shrimp showed area of black discolouration in the carapace and bluish black discolouration of the periopods and pleopods with destruction of the pleopods.

Photo (3): *Diseased adult penaeus japonicas shrimp showed eroded periopods.*

Photo (4): Diseased adult penaeus japonicas shrimp showed protruded and edematous eyes (Exophthalmia) and discoloration in the eye iris with melanization of the carapace.

Photo (5): *Shell diseased adult penaeus japonicus shrimp showed black colored gills with adhesion of gills lamellae.*

Table (1): Morphological, biochemical and culture characters of suspected Vibrio alginolticus isolated from naturally infected shrimps (Penaeus japonicus):

Items	Vibrio alginolticus
Gram stain	Negative
Motility test	+
shape	Curved rods
Cytochrome Oxidase	+
Catalase	+
Growth on TCBS	+ Yellow colonies
Growth at 43° c	+
Growth on media contain sodium of	chloride weight per volume:
Growth at 0.0% NaCl	-
Growth at 3.0 %NaCl	+
Growth at 6 .0% NaCl	+
Growth at 8.0 %NaCl:	+
Growth at 10.0% NaCl	+
Lysin decarboxylase	+
Arginin dihydrolase	+
Ornithin decarboxylase	+
Esculin hydrolysis	-
Voges-proskauer test	+
ONPG hydrolysis	-
Nitrate reduction	+
Gas from glucose	-
Acid from L-Arabinose	-
Acid from inositol	-
Acid from sucrose	+
Acid from salicin	-

Table (2): Morphological, biochemical and culture characters of suspected Vibrio parahemolyticus isolated from naturally infected shrimps (Penaeus japonicus):

Items	Vibrio parahemolyticus				
Gram stain	Negative				
Motility test	+				
shape	Curved rods				
Cytochrome Oxidase	+				
Catalase	+				
Growth on TCBS	Green colonies				
Growth at 43° c	+				
Growth on media contain sodium	chloride weight per volume:				
Growth at 0.0% NaCl	+				
Growth at 3.0 %NaCl	-				
Growth at 6 .0% NaCl	+				
Growth at 8.0 % NaCl:	+				
Growth at 10.0% NaCl	-				
Lysin decarboxylase	+				
Arginin dihydrolase	+				
Ornithin decarboxylase	+				
Esculin hydrolysis	-				
Voges-proskauer test	-				
ONPG hydrolysis	-				
Nitrate reduction	+				
Gas from glucose	-				
Acid from L-Arabinose	Different reaction				
Acid from inositol	-				
Acid from sucrose	-				
Acid from salicin	-				

Table (3): *The distribution of each bacterial isolates in different organs and tissues of shrimp:*

Bacterial isolates	Muscles		Cuticle Gills		Haemolymph		Hepatopancrease		Total isolates		
-	No	%	No	%	No	%	No	%	No	%	
Vibrio alginolyticus	141	24.82	148	26.05	151	26.58	91	16.02	37	6.51	568
Vibrio parahemolyticus	49	37.40	38	29	10	7.63	15	11.45	19	14.50	131
Total	190	27.45	186	25.81	161	22.95	106	14.89	56	8.87	699

Table (4): *Pattern of mortality in penaeus japonicus shrimp experimentally injected with isolated bacteria:*

Groups	No.	Tested bacteria	Percentage of dead shrimp during 96 hours post I/M injection								
Gr			12	24	36	48	60	72	84	96	
1	5	V. alginolyticus	20	40	60	80	100	-	-	-	
2	5	V. parahaemolyticus	-	20	40	80	100	-	-	-	
3	5	Sterile saline	-	-	-	-	-	-	-	-	

Table (5): Antibiogram	ı for	Vibrio	alginolyticu	s in mm:
------------------------	-------	--------	--------------	----------

Antibiotic disc Bio-disc cod Concentration			int	ne diame erpretat idards (1	ion	Resulted diameter inhibition	Description of inhibition
Antibiotic	Bio-disc	Concer	R	Ι	S	zone	zone
Amikacin	AK	30mcg	14≤	15-16	17≥	11	R
Norofloxacin	NOR	10mcg	12≤	13-16	17≥	23	S
Amoxicillin	AX	25 mcg	11≤	12-13	14≥	-ve	-ve
Bacitracin	В	10 U	8≤	9-12	13≥	-ve	-ve
Ciprofloxacin	CIP	5 mcg	15≤	16-20	21≥	22	S
Trimethoprim- Sulfamethoxazole	SXT	1.25 mcg 23.75 mcg	10≤	11-15	16≥	20	S
Erythromycin	E	15mcg	13≤	14-22	23≥	13	R
Rifamycin sv	RF	30mcg	16≤	17-19	20≥	9	R
Fucidic acid	FA	10mcg	17≤	18-21	22≥	-ve	-ve
Gentamycin	CN	10mcg	12≤	13-14	15≥	10	R
Cephradine	CE	30mcg	11≤	12-13	14≥	7	R

otic disc	sc cod			ne diame terpretati ndards (n	on	Resulted diameter	Description of	
Antibiotic	Bio-disc	Concer	R	Ι	S	inhibition zone	inhibition zone	
Amikacin	AK	30mcg	14≤	15-16	17≥	13	R	
Norofloxacin	NOR	10mcg	12≤	13-16	17≥	35	S	
Amoxicillin	AX	25 mcg	11≤	12-13	14≥	0.6	R	
Bacitracin	В	10 U	8≤	9-12	13≥	-ve	-ve	
Ciprofloxacin	CIP	5 mcg	15≤	16-20	21≥	40	S	
Trimethoprim- Sulfamethoxazole	SXT	1.25 mcg 23.75 mcg	10≤	11-15	16≥	26	S	
Erythromycin	E	15mcg	13≤	14-22	23≥	15	Ι	
Rifamycin sv	RF	30mcg	16≤	17-19	20≥	15	R	
Fucidic acid	FA	10mcg	17≤	18-21	22≥	-ve	-ve	
Gentamycin	CN	10mcg	12≤	13-14	15≥	15	S	
Cephradine	CE	30mcg	11≤	12-13	14≥	17	S	
D -Dosistant	6-60	ositivo	I_intermediate			Vo- Nogotivo		

Table (6): Antibiogram for Vibrio parahemolyticus in mm:

R=Resistant

S=Sensitive

I=intermediate

-Ve= Negative

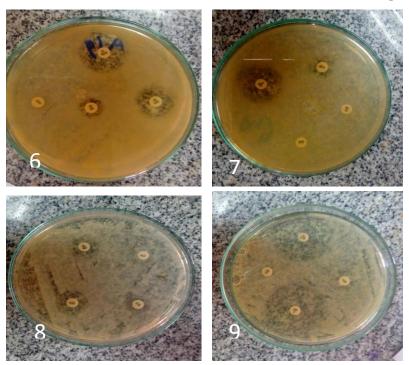


Photo (6): Results of Antibiogram sensitivity test for V.alginolyticus
Photo (7): Results of Antibiotic sensitivity test for V.alginolyticus
Photo (8): Results of Antibiotic sensitivity test for Vibrio parahemolyticus
Photo (9): Results of Antibiotic sensitivity test for Vibrio parahemolyticus.

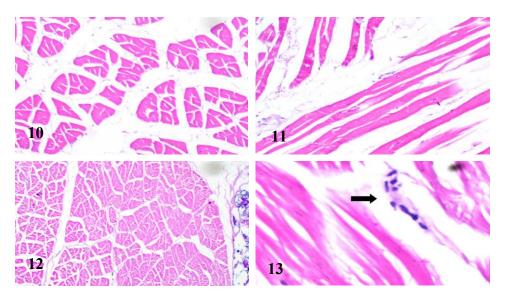
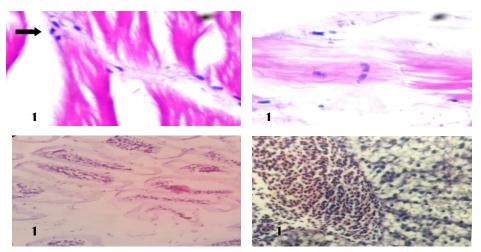



Photo (10): Transverse section in smooth muscle of shell diseased shrimp (penaeus japonicas) with edema (H&E stained section x 400)
Photo (11): longitudinal section in smooth muscle of shell diseased shrimp (penaeus japonicas) with marked edema (H&E stained section x 400)
Photo (12): Muscle of shell diseased shrimp (penaeus japonicas) showed inflammatory cells between muscle bundles (H&E stained section x 400)
Photo (13): Muscle of shell diseased shrimp (penaeus japonicas) showed edema, congestion and inflammatory cells between muscle bundles (H&E stained section x 400)

Photo (14): *Muscle of shell diseased shrimp (penaeus japonicas) showed inflammatory cells (H&E stained section x 400)*

Photo (15): *Muscle of shell diseased shrimp* (*penaeus japonicas*) *showed marked edema, degeneration and necrosis* (*H&E stained section x 400*)

Photo (16): *Gills of shell diseased shrimp (penaeus japonicas) showed squamous metaplasia (H&E stained section x 400)*

Photo (17): *Hepatopancreas of shell diseased shrimp* (*penaeus japonicas*) *showed advanced vacuolar degeneration with nuclear pyknosis* (*H&E stained section x 400*)

References

Abou-El-Atta, M.E. (1998): Studies on the bacterial pathogen of fresh water prawn. M. Sc. Thesis (Microbiology). Faculty of Vet. Med. Suez Canal University.

Abraham, T.J.; Sasmal, D.; Dash, G.: Nagesh. T.S.: Das. S.K.: Mukhopadhavay, S.K. and Ganguly, S. (2013): Epizootology and pathology of bacterial infections in cultured shrimp Penaeus monodon Fabricius 1798 in West Bengal, India. J. Fish., 60(2): 167-171.

Akinbowale, O.L.; Peng, H. and
Barton, M.D. (2006):Antimicrobial resistance in bacteria
isolated from aquaculture sources in
Australia. Journal of Applied
Microbiology, 100 (5): 1103-1113.

Anderson, I.G.; Nash, G. and **M. (1990):** Mass larval Shariff, mortalities in giant fresh water prawn, Macrobrachium rosenbrgii (De man), cultured in Malaysian modified green water system. Journal of fish disease. 13, 127-134. B. and Austin, D.A. Austin, (1989): Methods for the microbilogical examination of fish shell fish. Ellis Harwood and Limited, halsted Press. New York,

Chichester, Brisban. Toronto. 59-68.

Baffone, W.B.; Citterio, E.; Vittoria, A.; Casaroli, A. and Pianetti, R. (2001):" Determination of several potential virulence factors in Vibrio spp. isolated from sea water". Food Microbiol 18: 479-488.

Baticados, M.C.L.; Coloso, R.M. and Duremdez (1986): Studies on chronic soft shell syndrome in tiger prawn, *Penaeus monodon* fabricius, from brackish water ponds. Aquaculture 56, :271-285.

Bell, T.A. and Lightner, D.V. (1988): A hand book of normal penaeid shrimp histology. World Aquaculture Society, Baton Rouge, Louiana.

Bergey manual of systematic bacteriology (2004): 2nd edition. Volume two, the proteobacteria, part B, the gammaproteobacteria, PP. 1- 1106.

Brady J. Yolanda and Ernesto Lasso De La Vega (1992): Bacteria in the hemolymph of fresh water prawn (*Macrobrachium rosenbergii*). Journal of Aquatic Animal Health 4:67-69.

Cipriani, G.R.; Wheeler, R.S. and Sizemore, R.K. (1980): Characterization of brown spot disease of Gulf Coast shrimp. J. Invertebr. Pathol. 36, 255-263.

Dennell, R. (1947): The occurrence and significance of phenolic hardening in the newly formed cuticle of Crustacea Decapoda. Proc. R. Soc. (Lond.)B (Biol. Sci.) 134:485-503.

Devi, R.; Surendran, P.K. and Chakraborty, K. (2009): Antibiotic resistance and plasmid profiling of *Vibrio parahaemolyticus* isolated from shrimp farms along the southwest coast of India. World J. Microbiol Biotechnol (2009) 25:2005–2012.

Eduardo, M. Leaño; Celia, R. Lavilla-Pitogo and Milagros, G. Paner. (1998): Bacterial flora in the hepatopancreas of pond- reared Penaeus monodon juveniles with luminous vibriosis. Aquaculture, Volume 164, Issues 1-4, 1 May 1998, Pages 367-374.

El-bouhy, Z. M.; Abdelrazek, F. A. and Hassanin, M.E. (2006): A contribution on vibriosis in shrimp culture in Egypt. Egyptian journal of aquatic research, Vol. 32 NO. 2, 2006: 443-456.

Ferrini, A.M.; Veruscka, M.; Elisabetta, S.; Loredana, C. and Luciana, C. (2008): Evaluation of antibacterial resistance in Vibrio strains isolated from imported seafood and Italian aquaculture settings. Food Anal. Method 164-17.

Hassanin, M.E. (2007): Studies on some problems facing cultured shrimp in Egypt. Ph. D. Thesis (Dept. of Fish Diseases and Management) Faculty of Vet. Medicine Zagazig University.

Heenatigala, P.P.M. and Fernando, M.U.L. (2016): Occurrence of bacteria species responsible for vibriosis in shrimp pond culture systems in Sri Lanka and assessment of the suitable control measures. Sri Lanka J. Aquat. Sci. 21 (1): 1-17.

Humason, G.L. (1967): Animal tissue technique. W.H. free man and Co., Sanfransisco.

Jayasree, L.; Janakiram, P. and Madhavi, R. (2006): Characterization of Vibrio Spp. Associated with Diseased Shrimp from Culture Ponds of Andhra Pradesh (India). Journal of the World Aquaculture Society, 37: 523–532.

Jayasree, L.; Janakiram, P. and Madhavi, R. (2008): Isolation and Characterization of Bacteria Associated with Cultured *Penaeus monodon* Affected by Loose Shell Syndrome. The Israeli Journal of Aquaculture – Bamidgeh 60(1), 2008, 46-56.

Jiravanichpaisal, P. and Miyazaki, T. (1994): Histopathology, biochemistry and pathogenicity of *Vibrio harveyi* infecting black tiger shrimp *Penaeus monodon*. J. Aquat. An. Health 6: 27-35.

Khuntia, C.P.; Das, B.K.; Samantaray, B.R.; Samal, S.K. and Mishra, B.K. (2008): Characterization and pathogenicity studies of *Vibrio parahaemolyticus* isolated from diseased freshwater prawn, *Macrobrachium rosenbergii*. Journal compilation; Blackwell publishing Ltd, Aquaculture Research, 39, 301 – 310.

Kumaran, T and Citarasu, T. (2016): Isolation and Characterization of Vibrio Species from Shrimp and Artemia Culture and Evaluation of the Potential Virulence Factor. Intel Prop Rights. 4: 153.

Lee, k.k.;Yu, S.; Yang, T.; Liu, P.C. and Chen, F.R.(1996): Isolation and characterization of *Vibrio alginolyticus* isolated from diseased kuruma prawn, *Penaeus japonicas*. Letters in Applied Microbiology 1996,22, 1 11-1 14.

Lee, S.Y. and Söderhäll, K. (2002): Early events in crustacean innate immunity. Fish and Shellfish Immunol., 12: 421-438.

Lewis, D.H. (1973a): Response of brawn shrimp to infection with vibrio species preceding of the fourth annual workshop pf the world mariculture society 4, 333-338.

Lightner, D.V. (1988a): Bacterial shell (brown spot) disease of penaeid shrimp. PP. 48-51. In Sindermann, C.J. and D.V. Lightner (Eds.), Disease Diagnosis and Control in North American Marine Aquaculture. Elserier Sci. Publ., Amesterdam.

Lightner, D.V. (1993): Diseases of cultured penaeid shrimp. In: J.P. McVey (ed.) CRC Handbook of Mariculture, Second edition, Volume 1, Crustacean Aquaculture. CRC Press Inc., Boca Raton, FL. p. 393-486.

Lio-Po, G.D. and Lavilla-Pitogo, C.R. (1990): Bacterial exoskeletal lesions of the tiger prawn *Penaeus monodon*. P. 701- 704 in Hirano, R., and Honyu, I (eds) the second Asian fisheries forum. Asian fish, soc, Manila, Philippines.

Manilal, A.; Sujith, S.; Selvin, J.; Kiran, G.S.; Shakir, C. and Gandhimathi, A. (2010): Virulence of vibrios isolated from diseased black tiger shrimp *Penaeus monodon Fabricius*. J. World Aquacul., Soc., 41 (3): 332-343.

Mastan, S.A. and Begum, S.K.A. (2016): Vibriosis in farm reared white shrimp, *Litopenaeus vannamei* with in andhra pradeshnatural occurrence and artificial challenge. Int J Appl Sci Biotechnol, Vol 4(2): 217-222.

Nash, G.; Anderson, I.G. and Shariff, M. (1988): Pathological changes in the tiger prawn, *Penaeus monodon* fabricius. Associated with culture in brackish water ponds developed from potially acid sulphate soils. Journal of fish disease 1988, 113-123.

Nash, G.; Chinabut, S. and Wan, C. (1987): Idiopathic muscle necrosis in fresh water prawn *Macrobrachium rosenbergii* de man, cultured in Thailand. Journal of fish disease 1987, 10, 109-120.

National Committee of Clinical Laboratory Standards (NCCLS) (2003): "Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals". Approved standard, (NCCLS document M31-A2, Wayne, PA).

Prakash, M. and Karmagam, N. (2013): A study on bacterial flora associated with fresh water prawn, *Macrobrachium rosenbergii*. ISSN: 2347-3215 Volume 1 Number 1 (2013) pp. 01-16.

Ruangpan, L. and Kitao (1990): Minimal inhibitory concentration of 19 chemotherapeutants against vibrio bacteria of diseased shrimp *Penaeus monodon* symposium on diseases in Asian aquaculture 26-29 November, Bali, Indonesia. Asian fish health sec., pp. 10.

Saifedden, G.; Farinazleen, G.; Nor-Khaizura, A.; Kayali, A.Y.; Nakaguchi, Y.; Nishibuchi, M. and Son, R. (2016): Antibiotic Susceptibility profile of Vibrio parahaemolvticus isolated from shrimp in Selangor, Malavsia. International Food Research Journal 23(6): 2732-2736 (December 2016). Schlotfeldt, H.-J. (1972): Jahreszeitliche abhangigkeit der 'schwarzfleckenkrankheit' bei der garnele, Crangon crangon (L). Ber

Wissen Komm Meeresfors 22, 397-399.

Sharshar, K.H. and Azab, E. (2008): Studies on diseased freshwater prawn *Macrobrachium rosenbergii* infected with Vibrio vulnificus. Pakistan Journal of biological sciences. 11 (17): 2092-2100.

Stewart, J. E. (1980): Diseases. In "The Biology and Management of Lobsters" (J. S. Cobb and B. F.

Phillips, Eds.), Vol. 1, pp. 301–342. Academic Press, New York.

Sudheesh, P.S.; Kong, J. and Xu, H. (2002): Random amplified polymorphic DNA-PCR typing of *Vibrio parahaemolyticus* and *V. alginolyticus* isolated from cultured shrimps. Aquaculture 207; 11-17.

Thakur, A.B.; Vaidya, R.B. and Suryawanshi, S.A. (2003): Pathogenicity and antibiotic susceptibility of Vibrio species isolated from moribund shrimps. Indian J. Mar. Sci., vol. 32, No.1, March 2003, pp. 71-75.

Vaseeharan, B.; Ramasamy, P.; Murugan, T. and Chen, J.C. (2005): In vitro susceptibility of antibiotics against Vibrio spp. and Aeromonas spp. isolated from *Penaeus monodon* hatcheries and ponds. International Journal of Antimicrobial Agents, Volume 26, Issue 4, October 2005, Pages 285-291.

Vera, P.; Novas, J.I. and Quintero, M.C. (1992): Experimental study of the virulence of three species of vibrio bacteria in *Penaeus Japonicus* (Bate 1981) Juveniles. Aquaculture, 107 (1992) 119-123.

Xu bing; Ji Weishange; Zhang Peng; Xu Huaishu and Shi Jie. (1993): Comparison of antibacterial agents for control of pathogen in cultured shrimp, *Penaeus orientalis*. J. of Ocean University of Qingdaoo. Vol. 23, No. 2, Apr. 1993.

Zhang, X.J.; Yan, B.L.; Bai, X.S.; Bi, K.R.; Gao, H. and Qin, G.M. (2014): Isolation and Characterization of Vibrio parahaemolyticus and Vibrio rotiferianus Associated with Mass Mortality of Chinese Shrimp (*Fenneropenaeus chinensis*). Journal of Shellfish Research 33(1):61-68. 2014.

الملخص العربى

تم جمع 210 عينة من الجمبري المريض وأخذ و هو حي من محافظة بورسعيد في الفترة من شهر يناير الى أكتوبر 2016 وتم فحصمها اكلينيكيا وتم عمل الصفة التشريحية والفحوص البكتريولوجية والهيستو باثولوجية وايضا قد تم جمع 25 عينة من الجمبري السليم ظاهريا والخالي من العلامات المرضية على جميع أنحاء جسمه وأخذ وهو حي من محافظة بورسعيد لعمل عدوى صناعية بالبكتريا المعزوله من الجمبري المصاب طبيعيا وقد تم التوصل في هذه الدر اسه الى النتائج التاليه: تم تصنيف انواع البكتريا التي تم عزلها من الجمبري من العضلات, الغطاء الكيتيني, الخياشيم الهيموليمف والهيباتوبنكرياس كالاتي: فيبريو الجينوليتكس و فيبريو بار اهيموليتيكس وأخرى وكانت عدد العز لات البكتيرية بالنسبة للعدد الكلي (732) من العز لات كالأتي: عدد العز لات البكتيرية من الفيبريو الجينوليتكس 568 بنسبة 59.77% ومن الفيبريو باراهيموليتيكس 131 بنسبة 17.89% . وأن أكثر معدل لانتشار العزيلات البكتيرية وجد في العضلات بنسبة 95.71% وفي الغطاء الكيتيني بنسبة 90% ثم في الخياشيم بنسبة 80% ثم في الهيموليمف بنسبة عدوى 51.90% بينما أقل معدل لانتشار العزلات البكتيرية وجد في الهيباتوبنكرياس بنسبة عدوى 30.95%. تم عمل عدوى صناعية بالبكتريا المعزوله من الجمبري المصاب طبيعيا الي جمبري سليم ظاهريا وتبين ان الفيبريو الجينوليتكس والفيبريو بار اهيموليتيكس كانوا الأكثر ضراوة حيث ادى الى نفوق 100% من الجمبري خلال60 ساعة وظهرت نفس الأعراض المرضية والصفة التشريحية على المصاب صناعيا وتم عمل أختبار الحساسية للبكتريا المعزولة من الجمبري المصاب طبيعيا ووجد أن عترات الفبير بـو الجبنـوليتكس و الفبير بـو بـار اهيموليتيكس حساسـة للنور فلو كساسـين و السير وفلو كساسـين و تريمو ثوبريم + سلفاميثاكسازول ومضادة للاميكاسين والريفاميسين وبفحص أنسجة الجميري المصاب طبيعيا وجد تغيرات في العضلات والخياشيم والهيباتو بنكرياس نتيجة العدوى البكتيرية حيث وجد تورم وخلايا التهابية بين العضلات ووجد تورم وإحتقان بالهيباتوبنكرياس بالإضافة الى تغير في خلايا الخياشيم نتيجة الالتهاب.