# **Journal of Plant Protection and Pathology**

Journal homepage: <u>www.jppp.mans.edu.eg</u> Available online at: <u>www.jppp.journals.ekb.eg</u>

# Induction of Systemic Resistance in Tomato Plants against Root-Knot Nematode, *Meloidogyne incognita* (Passe-Muraille) with $\beta$ , Amino Butyric Acid

Attia, M. M. R.\*

Cross Mark

Plant Protection Department, Faculty of Agriculture, Damanhour University

# ABSTRACT



In this study, the efficiency of  $\beta$  amino butyric acid (BABA) on induction of resistance against root-knot nematode (*Meloidogyne incognita*, PM) infection of tomato plants were evaluated. The effects of treatments were estimated by counting the number of galls, egg masses / root system and juvenile per 250 g soil. In addition, tomato plants growth parameters were estimated. Results showed that the plants which sprayed with BABA at 32 and 16 Mm gave the highest reduction in gall numbers, egg masses formation and juveniles, (57.87-55.85, 60-59.48 and 49.8- 47.25 % respectively). Concerning the soil drench of BABA with 32 and 16 Mm the highest reduction in gall numbers, egg masses formation and juveniles were recorded ( 61.92- 60.05, 63.99-61.85 and 55.65- 53.38 % respectively). Treatments as well enhance both fresh and dry shoot and root system compared with inoculated control. Also, results showed that application of BABA interior to nematode inoculation were outstanding in inducing acquired resistance for *M. incognita* than application at the same time or next nematode infection.

Keywords: Meloidogyne incognita, β amino butyric acid, Solanum lycopersicum.

## INTRODUCTION

The tomato (Solanum lycopersicum) industry is one of the most progressing, innovative and globalized horticultural industries, Tomato ranks second in priority after Potato in the world. Egypt ranks fifth in the production of Tomato, China, USA, Italy, Turkey, India and Egypt are the important tomato production countries (FAO, 2019). Plantparasitic nematodes can act as pests on a wide range of remarkable agricultural crops. The root-knot nematodes (Meloidogyne spp.) are among the most devastating agricultural pests globally. They damage a wide range of plants, causing a great losses in yield both tropical and subtropical agriculture (Sikora and Fernandez 2005). Newly, Meloidogyne has an important role as determination factor for many crop cultivation. Also, root-knot nematode (Meloidogyne spp.) is one of the gravest nematode in greenhouse and field (Bakr et al 2011). Control of plantparasitic nematodes always has been complicated, and the use of toxic fumigant nematicides for many years has been the most effective strategy, like the most notorious methyl bromide (Oka et al., 2000b). Furthermore, efficient nematicides such as dibromochloropropane (DBCP) and ethylene dibromide (EDB) have been outgoing from the market due to the fact their harmful effects on both humans and environment (Oka et al., 2000b). The use of chemical nematicides, not only the expenses incurred, but also, can result in chemical residues deleterious for humans and the environment as well as pick out resistance for nematodes (Ghini and Kimati, 2000). Nematode control is complex and also needs integrated management practices. The greatest used methods include chemical and biological control and resistant cultivars. Consequently, late strategies for the

management of nematodes have actively been examined in a few years ago, and seeking has focused on organic and inorganic amendments, biological control, naturally nematicides and induced acquired resistance (Oka et al., 2000a). Chemical inducers have been among the alternative methods developed for management of the nematode, a number of defense mechanisms in the plants have been found against pathogens. In addition to constituent resistance, plants infection with widely different pathogens can be activate protective mechanisms. The pathogen induced resistance can be setup in the tissue surrounding the site of premier infection (localized acquired resistance, LAR) however in the distant, uninfected parts of the tissue (systemic acquired resistance, SAR) (Hammerschmidt, 2009). Applying SA and also its functional analogs, such as 2,6-dicholoroisonicotinic acid (INA) and acibenzolar-Smethyl (ASM) (Oostendorp et al., 2001). SAR elicitors do not display any direct antimicrobial action and seem to have environmentally benign, diverse traditional pesticides. In many cases SAR protects plants from a wide spectrum of pathogens and have systemic action (Klessig and Malamy, 1994; Schneider et al., 1996). The use of SA to inducing resistance for nematodes is particularly motivating as it is non-phytotoxic and a natural compound at the convenient dosage (Molinari, 2008). Accumulation of plant defense metabolites and activation of enzymes related to plant defenses against pathogens are the most significant mechanisms of chemical inducers in plants. In many plants these compounds stimulate resistance against plant diseases that are caused by a diversity of pathogens including, fungi, viruses, bacteria, and nematodes (Kessmann et al. 1994; Cohen 1994; Oostendorp and Seikora 1990). Plant molecules thought to be plant defense signals, such as ethylene,

systemin, jasmonic acid (JA) and methyl jasmonate (MeJA) as well have been reported to induce local and systemic resistance to spectrum range of pathogens in plants (Oka et al., 1999). BABA is a nonprotein amino acids have been used as chemical inducers against a wide spectrum of pathogens in various plants (Oka et al., 1999; Lee et al., 2000). Applied the BABA as a resistance chemical inducer in tomato plants as soil drenching and foliar spray with BABA causes both local and systemic induction of plant defense mechanisms and decreases the root galls, number of eggs (Oka et al., 1999). Also, Ton et al., 2005 illustrated that plants applied with BABA develop a promote capacity to resist biotic and abiotic stresses. They have cleared that induced resistance miss at low BABA concentration while female sterility happen at high BABA concentrations. Ji et al., 2015 illustrated that BABA induced resistance against M. graminicola in rice crop although, it has'nt toxicity to nematode. BABA inhibited penetration of nematode, delaying development of giant cell formation. Foliar spray and root drench with BABA to tomato and cucumber induced systemic resistance against M. javanicum (Oka et al., 1999 and Oka et al., 2001) as well against the M. marylandi in wheat (Oka et al., 2001). BABA reduced M. incognita in tomato plants (Anter et al., 2014). Fatemy et al. (2012 sowed that tomato seed treated with BABA protected them aganist M. javanica. Ahmed et al. (2009) cleared the effectively of BABA in mung bean plants against M. javanica. Mongae and Moleleki, 2015 showed that potato plants treated with of BABA protected them from M. incognita. So, the aim of this work was to determine the effect of foliar spray and/or soil drench of BABA as a chemical inducer at five concentration with three different time of application on tomatoes plants against M. incognita plants under greenhouse condition.

### MATERIALS AND METHODS

### Nematode Inoculation:

Eggs of root-knot nematode, *M. incognita* was isolated from heavily infested roots of eggplant (*Solanum melongena L*) which were obtained from El-Bostan region, EL-Beheira Governorate. Roots were used for egg extraction methods using sodium hypochlorite (NaOCl) technique (Hussey and Baker 1973)

#### Egg-masses staining and counting:

For 20-30 minutes egg-masses of *M. incognita* were stained by placed them in an aqueous solution of Phloxine B (0.15g per liter tap water). Root systems were rinsed in tap water, to remove residual stain on the roots. Phloxine B primarily stains the gelatinous egg sac and naked viable eggs (Barker *et al.*, 1985)

### Nematode extraction:

Through 100, 200 and 325 mesh-sieves 250 g of soil was successively wet-sieved. The active nematode present in the fine sieve were extracted by Baermann-plate technique (Goodey, 1963). A counting slide was used for counting second stage juveniles  $(J_2)$  of *M. incognita* microscopically.

### β, amino butyric acid preparation (BABA):

Stalk solution of BABA, molar mass103.121 g·mol-1 (purchased from Gomhoria Company, Egypt) was prepared by dissolving 164.8 mg in 50 ml of distilled water.

#### Foliar spraying with $\beta$ , amino butyric:

Plastic pots (20 cm in diam. and 25 cm in depth) were filled with 3 kg mixture of autoclaved sand: peat moss (3:1, V: V). One of tomato seedling (CV. 023 f1) of 35 days old was transplanted in each pot and watered every two days and fertilized as needed. After one week from transplanting time, suspension containing near to 5000 eggs and newly hatching second stage juveniles was used to inoculate each pot after seven days from transplanting around the plant stem. Five concentrations of BABA, 2, 4, 8, 16 and 32 mM were used as a foliar spray application. The experiment was consisted of 17 treatments (untreated control inoculated with M. incognita; non-inoculated control and 15 combination of the 5 concentrations of BABA 5-d before, during and 5-d after nematode inoculation). Plants were accurately sprayed until complete wetness using 2 L hand sprayer. In the greenhouse, each treatment was replicated 4 times and arranged in randomized complete design. Fifth days after inoculation, plants were removed, the fresh and dry weights of shoots and roots were determined. Also, egg-masses, number of galls and juveniles per 250 g soil were counted

### Soil drenching with $\beta$ , amino butyric:

One of tomato seedling (CV. 023f1) of 35 days old was transplanted, in plastic pots (20 cm in diam. and 25 cm in depth), which was filled with 3 kg mixture of autoclaved sand: peat moss (3:1, V: V). Suspension containing around 5000 eggs and newly hatching second stage juveniles were add around the plant stem after one week from transplant. 3 mL of 2, 4, 8, 16 and 32mM of BABA were added around the root of each tomato plants as soil drenching. Seventeen treatments (untreated control inoculated with M. incognita; non-inoculated control and 15 gathering s of the five concentration of BABA applied 5-days before, during and 5days after nematode inoculation. Plants were watered every two days and fertilized as needed. In the greenhouse each treatment was replicated 4 times and arranged in randomized complete design. Fifth days after inoculation plants were removed, the fresh and dry weights of shoots and roots were determined. As well, number of galls egg-masses and number of juveniles / 250 g soil were counted Statistical analysis:

As a factorial arrangement in a complete randomized design (CRD) data were analyzed. The least significant differences (LSD) were used for comparisons among means at 0.05 levels according to Sendecor and Cochran (1980). SAS (2000) were used to analyze the data.

### **RESULTS AND DISCUSSION**

## **Results:**

# Foliar spraying application:

# Effect of foliar spraying with $\beta$ , amino butyric on *M*. *incognita* gall numbers

The resulted in Table (1) clear that, treatments significantly ( $p \le 0.05$ ) decreased the number of galls compared to untreated inoculated control at the five concentration, and the three time. However, 32, 16, 8, 4 and 2 mM of BABA treated plants registered reduction gall number by 57.78, 55.85, 45.49, 42.9 and 34.15 % respectively. BABA at 32 mM achieved the highest significant reduction. While, spraying BABA five days before inoculation gave the highest heist significant reduction on gall number. Otherwise spraying after five days from inoculation with BABA gave the lowest significant reduction.

| Como                      | 5 days after             |                  | Duri                     | During        |                          | 5 days before      |        | Reduction |
|---------------------------|--------------------------|------------------|--------------------------|---------------|--------------------------|--------------------|--------|-----------|
| Conc.                     | Mean of galls<br>/ plant | Reduction %      | Mean of galls<br>/ plant | Reduction %   | Mean of galls<br>/ plant | Reduction %        | wican  | %         |
| 32mM                      | 140                      | 65.47            | 170.25                   | 58.01         | 202.25                   | 50.12              | 170.83 | 57.87     |
| 16 mM                     | 150                      | 63               | 172.25                   | 57.39         | 214.75                   | 47.04              | 179    | 55.85     |
| 8 mM                      | 190.25                   | 53.08            | 209.75                   | 48.27         | 263                      | 35.14              | 221    | 45.49     |
| 4 mM                      | 204                      | 49.62            | 245.25                   | 39.58         | 245.25                   | 39.51              | 231.5  | 42.9      |
| 2 mM                      | 216                      | 46.79            | 272.25                   | 32.86         | 313                      | 22.81              | 267    | 34.15     |
| Inoculated Control        | 405.5                    |                  | 405.5                    |               | 405.5                    |                    | 4      | 05.5      |
| Mean                      | 217.62                   |                  | 245.87                   |               | 273.95                   |                    |        |           |
| $LSD(P \le 0.05) = Conce$ | entration = 7.55, Trea   | tments = 5.34, I | nteraction = 1.64. I     | Each number i | s a mean of four re      | olicates and one p | olant. |           |

Table 1. Effect foliar spray of β, amino butyric acid on the number of galls on tomato plants infected with *M. incognita* under greenhouse conditions

#### Nematicidal activity of foliar

Spraying with  $\beta$ , amino butyric on *M. incognita* egg masses formation:

All treatments significantly ( $p \le 0.05$ ) reduced number of egg masses compared to untreated inoculated control as showed in Table (2), the highest effect was obtained by BABA at 32 mM (60%), followed by BABA at 16 mM (59.48) without significant difference between them. otherwise, treatment with BABA at n mM gave the lowest effect (34.15) However, treatments five days before inoculation reduced number of egg masses significantly ( $p \le 0.05$ ) compared with treatment during inoculation and five days after inoculation.

 Table 2. Efficiency of spraying β, amino butyric on tomato plants, on rate egg masses formation of *M. incognita* under greenhouse condition.

|                                    |                       | Nematode inoculation |                       |            |                           |              |           |       |  |  |
|------------------------------------|-----------------------|----------------------|-----------------------|------------|---------------------------|--------------|-----------|-------|--|--|
| Cone                               | 5 days after          |                      | During                |            | 5days befor               | Maan         | Reduction |       |  |  |
| Colic.                             | Mean of egg masses/   | Reduction            | Mean of egg masses/   | Reduction  | Mean of egg masses/       | Reduction    | wiean     | %     |  |  |
|                                    | plant                 | %                    | plant                 | %          | plant                     | %            |           |       |  |  |
| 32 mM                              | 119.75                | 68.61                | 151                   | 60.41      | 186.5                     | 51.11        | 152.41    | 60    |  |  |
| 16 mM                              | 123.25                | 67.69                | 152                   | 60.15      | 188.5                     | 50.58        | 154.58    | 59.48 |  |  |
| 8 mM                               | 170.5                 | 55.3                 | 189                   | 50.45      | 242.5                     | 36.43        | 200.67    | 47.39 |  |  |
| 4 mM                               | 187.5                 | 50.58                | 219.75                | 42.39      | 219.75                    | 42.39        | 209       | 45.21 |  |  |
| 2 mM                               | 195                   | 48.88                | 250.75                | 34.27      | 281.25                    | 26.27        | 242.33    | 36.47 |  |  |
| Inoculated control                 | 381.5                 |                      | 381.5                 |            | 381.5                     |              | ,         | 201 5 |  |  |
| Mean                               | 196.25                |                      | 224                   |            | 250                       |              | -         | 01.0  |  |  |
| $\overline{ISD}(D < 0.05) = C_{0}$ | mountration - 694 Tra | atmanta - 1          | () Internation - 1 12 | Each numbe | n is a mean of form nonli | otos and ana | alant     |       |  |  |

 $LSD (P \le 0.05) = Concentration = 6.84, Treatments = 4.62, Interaction = 1.42. Each number is a mean of four replicates and one plant.$ 

# Nematicidal activity of foliar spraying with $\beta$ , amino butyric on *M. incognita* 2nd juveniles

The results in Table (3) illustrated that treatments were significantly ( $p \le 0.05$ ) different compared to untreated inoculated control. Treatment with BABA at 32 mM and at 16 mM had the highest reduction reduced the number of J2 by 49.8 and 47.25 % respectively, without significant

difference between them. Otherwise, Treatment with BABA at 2 mM had the lowest reduction reduced the number of J2 by 28 %. Furthermore, application BABA five days before inoculation had the highest effect, compared with the treatment of BABA five days after inoculation that gave the lowest reduction.

Table 3. Efficacy of spraying β, amino butyric on number 2nd juvenile's under greenhouse conditions on tomato plants infected with *M. incognita*.

| Cone               | 5 days after                                     |                | During                                            | During      |                                                | 5 days before |        |       |
|--------------------|--------------------------------------------------|----------------|---------------------------------------------------|-------------|------------------------------------------------|---------------|--------|-------|
|                    | Mean juveniles<br>2 <sup>nd</sup> /250 g of soil | Reduction<br>% | Mean juveniles<br>2 <sup>nd</sup> / 250 g of soil | Reduction % | Mean juveniles 2 <sup>nd</sup> / 250 g of soil | Reduction %   | wiean  | %     |
| 32 mM              | 114                                              | 59.02          | 139.25                                            | 49.95       | 165.75                                         | 40.43         | 139.67 | 49.8  |
| 16 mM              | 126.75                                           | 54.52          | 144                                               | 48.24       | 169.5                                          | 38.41         | 146.75 | 47.25 |
| 8 mM               | 151.5                                            | 45.55          | 166                                               | 40.34       | 208.5                                          | 25.06         | 175.33 | 43.45 |
| 4 mM               | 159.5                                            | 42.67          | 190.75                                            | 31.44       | 190.75                                         | 31.44         | 180.33 | 35.19 |
| 2 mM               | 164.75                                           | 40.79          | 216.25                                            | 22.28       | 220                                            | 20.93         | 200.33 | 28    |
| Inoculated control | 278.25                                           |                | 278.25                                            |             | 278.25                                         |               | 2      | 78.25 |
| Mean               | 165.79                                           |                | 189.08                                            |             | 205.45                                         |               |        |       |

LSD ( $P \le 0.05$ ) = Concentration = 9.82, Treatments = 6.94, Interaction = 2.13. Each number is a mean of four replicates and one plant.

# Effectively of spray $\beta$ , amino butyric on Fresh and Dry Weight of Shoot.

The data in Table (4) cleared that, tomato plants spraying with BABA significantly (p = 0.05) increased both shoot fresh weight and shoot dry weight compared with untreated inoculated control, but less significantly (p = 0.05) compared with non-inoculated control. The 32 mM recorded the height average fresh and dry shoot weights, 62.82 and 17.24g. Spraying with BABA 5 days interior nematode inoculation gave the height fresh and dry shoot weight 57.82 and 16.45 g respectively. Furthermore both treatment of BABA during inoculation and five days after inoculation gave the lowest weight of fresh and dry shoot weight 55.71, 15.18 and 55.51, 14.95 g respectively, without significant difference between them.

| Shoot weight of infected plants |                                                                                                       |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Nematode inoculation            |                                                                                                       |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 5 days after                    |                                                                                                       | During                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 days b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | efore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Fresh                           | Dry                                                                                                   | Fresh                                                                                                                                                                                                                                                                                    | Dry                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 63.59                           | 17.72                                                                                                 | 64.96                                                                                                                                                                                                                                                                                    | 16.82                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 62.29                           | 17.32                                                                                                 | 63.65                                                                                                                                                                                                                                                                                    | 17.45                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 56.52                           | 15.57                                                                                                 | 55.29                                                                                                                                                                                                                                                                                    | 14.55                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 57.38                           | 16.52                                                                                                 | 53.28                                                                                                                                                                                                                                                                                    | 13.51                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 55.58                           | 17.19                                                                                                 | 53.41                                                                                                                                                                                                                                                                                    | 13.08                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 40.43                           | 11.25                                                                                                 | 40.43                                                                                                                                                                                                                                                                                    | 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 68.59                           | 19.62                                                                                                 | 68.95                                                                                                                                                                                                                                                                                    | 19.62                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 57.82                           | 16.45                                                                                                 | 55.71                                                                                                                                                                                                                                                                                    | 15.18                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                 | <b>5 days</b><br><b>Fresh</b><br>63.59<br>62.29<br>56.52<br>57.38<br>55.58<br>40.43<br>68.59<br>57.82 | 5 days after           Fresh         Dry           63.59         17.72           62.29         17.32           56.52         15.57           57.38         16.52           55.58         17.19           40.43         11.25           68.59         19.62           57.82         16.45 | Show           5 days after         Dur           Fresh         Dry         Fresh           63.59         17.72         64.96           62.29         17.32         63.65           56.52         15.57         55.29           57.38         16.52         53.28           55.58         17.19         53.41           40.43         11.25         40.43           68.59         19.62         68.95           57.82         16.45         55.71 | Shoot weight           Nematod           5 days after         During           Fresh         Dry         Fresh         Dry           63.59         17.72         64.96         16.82           62.29         17.32         63.65         17.45           56.52         15.57         55.29         14.55           57.38         16.52         53.28         13.51           55.58         17.19         53.41         13.08           40.43         11.25         40.43         11.25           68.59         19.62         68.95         19.62           57.82         16.45         55.71         15.18 | Shoot weight of infected plate           Nematode inoculation           5 days after         During         5 days b           Fresh         Dry         Fresh         Dry         Fresh           63.59         17.72         64.96         16.82         59.9           62.29         17.32         63.65         17.45         63.3           56.52         15.57         55.29         14.55         56.5           57.38         16.52         53.28         13.51         53.28           55.58         17.19         53.41         13.08         53.24           40.43         11.25         40.43         11.25         40.43           68.59         19.62         68.95         19.62         68.95           57.82         16.45         55.71         15.18         55.51 | Shoot weight of infected plants           Nematode inoculation           5 days after         During         5 days before           Fresh         Dry         Fresh         Dry         Fresh         Dry           63.59         17.72         64.96         16.82         59.9         17.19           62.29         17.32         63.65         17.45         63.3         15.57           56.52         15.57         55.29         14.55         56.5         14.85           57.38         16.52         53.28         13.51         53.28         13.51           55.58         17.19         53.41         13.08         53.24         12.63           40.43         11.25         40.43         11.25         40.43         11.25           68.59         19.62         68.95         19.62         68.95         19.62           57.82         16.45         55.71         15.18         55.51         14.95 | Shoot weight of infected plants           Nematode inoculation           5 days after         During         5 days before         Me           Fresh         Dry         Fresh         Dry         Fresh         Dry         Fresh           63.59         17.72         64.96         16.82         59.9         17.19         62.82           62.29         17.32         63.65         17.45         63.3         15.57         57.41           56.52         15.57         55.29         14.55         56.5         14.85         56.1           57.38         16.52         53.28         13.51         53.28         13.51         54.56           55.58         17.19         53.41         13.08         53.24         12.63         54.07           40.43         11.25         40.43         11.25         40.43         11.25         40.43           68.59         19.62         68.95         19.62         68.95         19.62         68.95           57.82         16.45         55.71         15.18         55.51         14.95 |  |  |

| Table 4. Effectively of foliar spraying with $\beta$ , amino bu | yric on shoot fresh an | d dry weights of tomato | plants infected |
|-----------------------------------------------------------------|------------------------|-------------------------|-----------------|
| with <i>M. incognita</i> under greenhouse conditions            |                        |                         |                 |

LSD ( $P \le 0.05$ ) Fresh weight: Concentration = 2.83, Treatments = 1.85, Interaction = 0.60. LSD ( $P \le 0.05$ ) Dry weight: Concentration = 1.45, Treatments = 0.95, Interaction = 0.3. Each number is a mean of four replicates and one plant.

# Efficacy of spray $\beta$ , amino butyric on Fresh and Dry Weight of root system

Data obtained in Table (5) illustrated that tomato plants spraying with BABA significantly (p = 0.05) increased both fresh and dry root weight compared with untreated inoculated control (10.22 and 2.6 g respectively), but less significantly (p = 0.05) compared with noninoculated control (17.81 and 4.37 g respectively). Spraying BABA 32 mM and 16 mM recorded the height average weight of fresh and dry root weights, 15.17, 3.44 and 14.97, 3.19 g, without significant difference between them. While, spraying BABA 5 days before nematode inoculation gave the height fresh and dry root weight 14.57 and 3.31 g respectively. Moreover, both treatment of BABA during inoculation and five days after inoculation gave the lowest weight of fresh and dry root weight 13.42, 3.04 and 13.51, 3.05 g respectively, without significant difference between them.

Table 5. Efficiency of foliar spraying with β, amino butyric on root fresh and dry weights of tomato plants infected with *M. incognita* under greenhouse conditions

|                        | Shoot weight of infected plants |      |       |        |       |        |       |      |  |  |
|------------------------|---------------------------------|------|-------|--------|-------|--------|-------|------|--|--|
| Como                   | Nematode inoculation            |      |       |        |       |        |       |      |  |  |
| Conc.                  | 5 days after                    |      | Duri  | During |       | before | Mean  |      |  |  |
|                        | Fresh                           | dry  | Fresh | Dry    | Fresh | Dry    | fresh | Dry  |  |  |
| 32 mM                  | 16.79                           | 4.14 | 14.01 | 4.15   | 14.7  | 3.04   | 15.17 | 3.44 |  |  |
| 16 mM                  | 16.17                           | 3.77 | 13.9  | 2.99   | 14.85 | 2.82   | 14.97 | 3.19 |  |  |
| 8 Mm                   | 14.07                           | 2.81 | 13.34 | 2.73   | 12.52 | 2.9    | 13.31 | 2.81 |  |  |
| 4 mM                   | 13.59                           | 2.8  | 12.26 | 2.69   | 12.26 | 2.69   | 12.7  | 2.8  |  |  |
| 2 mM                   | 13.35                           | 2.69 | 12.4  | 2.78   | 12.19 | 2.94   | 12.64 | 2.72 |  |  |
| Inoculated control     | 10.22                           | 2.6  | 10.22 | 2.6    | 10.22 | 2.6    | 10.22 | 2.6  |  |  |
| Non-inoculated Control | 17.81                           | 4.37 | 17.81 | 4.37   | 17.81 | 4.37   | 17.81 | 4.37 |  |  |
| Mean                   | 14.57                           | 3.31 | 13.42 | 3.04   | 13.51 | 3.05   |       |      |  |  |

LSD ( $P \le 0.05$ ) Fresh weight: Concentration = 1.15, Treatments = 0.99, Interaction = 0.32. LSD ( $P \le 0.05$ ) Dry weight: Concentration = 0.31, Treatments = 0.2, Interaction = 0.068. Each number is a mean of four replicates and one plant.

The results in Table (6) cleared that, all treatments significantly ( $p \le 0.05$ ) decreased the number of galls compared to untreated inoculated control at the five concentration, and the three time. While 32, 16, 8, 4and 2 mM of BABA treated plants registered reduction gall number by 61.29, 60.05, 46.34, 37.53 and 55.69 %

respectively. BABA at 32 mM and 16 mM achieved the highest significant reduction, without significant difference between them. Moreover, soil drench of BABA five days before inoculation gave the highest significant reduction on gall number compared with the other two time of application.

Table 6. Effects of soil drench with β, amino butyric on numbers of galls under greenhouse conditions of tomato plants infected with *M. incognita*.

| Como               | 5 days after  |           | Durin         | During    |               | 5 days before |        | Reduction |
|--------------------|---------------|-----------|---------------|-----------|---------------|---------------|--------|-----------|
| Colic.             | Mean of galls | Reduction | Mean of galls | Reduction | Mean of galls | Reduction     | Wiean  | %         |
|                    | / plant       | %         | / plant       | %         | / plant       | %             |        |           |
| 32 mM              | 87            | 75.37     | 141.5         | 59.94     | 175           | 50.46         | 134.5  | 61.92     |
| 16 mM              | 102.75        | 70.91     | 138.75        | 60.72     | 181.75        | 48.54         | 141.1  | 60.05     |
| 8 mM               | 140.75        | 60.15     | 201.25        | 43.02     | 225.75        | 36.18         | 189.25 | 46.34     |
| 4 mM               | 192           | 45.64     | 224.75        | 36.37     | 245.25        | 30.57         | 220.66 | 37.53     |
| 2 mM               | 210           | 40.55     | 210           | 40.55     | 261           | 26.11         | 227.16 | 35.69     |
| Inoculated control | 353.25        |           | 353.25        |           | 353.25        |               | 3      | 53.25     |
| Mean               | 180.95        |           | 211.58        |           | 240.41        |               |        |           |

LSD (P ≤ 0.05) = Concentration = 11.17, Treatments = 7.89, Interaction = 2.43. Each number is a mean of four replicates and one plant.

### J. of Plant Prot. and Path., Mansoura Univ., Vol. 10 (11), November, 2019

All treatments significantly ( $p \le 0.05$ ) decreased number of egg masses compared to untreated inoculated control in Table (7), the highest effect was obtained with BABA at 32 mM (63.99%), followed by BABA at 16 mM (61.85) without significant difference between them. Otherwise the lowest effect was obtained with both BABA at 2 and 4 Mm (37.06 and 39.71 % respectively) without significant difference between them. However, treatments with BABA as five days before inoculation reduced number of egg masses significantly ( $p \le 0.05$ ) compared with treatment with BABA during inoculation and five days after inoculation. Data presented in Table (8), revealed that, treatments reduced number of J2 significantly ( $p \le 0.05$ ) compared with untreated inoculated control, the highest effect was recorded with BABA at 32 mM (55.65%), followed by BABA at 16 mM (53.38) without significant difference between them. Otherwise the lowest effect was obtained with both BABA at 2 and 4 Mm (31.14 and 33.67 % respectively) without significant difference between them. However, treatments with BABA as five days before inoculation reduced number of J2 significantly ( $p \le 0.05$ ) compared with treatment by BABA during inoculation and five days after inoculation.

Table 7. Effects of soil drench with  $\beta$ , amino butyric on egg masses formation under greenhouse conditions of tomato plants infected with *M. incognita*.

|                    |                              |                | Nematode in                  | oculation      |                              |               |          |       |
|--------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|---------------|----------|-------|
| Cono               | 5 days after                 |                | Durin                        | During         |                              | 5 days before |          |       |
| Conc.              | Mean of egg<br>masses/ plant | Reduction<br>% | Mean of egg<br>masses/ plant | Reduction<br>% | Mean of egg<br>masses/ plant | Reduction %   | n litean | %     |
| 32 mM              | 62.5                         | 80.15          | 121.5                        | 61.42          | 156.25                       | 50.39         | 113.41   | 63.99 |
| 16 mM              | 83.25                        | 73.57          | 121                          | 61.58          | 156.25                       | 50.39         | 120.16   | 61.85 |
| 8 mM               | 117.25                       | 62.77          | 186                          | 40.95          | 198.25                       | 37.06         | 167.16   | 46.93 |
| 4 mM               | 162.75                       | 48.33          | 198                          | 37.14          | 212.75                       | 32.46         | 191.16   | 39.17 |
| 2 mM               | 184.25                       | 41.5           | 184.25                       | 41.5           | 226.25                       | 28.17         | 198.25   | 37.06 |
| Inoculated control | 315                          |                | 315                          |                | 315                          |               |          | 315   |
| Mean               | 154.16                       |                | 187.62                       |                | 210.79                       |               |          |       |
|                    |                              | 1              | T.4                          |                | 66 11                        |               |          |       |

LSD ( $P \le 0.05$ ) = Concentration = 9.04, Treatments = 6.65, Interaction = 2.04. Each number is a mean of four replicates and one plant.

| Table 8. Effects of soil drench with $\beta$ , am | no butyric on numbers J2 under | <ul> <li>greenhouse conditions of</li> </ul> | f tomato plants |
|---------------------------------------------------|--------------------------------|----------------------------------------------|-----------------|
| infected with <i>M. incognita</i> .               |                                |                                              |                 |

| Cone               | 5 days after           |           | During                          | During    |                                 | 5 days before |        |       |
|--------------------|------------------------|-----------|---------------------------------|-----------|---------------------------------|---------------|--------|-------|
| Conc.              | Mean juveniles         | Reduction | Mean juveniles                  | Reduction | Mean juveniles                  | Reduction     | Witaii | %     |
|                    | $2^{nd}/250$ g of soil | %         | 2 <sup>nd</sup> / 250 g of soil | %         | 2 <sup>nd</sup> / 250 g of soil | %             |        |       |
| 32 mM              | 50                     | 71.13     | 77.25                           | 55.41     | 103.25                          | 40.4          | 76.83  | 55.65 |
| 16 mM              | 58.5                   | 66.23     | 81                              | 53.24     | 102.25                          | 59.01         | 80.58  | 53.38 |
| 8 mM               | 75                     | 56.7      | 97                              | 44.01     | 121                             | 30.15         | 97.66  | 43.63 |
| 4 mM               | 104                    | 39.97     | 114.25                          | 34.05     | 126.5                           | 26.98         | 114.91 | 33.67 |
| 2 mM               | 115                    | 33.62     | 115                             | 33.62     | 126.5                           | 26.98         | 118.83 | 31.41 |
| inoculated control | 173.25                 |           | 173.25                          |           | 173.25                          |               | 17     | 3.25  |
| Mean               | 95.95                  |           | 109.62                          |           | 125.45                          |               |        |       |

 $LSD (P \le 0.05) = Concentration = 6.35, Treatments = 4.42, Interaction = 1.38. Each number is a mean of four replicates and one plant.$ 

# Effect of soli drench with $\beta$ , amino butyric on Fresh and Dry Weight of Shoot

The obtained results in Table (9), indicated that tomato plants treated as a soil drench with BABA significantly (p = 0.05) increased both fresh and dry shoot weight compared with untreated inoculated control (42.63 and 11.07 g respectively), but less significantly (p = 0.05)compared with non-inoculated control (74.27 and 20.72 g respectively). Soil drench with BABA 32 mM and 16 mM recorded the height average weight of fresh shoot weights, 67.07 and 61.66 g, with significant difference between them. Furthermore, they did not have a significant difference between them on the shoot dry weight. Soil drench with BABA 5 days before nematode inoculation gave the height fresh and dry shoot weight, 61.93 and 17.33 g respectively. Moreover, both treatment of BABA during inoculation and five days after inoculation gave the lowest weight of fresh and dry root weight 59.82, 16.06 and 59.77, 15.72 g respectively, without significant difference between them.

Table 9. Effects of soil drench with  $\beta$ , amino butyric shoot fresh and dry weights of tomato plants infected with *M. incognita* under greenhouse conditions

|                           | Shoot weight of infected plants |       |        |       |        |               |       |       |  |  |  |
|---------------------------|---------------------------------|-------|--------|-------|--------|---------------|-------|-------|--|--|--|
| Como                      | Nematode inoculation            |       |        |       |        |               |       |       |  |  |  |
| Conc.                     | 5 days after                    |       | During |       | 5 days | 5 days before |       | Mean  |  |  |  |
|                           | Fresh                           | Dry   | Fresh  | Dry   | Fresh  | Dry           | Fresh | Dry   |  |  |  |
| 32 mM                     | 67.84                           | 18.64 | 69.21  | 17.74 | 64.15  | 18.11         | 67.07 | 18.16 |  |  |  |
| 16 mM                     | 66.54                           | 18.24 | 57.9   | 18.37 | 60.55  | 16.49         | 61.66 | 17.7  |  |  |  |
| 8 mM                      | 60.77                           | 16.49 | 59.54  | 15.47 | 60.75  | 15.81         | 60.35 | 15.92 |  |  |  |
| 4 mM                      | 61.63                           | 17.44 | 57.53  | 14.43 | 58.59  | 13.67         | 59.25 | 15.22 |  |  |  |
| 2 mM                      | 59.83                           | 18.11 | 57.66  | 14    | 57.45  | 13.55         | 58.32 | 15.18 |  |  |  |
| Inoculated control        | 42.63                           | 11.7  | 42.63  | 11.7  | 42.63  | 11.7          | 42.63 | 11.7  |  |  |  |
| Non-inoculated<br>Control | 74.27                           | 20.72 | 74.27  | 20.72 | 74.27  | 20.72         | 74.27 | 20.72 |  |  |  |
| Mean                      | 61.93                           | 17.33 | 59.82  | 16.06 | 59.77  | 15.72         |       |       |  |  |  |

LSD ( $P \le 0.05$ ) Fresh weight: Concentration = 2.91, Treatments = 1.91, Interaction = 0.63. LSD ( $P \le 0.05$ ) Dry weight: Concentration = 1.48, Treatments = 0.97, Interaction = 0.32. Each number is a mean of four replicates and one plant.

# Effect of soil drench with $\beta$ , amino butyric on Fresh and Dry root system

As shown in Table (10) treatments significantly (p = 0.05) increased both fresh and dry root weight compared with untreated inoculated control (10.38 and 2.72 g respectively), but less significantly (p = 0.05) compared with non-inoculated control (19.37 and 4.62 g respectively). Spraying BABA 32 mM and 16 mM recorded the height average weight of fresh and dry root weights, 17.38, 3.76 and 17.18, 3.51 g, without significant difference between them. While, soil drenching of BABA 5 days before nematode inoculation gave the height fresh and dry root weight, 16.54 and 3.59 g respectively. Moreover, both treatment of BABA during inoculation and five days after inoculation gave the lowest weight of fresh and dry root weight 15.5, 3.35 and 13.39, 3.27 g respectively, without significant difference between them

Table 10. Effects of soil drench with  $\beta$ , amino butyric on root fresh and dry weights of tomato plants infected with *M. incognita* under greenhouse conditions

|                           | Shoot weight of infected plants |      |       |      |          |               |       |      |  |  |
|---------------------------|---------------------------------|------|-------|------|----------|---------------|-------|------|--|--|
| Como                      | Nematode inoculation            |      |       |      |          |               |       |      |  |  |
| Conc.                     | 5 days after                    |      | Du    | ing  | 5 days b | 5 days before |       | an   |  |  |
|                           | Fresh                           | Dry  | fresh | Dry  | Fresh    | Dry           | Fresh | Dry  |  |  |
| 32 mM                     | 19                              | 4.46 | 16.22 | 3.47 | 16.91    | 3.36          | 17.38 | 3.76 |  |  |
| 16 mM                     | 18.38                           | 4.09 | 16.11 | 3.31 | 17.06    | 3.14          | 17.18 | 3.51 |  |  |
| 8 mM                      | 16.28                           | 3.13 | 15.55 | 3.05 | 14.73    | 3.22          | 15.52 | 3.13 |  |  |
| 4 mM                      | 15.8                            | 3.12 | 14.47 | 3.01 | 14.65    | 3.15          | 14.97 | 3.12 |  |  |
| 2 mM                      | 15.56                           | 3.01 | 14.61 | 3.1  | 14.4     | 3.26          | 14.85 | 3.09 |  |  |
| Inoculated control        | 11.38                           | 2.72 | 11.38 | 2.72 | 11.38    | 2.72          | 11.38 | 2.72 |  |  |
| Non-inoculated<br>Control | 19.37                           | 4.62 | 19.37 | 4.62 | 19.37    | 4.62          | 19.37 | 4.62 |  |  |
| Mean                      | 16.54                           | 3.59 | 15.5  | 3.35 | 15.39    | 3.27          |       |      |  |  |

LSD (P  $\leq 0.05$ ) Fresh weight: Concentration = 1.53, Treatments = 1, Interaction = 0.34. LSD (P $\leq 0.05$ ) Dry weight: Concentration = 0.32, Treatments = 0.22, Interaction = 0.7. Each number is a mean of four replicates and one plant.

#### Discussion

Induced acquired resistance of plants exploiting natural defense that could be consider as important alternative program for crop protection. This study estimate the effects of BABA on tomato plants infection with meloidogyne incognita. BABA is a recognized chemical plant defense activator, so it has been used successfully complete to induce resistance against pathogens. Results from this work illustrate that foliar spray as well as soil drench application of BABA induced systemic resistance against M. incognita in tomato plants. This was demonstrated by the reduction of galls and egg masses on roots as well as numbers of J2 in soils. Also, application of BABA enhance plants growth criteria. Likewise, (oka et al 1999; Chinnasri et al 2006 and Sahebani & Hadavi 2011) support the preceding results, consequently the treatments with β,amino butyric acid decreased root knot disease during reduced penetration of J2, galls number and the development of nematode. Plants treated with the high concentration of BABA increase fresh and dry shoot weight, also increase fresh and dry root weight compared with untreated inoculated control. This is at most due to the fact that infection with nematode embed chlorophyll synthesis and photosynthesis which negatively effects on plant growth (Melakeberhan 2004).

It was obvious from this work, the treatments with BABA before nematode inoculation was more effective likely due to the technique of induce acquired resistance of this inducer. In tomatoes induce resistance mechanism to Meloidogyne by BABA is not perfectly understood. Oka et al 1999 showed that treatments with this chemical inducer gave roots less attractive to J2 during converted plant nutrient intake or provide cell walls of plant harder to penetrate by J2 or produce giant smaller cells or affect the nutrients for the developing nematodes. Treatments with BABA were notified to increase scale of salicylic acid (SA) and pathogenesis related proteins (PRP) (Hwang et al 1997), and enzymes such catalase (CAT), guaiacol peroxidase (GPOX) and polyphenoloxidase (PPO) (Sahebani, and Hadavi 2011; Sahebani and Hadavi 2009) and phenolic compounds. BABA was also reported to induce the accumulations of PPO, GPOX, H2O2, CAT and phenols in M. javanica infected cucumber plants (.M'Piga et al. 1997)

From this work and from endow former reports we concluded that the use of  $\beta$ , amino-butyric acid was efficiency as a chemical inducer to induced resistance and eco-friendly sound alternative for controlling of *M. incognito* on tomato plants.

### REFERENCES

- Ahmed N., M. Abbasi, S.S. Shaukat and M.J. Zaki (2009): Induced systemic resistance in mung bean plant against root knot nematode *Meloidogyne javanica* by dl-β-amino butyric acid. Nematologia Mediterranea 37: 67–72.
- Anter A., A. Amin, A. Ashoub and A. El-Nuby (2014): Evaluation of some chemical substances as inducers for tomato resistance against root-knot nematode, *Meloidogyne incognita*. Egyptian Journal of Agronematology 13: 124–145.
- Bakr R., M. Mahdy and E. Mousa (2011): A survey of rootknot and citrus nematode sin some new reclaimed lands in Egypt. Paki J Nemato 29: 165-170.
- Barker K. R., (1985): Nematode extractions and bioassays. Pp. 19-35 in Barker, K. R., C. C. Carter, and. N. Sasser, Eds. An Advanced Treatise on *Meloidogyne*, Methodology, (Vol II). Raleigh, North Carolina State University Graphics, USA.
- Chinnasri B., B.S. Sipes and D.P Schmitt (2006): Effect of inducer of systemic acquired resistance on reproduction of *Meloidogyne javanica*. Journal of Nematology, 38, 319-325.
- Cohen Y., (1994): B-amino butyric acid induces systemic resistance against *Peronospora tabacina*. Physiol Mol Plant Pathol44:273–288
- FAOSTAT. Retrieved 9 August (2019): Countries Select All; Regions – World + (Total); Elements – Production Quantity; Items – Tomatoes; Years – 2017 + 2016
- Fatemy S., F. Moslemi and F. Bernard (2012): Seed treatment and soil drench with dl β-amino butyric acid for the suppression of *Meloidogyne javanica* on tomato. Acta Physiologiae Plantarum 34: 2311–2317.
- Ghini R and H. Kimati (2000): Resistência de fungos a fungicidas. Jaguariúna, São Paulo: Embrapa MeioAmbiente. P. 78.

- Goodey T. (1963). Soil and Freshwater Nematodes. Butler and Tanner Ltd, London, Great Britain
- Hammerschmidt R., (2009): Systemic acquired resistance. Advances in Botanical Research, 51: 173-222.
- Hussey R. S., and K. R Barker 1(973): A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter, 57: 1025-1028.
- Hwang Z. K., J.Y. Sunwoo, Y.J. Kim and B.S. Kim (1997): Accumulation of beta-1,3-glucanase and chitinase isoforms, and salicylic acid in the DL-betaaminonbutyric acid-induced resistance response of pepper stems to Phytophthoracapsici. Physiological and Molecular Plant Pathology, 51, 305-322. http://dx.doi.org/10.1006/pmpp.1997.0119
- H, Kyndt T., W. He, B.Vanholme and G. Gheysen (2015): Beta-Aminobutyric Acid-induced resistance against root-knot nematodes in rice is based on increased basal defense. Molecular Plant-Microbe Interactions Journal 28(5): 519-533.
- Kessmann H., T. Staub, C. Hofmann, T. Maetzke, J. Herzog, E. Ward, S. Uknes and J. Ryals (1994): Induction of systemic acquired resistance in plants by chemicals. Annual Review of Phytopathology, 32, 439-459.
- Klessig D F and J. Malamy (1994): The salicylic acid signal in plants. Plant Molecular Biology, 26: 1439-1458.
- Lee Y.K., J.K. Hong, S.H. Sanwald and B.K. Hwang (2000): Histological and ultrastructural comparisons of compatible, incompatible and DL-bamino- n-butyric acid-induced resistance responses of pepper stems to Phytophthora capsici. Physiol Mol Plant Pathol 57:269-280
- M'Piga P., R.R. Belanger, T. Paulitz, and N. Benhamou (1997): Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63- 28. Physiological and Molecular Plant Pathology, 50, 301-320. http://dx.doi.org/10.1006/ pmpp.1997.0088
- Melakeberhan H., (2004): Physiological interactions between Nematodes and Their Host Plants. In: Chen, Z.X., Chen, S.Y. and Dickson, D.W., Eds., Nematode Management and Utilization II, CABI Publishing, p. 786.
- Molinari S., (2008): Salicylic acid acts as a resistance elicitor on tomato seedlings attacked by root-knot nematodes: effect of plant age. Redia XCI, 73-75.

- Mongae A. and L. Moleleki (2015): The effect of βaminobutyric acid (BABA) on root knot nematode and soft rot pathogen disease complexes in Solanum tuberosum plants. European Journal of Plant Pathology 142: 117-124
- MOka Y., S. Nacar, E. Putievsky, U. Ravid, Z. Yaniv, and Y Spiegel (2000b): Nematicidal activity of essential oils and their components against the root-knot nematode. Journal of Phytopathology, 90: 710-715.
- Oka Y., Y. Cohen and Y, Speigel (1999): Local and systemic induced resistance to the root-knot nematode in tomato by DL-b-aminon-butyric acid. Phytopathology 89:1138-1143
- Oka, Y., H. Koltai, M. Bar-Eyal, M. Mor, E. Sharon, I. Chet and Y. Spiegel (2000a): New strategies for the control of plant parasitic nematodes. Pest Management Science, 56: 983-988.
- Oostendorp M., R.A. Seikoral (990): In vitro interrelationship between rhizospher bacteria and Heterodera schachtii. Rev Nematol 13:269-274
- Oostendorp M., W. Kunz, B. Dietrich and T. Staub (2001): Induced disease resistance in plants by chemicals. European Journal of Plant Pathology, 107: 19-28.
- Sahebani N and N.S. Hadavi (2011): The effects of  $\beta$ -aminobutyric acid on resistance of cucumber against rootknot nematode, Meloidogyne javanica. Journal of Plant Physiology, 33, 443-450.
- Sahebani N., and N.S. Hadavi (2009): Induction of H2O2 and related enzymes in tomato roots infected with root knot nematode (M. javanica) by several chemical and microbial elicitors. Bio control Science and Technology, 19, 301-313.
- SAS (2000). JMP: User's Guide, Version 4; SAS Institute, Inc.: Cary, NC, USA.
- Schneider M., P. Schweizer, P. Meuwly and J. Métraux (1996): Systemic acquired resistance in plants. International Review of Cytology, 168: 303-340.
- Sikora R.A., and E. Fernandez (2005): Nematode parasites of vegeTables. Plantparasitic nematodes in subtropical and tropical agriculture 2: 319-392.
- Snedecor, G. W. and W. G. Cochran (1980): Statistical Methods. 6th Ed. Iowa State Univ. Press, Ames, Iowa. USA.
- Ton J., J. Gabor, V. Toquin, V. Flors, A. Iavicoli, M.N. Maeder, J.P. Metraux and B Mauch-Mani (2005): Dissecting the b-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987

# تحفيز مقاومة نباتات الطماطم ضد نيماتودا تعقد الجذور (Meloidogyne incognita (Passe-Muraille باستخدام مركب β, amino butyric acid محمد مبروك رجب عطية\*

# قسم وقاية النبات، كلية الزراعة، جامعة دمنهور، جمهورية مصر العربية

في هذا البحث تم در اسة تأثير حامض بيتا امينو بيتوريك اسيد لحث نيتات الطماطم على مقاومة نيماتودا تعقد الجنور . تم تطبيق المركب بطريقتين الرش الورقي واضافتة الى التربة وذلك بخمس تركيزات في ثلاث مواعيد مختلفة. وقد تم عد العقد الجذرية وكتل البيض لكل مجموع جذري وكذلك تم عد اليرقات لكل بيتا امينو بيوتريك اسيد بالتركيز ات 32 و 16 ميللي ومولار كان لهما التاثير الاكبر في خفض عدد العقد وكتل البيض وكذلك عدد يرقات الطور الثاني حيث سجلا خفض في نسبة الاصابة الى (57.87- 55.85 % و 60- 59.48 % و 49.8 – 47.25 % ، على التوالي. وايضا في حالة الاضافة الي التربة وجد ان تطبيق بيتا امينو بيوتريك اسيد بالتركيزان 32 و 16 ميكرومولار كان لهما التاثير الاكبر في خفض عدد العقد وكتل البيض وكذلك عدد يرقات الطور الثاني حيث سجلا خفض في نسبة الاصابة الى (61.92- 60.05 % و63.99- 61.55 % و55.65 – 53.38 % ، على التوالي. و قد وجد أن المعاملات حسنت ايضا من الوزن الطازج والجاف لنمو المجموع الخضرى والجنور. وكذلك وجد ان تطبيق المركب قبل العدوى كان لة التأثير الاكبر في حث النبات على مقاومة النيماتودا بالمقارنة مع المعاملة اثناء العدوى او بعد العدوى.