Improving Tomato Productivity under High Temperature Conditions

El-Tantawy, E. M.*1 and Rewaa S. El-Shatoury²

¹Plant Production Department (Vegetables), Fac. Environ. Agric. Sci., Arish Univ., Egypt. ²Horticultural Department (Vegetables), Agric. Fac., Suez Canal Univ., Egypt.

Received: 8/3/2017

Abstract: Two field experiments were carried out during the summer seasons of 2014 and 2015 at the Experimental Farm of the Faculty of Environmental Agricultural Sciences, El-Arish, Arish University, North Sinai Governorate, Egypt to improve the performance of tomato plants (Hybrid Alissa F1) grown under high temperature. This study included 12 treatments which were the combination between application of two types of floating covers (bare plants, covering with Agryl) and spraying with some growth substances to improve the fruit setting under heat stress (control, Ca+B, GA₃, IAA, GA₃+Ca+B, IAA+Ca+B); Ca, B, GA₃, and IAA were used at 500, 25, 20 and 20 ppm, respectively. The results showed that tomato plant growth (both of fresh weight and dry weight) proline concentration, and fruit setting were increased with application of floating cover (Agryl), while total chlorophyll content, marketable yield per plant and per feddan, total yield/fed. and number of seeds/fruit were decreased. Spraying with IAA,GA₃+Ca+B and IAA+Ca+B were the best treatments for total dry weight, total chlorophyll, proline and fruit setting while IAA+Ca+B was the best treatment for both marketable yield /plant and per fed., total yield/fed. as well as number of seeds/fruit were spraying bare plantswithGA₃+Ca+Bor IAA+Ca+B, while the same treatments under floating cover increased proline concentration in leaves and partially increased average fruit setting (%).

Keywords: Tomato, high temperature, fruit set, chlorophyll, proline, yield

INTRODUCTION

Tomato (Solanum lycopersicum Mill.) is one of the most popular vegetable crops consumed all over the world. It is an important source of minerals, vitamins, and it has good amounts of lycopene and antioxidants which protect human body from free radicals and consequently reducing cancer disease. Tomato production has a close relation with the environmental conditions, especially air temperature. One of the methods used to modify the air condition around tomato plants is application of floating covers or spunbonded which is made from fine mesh of white synthetic fibers (polypropylene) as defined by Gordon (2006) and Taber and Webb (2008). Floating covers used to protect tomato plants from the infection of insects. Covering tomato plants by Agryl decreased the impact of tomato yellow leaf curl disease virus (TYLCV) (Berlinger et al., 2002; Al-Shihi et al., 2016). Many researchers used the floating covers to rise and study the higher temperature effects on behavior of tomato plants. Heat stress had low effect on vegetative growth, but it has negative activities of ROS enzymes (release oxygen scavenging) as SOD (Superoxide dismutase) and APX (Ascorbate peroxidase) which affect CO₂fixation negatively, viability of pollen grains and pollen tube growth which twist and grow in helical form (Pressman et al., 2002; Kafizadeh et al., 2008; Hu et al., 2010; Zhou et al., 2016) and consequently decrease the productivity of plant. Under these conditions plants try to overcome the harmful effects through producing a unique set of amino acids such as proline or chaperone proteins adverted to heat shock protein (HSPs) (Verbruggen and Hermans, 2008; Ördog, 2011). With the recent changes in environmental conditions and greenhouse phenomenon, some attempts were done to study or help plants to stand against heat stress effects such as spraying with nutrients such as Ca or B. Calcium or boron can enhance growth, fruit set and productivity of tomato plant separately but they are more effective with combinations (Asad *et al.*, 2003). In addition application of auxin onto stigma promote pollen grain and ovary to develop (de Jong *et al.*, 2009; Ördog, 2011). Therefore, this attempt was done to improve the performance of tomato plants under high temperature by application of some nutrients as Ca +B and GA₃ or IAA and their combinations as enhancing substances for fruit setting and yield production.

MATERIALS AND METHODS

Two field experiments were carried out during the summer seasons of 2014 and 2015 at the Experimental Farm of the Faculty of Environmental Agricultural Sciences, El-Arish, Arish University, North Sinai Governorate, Egypt to study the performance of tomato plants (Hybrid Alissa F1) grown under high temperature with application of floating covers (Agryl) and spraying with Ca, B, and some growth substances and their combinations to improve the fruit setting under heat stress. Some physico-chemical properties of the experimental soil sample which was taken at 0-30 cm depth are shown in Table (1) and chemical analysis of irrigation water is shown in Table (2).

The experiment included 12 treatments which were the interaction between two factors:

Factor A: application of floating covers; viz, bare plants (without application of cover) and application of spunbonded sheets (Agryl).

Factor B: contained 6 treatments which were spraying with Ca+B and some growth substances to improve fruit setting as follows:

- 1- Control treatment (spraying with tap water)
- 2- Spraying with Ca+B
- 3- Spraying withGA₃
- 4- Spraying with IAA
- 5- Spraying with GA₃ + Ca+B
- 6- Spraying with IAA+ Ca+B

Soil properties	First season (2014)	Second season (2015)	
Ν	Aechanical analysis		
Soil texture	Sandy	Sandy	
Chemical anal	ysis (soluble ions in (1:5) extract)		
Ca ⁺⁺ (meq.l ⁻¹)	2.78	3.06	
Mg^{++} (meq.l ⁻¹)	2.11	2.57	
Na^+ (meq.l ⁻¹)	1.91	2.09	
\mathbf{K}^+ (meq. \mathbf{I}^-)	0.41	0.49	
CO_3^- (meq.l ⁻¹)	-	-	
HCO_3^- (meq. Γ^1)	2.36	2.61	
$C\Gamma$ (meq. Γ^1)	1.65	1.89	
SO_4^- (meq. Γ^1)	3.18	3.40	
Available N (ppm)	16.52	16.24	
Available P (ppm)	46.50	45.21	
Available K (ppm)	97.50	96.25	
EC (dS m ⁻¹) in (1:5) extract)	0.75	0.79	
pH in (1:2.5) extract)	8.03	8.11	
CaCO ₃ %	9.85	10.98	

Table (1): Initial soil physical and chemical analysis

Table (2): Chemical analysis of irrigation water

	E	C	Soluble ions (meq.l ⁻¹)									
рН	pH dSm ⁻¹		Cations					Anions				
		ppm -	Ca ⁺⁺	Mg^{++}	Na ⁺	\mathbf{K}^{+}	Cľ	HCO ₃ -	CO3	SO ₄		
First season (2014)												
7.22	6.12	3928.6	18.12	23.31	18.77	0.19	42.51	7.25	-	10.63		
Second season (2015)												
7.05	5.98	3832.6	17.54	21.91	18.13	0.22	40.61	7.15	-	10.04		

Calcium was used with a concentration of 500 ppm, B at 25 ppm, GA₃ at 20 ppm and IAA at 20 ppm. Treatments were randomly arranged in split plot design with three replicates where the treatments of factor A were arranged in the main plots and the treatments of factor B were randomly arranged in the sub-plots. Calcium, B, GA₃, and IAA were added as foliar spray with application of super film $(1.0 \text{ ml } l^{-1})$ as spreading agent. Plants were sprayed with fruit setting substances three times with beginning of blooming (at 30, 40, and 50 days after transplanting). Seedlings were transplanted on 1st may in both seasons. Seedlings were transplanted in single dripper lines with distances of 175 cm between the dripper lines and 50 cm between the transplants at the same dripper line. Plot area was 17.5 m^2 (10 m in length and 175 cm in width). Plants were covered by floating covers (Agryl) at 21 days after transplanting on the frame of low tunnels and continued

to the end of harvesting. Air temperatures and humidity inside and outside the tunnels during the two experimental seasons are shown in Table (3) which was registered daily in the midday (maximum value of temperature) by big screen indoor-outdoor thermo hygrometer.

All experimental units received compost at a rate of 4 tons/fed. (recommended dose). The source of compost was Al-Arabiah for organic fertilizer factory, Sharkia Governorate. Plants received the recommended dose of NPK (120 kg N, 75 kg P_2O_5 and 120 kg k₂O /fed.). One third of NPK fertilizers quantity were added during soil preparation and the other two- thirds were divided into twenty portions and added gradually two times weekly through the irrigation water (fertigation) beginning eight days after transplanting. The other conventional practices were applied.

		Temperature (°C)			Relative humidity (%)		ature)	Relative humidity (%)	
Month	Week	Without covering	Floating Cover (Agryl)	Without covering	Floating Cover (Agryl)	Without covering	Floating Cover (Agryl)	Without covering	Floating Cover (Agryl)
			First seas	son (2014)			Second seas	son (2015)	
	1 st	33.38	38.66	39.40	43.20	33.12	37.25	37.31	42.18
Ŧ	2 nd	36.80	41.10	40.00	45.30	35.79	39.80	39.16	45.61
June	3 rd	35.20	38.90	42.25	46.33	36.31	40.23	41.05	46.13
	4 th	38.63	38.90	44.00	45.85	38.70	41.50	43.66	46.17
T	1 st	39.83	40.66	44.33	46.33	38.97	41.77	44.17	46.81
July	2 nd	38.60	41.90	43.50	46.15	38.71	40.98	43.33	46.63

Table (3): Air temperature and relative humidity without and under floating cover (Agryl) during 2014-2015 seasons

Data recorded:

Samples of three plants were randomly taken at 55- day after transplanting from each experimental unit to determine the following data:

- 1- Plant growth: It was estimated as:
 - Plant height (cm)
 - Number of both branches and leaves /plant
 - Fresh weight of roots, stem, leaves and total fresh weight/plant (g)
 - Dry weight of roots, stem, leaves, and total dry weight/plant (g)
 - Total chlorophyll: Total chlorophyll was determined in the fourth leaf from tomato plant top using a digital chlorophyll meter, Minolta Chlorophyll Meter SPAD- 502, (Minolta Company, Japan).
- 2- Proline content in leaves was determined calorimetrically in leaves according to Bates *et al.* (1973).
- 3-Fruit setting (%): Samples of five plants from each experimental unit were randomly chosen to estimate fruit setting (%) in the 1st three clusters of the main stem as following: Fruit setting % = {(Total flowers/ cluster) / (total fruits/cluster)} x 100, and the average fruit setting (%) of the three clusters was calculated.
- 4- Yield and its components: At red maturity stage, fruits of each plot were harvested, counted and weighed; the following data were recorded:
- Marketable yield: yield/plant (g) and yield/fed. (ton) were calculated,
- Unmarketable yield (ton/fed.) (infected fruits by blossom-end rot).
- Total yield (ton /fed.) was calculated as marketable yield (ton/fed.) + unmarketable yield (ton/fed.)
- 5- Seeds No./fruit (as indication for efficiency of pollination): Five fruits at red-ripe stage from each experimental unit were randomly taken, seeds were extracted, dried at room temperature, counted and average seeds number/fruit was calculated.
- 6- Statistical Analysis: The obtained data were subjected to statistical analysis of variance according to Snedecor and Cochran (1980). Duncan's multiple range test (1955) was used for means comparisons.

RESULTS AND DISCUSSION

Plant growth

Effect of floating covers

Data in Table (4) show significant effects of floating covers on tomato plant growth. The data revealed that covering tomato plants with Agryl increased all plant growth parameters, viz, plant height, number of branches and leaves/plant, fresh weight of roots, stem, leaves as well as total fresh weight of plant. The obtained results are true in both seasons.

Effect of fruit setting substances

Data in Table (4) show a significant increment in tomato plant height due to spraying with Ca+B in both seasons, while number of both branches and leaves/plant were not significantly affected. The same data showed an augment in fresh weight of roots/ plant due to spraying tomato plants with IAA in the 1st season, but it increased with spraying IAA+ Ca+ B in the 2nd season. Spraying with GA₃or IAA recorded the highest values of fresh weight of stem in the 1st season, while spraying with GA₃+Ca+B was the superior treatment in the 2nd one. In regard to fresh weight of leaves and total fresh weight of plant, the data revealed that spraying with GA₃, GA₃+ Ca+ B and IAA+ Ca+ B recorded the highest values in the 1st and 2nd seasons, respectively.

It could be concluded that spraying tomato plants with Ca+ B alone or combined with GA₃ or IAA were the best treatments for fresh weight of stem, leaves and total fresh weight/plant in the 1st and 2nd seasons, respectively. The increment in total fresh weight of plant may be due to the increase in fresh weight of stem and leaves per plant (Asad *et al.*, 2003) and Rab and Haq (2012) found synergistic effect of Ca + B combination. Boron increases IAA which regulates auxin supply by protecting the IAA oxidase system (Srivastava and Gupta, 1996). In addition, spraying GA₃ promoted the vegetative growth of tomato plants that may be owe to the synergistic effect on DNA & RNA proteins and polyribosome multiplication which increases leaf area of plant (Khan *et al.*, 2006).

				Plant grov	vth		
Treatments	Plant height (cm)	No .of branches /plant	No .of leaves /plant	F.W. roots /plant (g)	F.W. stem /plant (g)	F.W. leaves /plant (g)	Total F.W. /plant (g)
			First seas	son (2014)			
Bare plants	62.58b	9.92b	57.33b	38.12b	93.20b	297.7b	428.9b
Floating cover (Agryl)	73.66a	13.58a	70.33a	76.25a	160.62a	384.2a	621.0a
			Second sea	ason (2015)			
Bare plants	64.22b	9.30b	59.33b	38.77b	91.83b	267.9b	398.5b
Floating cover (Agryl)	73.77a	12.21a	68.05a	65.43a	142.77a	313.2a	521.4a
			First seas	son (2014)			
Control	69.25ab	10.25a	59.50a	32.38c	109.8b	274.4 d	416.5d
Ca+B	76.75a	11.50a	67.75a	42.50c	128.3ab	363.5ab	534.3bc
GA ₃	66.00b	12.25a	62.75a	68.25b	139.0a	395.5a	602.8a
IAA	67.75ab	13.25a	66.00a	75.75a	144.4a	371.3ab	591.4ab
GA ₃ +Ca+B	67.00b	11.00a	65.00a	65.88b	109.9b	325.5bc	501.3c
IAA+Ca+B	62.00b	12.25a	62.00a	58.38b	130.3ab	315.3cd	503.9c
			Second sea	ason (2015)			
Control	63.67e	10.35a	56.33a	33.40e	101.2d	254.3c	388.8d
Ca+B	73.67a	10.00a	64.83a	40.15d	118.7b	293.0b	451.8c
GA ₃	68.17cd	10.72a	63.00a	50.93c	122.8ab	285.9b	459.7c
IAA	69.67bc	10.95a	64.17a	58.85b	121.7ab	290.3b	470.8b
GA ₃ +Ca+B	71.67ab	11.55a	68.83a	63.55b	125.7a	309.4a	498.6a
IAA+Ca+B	67.17d	11.00a	65.00a	65.75a	113.8c	310.5a	490.1a

Table (4): Effect of floating cover (Agryl) and fruit setting substances on tomato plant growth

Effect of interaction between floating covers and fruit setting substance

Data in Table (5) show significant effects of interaction between floating covers and fruit setting substances on tomato plant grown during high temperature season. The data showed that spraying tomato plants grown under floating cover (Agryl) with Ca+B increased tomato plant height in both seasons. In addition, spraying with IAA under floating covers was the superior treatment, approximately for increasing all other traits; viz, number of both branches and leaves/plant, fresh weight of roots, stem, leaves and total fresh weight of plant in both seasons, except fresh weight of roots in the 2nd season which increased with IAA+ Ca+ B foliar spray. These results may be due to the bioactive role of Ca and B for plant.Ca preserves the plant cell structure and resistance to different environmental stress (Mestre et al., 2012), Boron is an

essential element for new cell structure and cell division through supplementing by sugars. Indol acetic acid plays an important role in enlargement of plant cells and promoting plant growth which affect the most fundamental responses of plant (Hopkins and Hüner, 2009). In this connection, Rab and Haq (2012) found increments in plant height and number of branches of tomato plants due to spraying 0.6% Ca +0.2% B compared to application of Ca or B in single form or control treatment.

Dry weight

Effect of floating covers

The data in Table (6) illustrate that covering tomato plants with spun bonded sheets (Agryl) increased all traits of dry weight per plant expressed in dry weight of roots, stem, leaves and total dry weight in both seasons. The total dry weight due to application of Agryl was increased by 50.22% and 44.54% over that of the bare plants in the 1st and 2nd seasons, respectively. The increment in dry weight of different organs of tomato due to covering with spun bonded sheets may be owe to the increase in all plant growth traits as shown in Table (4). These results were coincide with Al-Shihi *et al.* (2016) who found increases in tomato plant growth and dry weight means of plant grown under floating row covers (Agryl).

Effect of fruit setting substances

It was obvious from the data in Table (6) that spraying tomato plants grown in high temperature seasons with fruit setting substances have significant effects on all dry weight parameters in both seasons. Spraying tomato plants with IAA was the superior treatment in the 1^{st} season which increased all dry weight traits under study (dry weight of roots, stem, leaves and total dry weight/plant). On the other hand, spraying with GA₃+ Ca+ B recorded the highest value of total dry weight of plant as a result of increasing dry weight of stem and leaves followed by spraying IAA in the 2^{nd} season. Spraying IAA+ Ca+ B increased dry weight of roots and leaves and consequently total dry weight, while spraying with IAA increased dry weight of both stem and leaves and then total dry weight of plant. Control treatment recorded the lowest values of above-mentioned parameters.

Table (5): Effect of interaction between floating cover (Agryl) and fruit setting substances on tomato plant growth

				Pl	ant growth pa	rameters					
Treatments		Plant height (cm)	No. branches /plant	No. leaves /plant	F.W. roots /plant (g)	F.W. stem /plant (g)	F.W. leaves /plant (g)	Total F.W. /plant (g)			
				F	irst season (20	14)					
	Control Ca+B	62.00de 67.50bcd	9.500d 9.500d	61.50bcd 62.00bcd	31.75e 33.50e	97.0cde 88.0de	281.8fg 264.0fg	410.5ef 385.5ef			
Bare plants	GA ₃	62.00de	11.00cd	59.50cd	43.50e	97.5cde	364.5c	505.5d			
Ĩ	IAA	61.00de	9.500d	51.50d	34.50e	79.7e	235.2g	349.3f			
	GA3+Ca+B	69.00bcd	10.50cd	59.50cd	53.25d	112.0cd	348.5cd	513.8d			
	IAA+Ca+B	54.00e	9.500d	50.00d	32.25e	85.0de	292.2ef	409.3ef			
	Control	76.50b	11.00cd	57.50cd	33.00e	122.5c	267.0fg	422.5e			
	Ca+B	86.00a	13.50bc	73.50ab	51.50d	168.5b	463.0ab	683.0b			
Floating cover	GA ₃	70.00cd	13.50bc	66.00bc	93.00b	180.5b	426.5b	700.0b			
(Agryl)	IAA	74.50bc	17.00a	80.50a	117.00a	209.0a	507.5a	833.5a			
	GA ₃ +Ca+B	65.00cd	11.50cd	70.50abc	78.50c	107.8cde	302.5def	488.8d			
	IAA+Ca+B	70.00bcd	15.00ab	74.00ab	84.50bc	175.5b	338.5cde	598.5c			
				Se	cond season (2	ond season (2015)					
	Control Ca+B	58.67h 64.33fg	10.00bc 8.700c	58.00 de 61.00cd	33.30 f 39.00 e	88.6h 93.0gh	261.0f 275.5e	383.0cd 407.5cd			
Dava planta	GA ₃	63.00fg	9.733bc	57.00de	38.66e	94.6g	256.5f	389.9cd			
Bare plants	IAA	64.67f	8.800c	53.67e	39.20e	80.6i	243.0g	362.9d			
	GA ₃ +Ca+B	72.33cd	9.400c	65.33bc	42.00e	103.0f	292.5d	437.5bc			
	IAA+Ca+B	62.33g	9.200c	61.00cd	40.50f	91.0gh	279.0e	410.5c			
	Control	68.67e	10.70abc	54.67e	33.50f	113.7e	247.5g	394.7cd			
	Ca+B	83.00a	11.30bc	68.67ab	41.30 e	144.3c	310.5c	496.1b			
Floating cover	GA ₃	73.33bc	11.70abc	69.00ab	63.20d	151.0b	315.3c	529.5b			
(Agryl)	IAA	74.67b	13.10ab	74.67a	78.50c	162.7a	337.5a	578.7a			
	GA ₃ +Ca+B	71.00d	13.70a	72.33 a	85.10 b	148.3bc	326.3b	559.7ab			
	IAA+Ca+B	72.00cd	12.80ab	69.00ab	91.00a	136.7d	342.1a	569.8ab			

Turnet		Dry weight / plant (g)								
Treatments	D.W. roots	D.W. stem	D.W. leaves	Total dry weight						
		First season (2014)								
Bare plants	11.79b	22.12b	49.83b	83.76b						
Floating cover (Agryl)	18.87a	33.56a	73.45a	125.83a						
		Second season (2015)								
Bare plants	13.01a	21.91b	45.83b	80.78b						
Floating cover (Agryl)	15.56a	32.27a	68.92a	116.76a						
		First season (2014)								
Control	10.75c	21.88c	45.13b	77.77c						
Ca+B	9.50c	23.88bc	63.88a	97.25b						
GA ₃	13.75bc	27.75b	67.63a	109.10b						
IAA	26.63a	38.13a	66.88a	131.63a						
GA ₃ + Ca+B	16.13b	26.81bc	63.25a	106.20b						
IAA+ Ca+B	15.25b	28.63b	63.13a	107.01b						
		Second season (2015)								
Control	10.85e	20.25e	39.07b	70.20c						
Ca+B	12.15de	24.33d	59.43a	95.92b						
GA ₃	13.48cd	26.00c	59.30a	98.80b						
IAA	14.50c	31.50a	61.55a	107.60a						
GA ₃ + Ca+B	16.08b	32.67a	62.65a	111.40a						
IAA+ Ca+B	18.65a	27.83b	62.30a	108.80a						

Table (6): Effect of floating cover (Agryl) and fruit setting substances on dry weight of tomato plants

Effect of interaction between floating covers and fruit setting substances

Data in Table (7) show significant differences among the treatments (the interaction between float covering and fruit setting substances) on dry weight of tomato plant. The data illustrated that spraying tomato plants grown under spunbonded with IAA was the superior treatment in both seasons, where dry weight of roots (1st season), dry weight of stem, leaves and consequently total dry weight of plants were increased (in both seasons).

It could be notice that plants grown under Agryl recorded high values of plant height, number of both branches and leaves/plant, total fresh and dry

weight/plant in spite of exposing the plants to high temperature as shown in Table (3). That may be owe to the engendered substances such as proline or unique set of heat shock protein under high temperature which help plants to resist the heat stress (Ördog, 2011). Proline could increase chickpea plant growth under high temperature ($40/35^{\circ}c$ and $40/45^{\circ}c$ day/night via reducing the cellular injury and protection of some vital enzymes related to carbon and oxidative metabolism (Kaushal *et al.*, 2011). In addition, proline considers the precursor of pigment and reduces the undesirable effect of free radicals. Proline plays roles as osmoregulation maintenancing membrane protein stability; (Hare *et al.*, 2003). Also, growth of beetroot increased with proline as recorded by El-Sherbeny and Da Silva (2013).

The state of the		Dry weight / plant (gm)									
Treatments		D.W. roots	D.W. stem	D.W. leaves	Total dry weight						
		First seas	son (2014)								
	Control	12.50cd	23.00def	44.75e	80.27ef						
	Ca+B	10.00cd	20.50efg	46.00e	76.50f						
Description	GA ₃	12.00cd	25.25cde	58.00d	95.27de						
Bare plants	IAA	10.75cd	19.75fg	43.25e	73.77f						
	GA ₃ + Ca+B	13.75bcd	27.75cd	57.50d	99.00cd						
	IAA+ Ca+B	11.75cd	16.50g	49.50de	77.77f						
	Control	9.00d	20.75efg	45.50e	75.27f						
	Ca+B	9.00d	27.25cd	81.75ab	118.00b						
Floating cover	GA ₃	15.50bc	30.25c	77.25bc	123.00b						
(Agryl)	IAA	42.5a	56.50a	90.50a	189.5a						
	GA ₃ + Ca+B	18.50b	25.87cde	69.00c	113.40bc						
	IAA+ Ca+B	18.75b	40.75b	76.75bc	136.25b						
		Second sea	ason (2015)								
	Control	11.00fg	21.00g	39.63f	71.70f						
	Ca+B	13.00de	23.33f	47.80de	84.13e						
Dana alanta	GA3	12.75def	24.50ef	46.30e	83.60e						
Bare plants	IAA	13.00de	18.33h	41.50f	72.83f						
	GA ₃ + Ca+B	14.50cd	26.00de	51.00d	91.50d						
	IAA+ Ca+B	13.80d	18.33h	48.80de	80.93e						
	Control	10.70g	19.50gh	38.50f	68.70f						
	Ca+B	11.30efg	25.33e	71.07c	107.70c						
Floating cover	GA ₃	14.20d	27.50d	72.30bc	114.00c						
(Agryl)	IAA	16.00bc	44.67a	81.60a	142.30a						
	GA ₃ + Ca+B	17.67b	39.33b	74.30bc	131.30b						
	IAA+ Ca+B	23.50a	37.33c	75.80b	136.60ab						

Table (7): Effect of interaction between floating cover (Agryl) and fruit setting substances on dry weight of tomato plants

Proline concentration

Effect of floating covers

It is obvious from the data in Fig. (1) that covering plants with Agryl increased the content of proline in tomato leaves compared to uncovered (bare) plants in both seasons. High concentration of proline under Agryl covers considered as a react to resist the abnormal conditions as temperature. Székely *et al.* (2008) and Verburggen and Hermans (2008) reported an accumulation of proline under various osmotic stress. Maggio *et al.* (2002) observed an accumulation of proline in cells grown under normal or in mild hyper osmotic stress, and the highest levels were observed in pollen grains and seeds while the lowest values were in roots. In this direction, content of proline was increased in chickpea leaves exposed to high temperature 40/35c° for day/night; (Kaushal *et al.*, 2011).

Effect of fruit setting substances

Data in Fig. (2) reveal the effect of fruit setting substances on proline content in tomato leaves grown under high temperature conditions. It was clear that spraying with IAA or GA₃ was the best treatment in the 1^{st} and 2^{nd} seasons, respectively, followed by spraying with GA₃ + Ca + B and IAA + Ca +B in both seasons.

Effect of interaction between floating covers and fruit setting substance

Data in Fig. (3) show the effect of interaction between covering or without covering plants with Agryl and spraying with fruit setting substances on tomato leave proline contents. The data showed that spraying tomato plants grown under floating cover with GA_3 , IAA, GA_3+Ca+B and IAA+Ca+B recorded the highest proline concentration in tomato leaves. On the other side, the lowest concentrations of proline were recorded

with all fruit setting substances under bare plants. The obtained results were similarly in both seasons. These results might be owe to the effect of floating covers which increased the air temperature as shown in Table (3) which induced a heat stress on tomato plants.

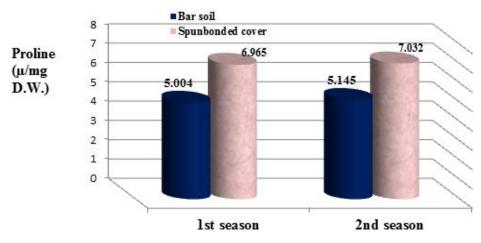


Fig. (1): Effect of application of spunbonded (Agryl) cover on proline concentration in tomato leaves in 2014 and 2015 seasons

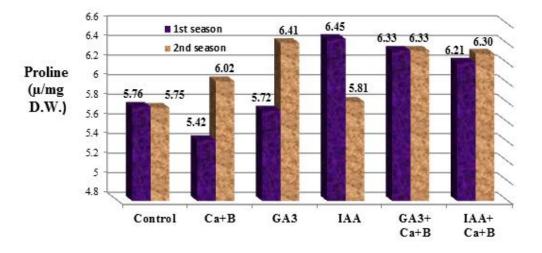


Fig. (2): Effect of fruit setting substances on proline concentration in tomato leaves in 2014 and 2015 seasons

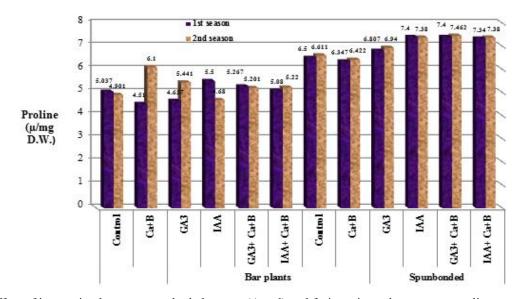


Fig. (3): Effect of interaction between spunbnded covers (Agryl) and fruit setting substances on proline concentration in tomato leaves in 2014and 2015 seasons

Total chlorophyll

Effect of floating covers

Data in Fig. (4) show significant effect due to applied or unapplied floating cover sheets on total chlorophyll content in tomato leaves grown under high temperature seasons. The data illustrated that total chlorophyll content in tomato leaves increased in bare plants compared to covering plants with Agryl. Despite the decrease in chlorophyll content in plants under Agryl compared to the bare plants, but this content was not far from bare plants. This may be due to the increments in proline contents as shown in Fig.1 under Agryl covers. Increasing in endogenous proline due to high temperature enhanced chlorophyll content and this may be due to its role in stability of sub cellular structure like chloroplast and their membrane as reported by (Aggarwal et al., 2011). Kaushal et al. (2011) found a reduction in chickpea chlorophyll content under high temperature. In the same line it was reported that heat stress reduced the chlorophyll content and photosynthetic active radiation (Zhou et al., 2016).

Application of floating row covers decreased the photo synthetic active radiation (Saidi *et al.*, 2013).

Effect of fruit setting substances

Data presented in Fig. (5) illustrate that all fruit setting substances applied as foliar spray increased the content of total chlorophyll in tomato leaves compared to control treatment. Spraying with IAA followed by spraying with IAA+Ca+B were the best treatments in both seasons.

Effect of interaction between floating covers and fruit setting substances

Data in Fig. (6) reveal that all the interaction treatments between bare plants and fruit setting substances increased the content of total chlorophyll compared to the same treatments under covering with Agryl.

It was obvious from the same Figure that spraying bare tomato plants by IAA+Ca+B was the best interaction treatment followed by spraying with IAA.

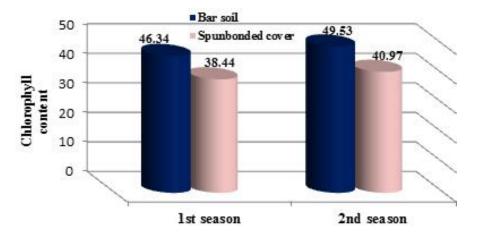


Fig. (4): Effect of application of spunbonded cover (Agryl) on total chlorophyll content in tomato leaves measured by digital chlorophyll meter in 2014 and 2015 seasons

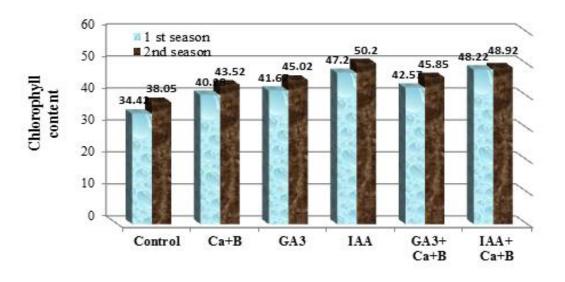


Fig. (5): Effect of fruit setting substances on chlorophyll content in tomato leaves in 2014 and 2015 seasons

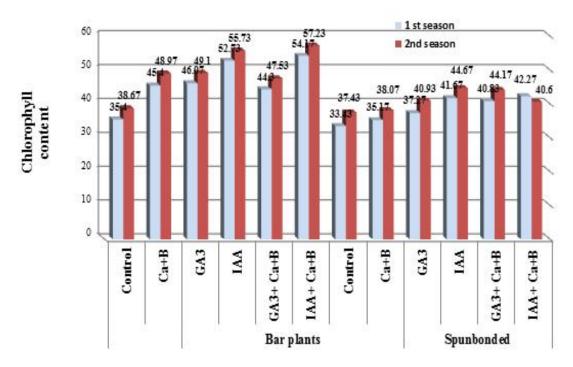


Fig. (6): Effect of interaction between spunbonded covers (Agryl) and fruit setting substances on chlorophyll content in tomato leaves in 2014 and 2015 seasons

Fruit setting (%)

Effect of floating covers

Data in Table (8) show that there was no significant effect on 1^{st} cluster fruit setting % in both seasons as well as the fruit setting (%) of the third cluster in the 1^{st} season, while it increased with application of floating cover in the 2^{nd} season. The fruit setting (%) of the 2^{nd} cluster was increased with tomato

plants covered by Agryl compared to the bare plants in both seasons. The increment in fruit setting (%) of the 2^{nd} cluster and the 3^{rd} cluster in the 2^{nd} one caused increments in the average fruit setting % of the three clusters. The increased average fruit setting (%) due to application of Agryl compared to bare plants may be attributed to the increment in plant growth, fresh weight and dry weight of plant (Tables 4 and 6).

Table (8): Effect of floating cover	(Agryl) and fr	uit setting substances of	n tomato fruit setting (%)

	Fruit setting (%)									
Treatments	1 st cluster	2 nd cluster	3 rd cluster	Avg. 1 st +2 nd +3 rd clusters	1 st cluster	2 nd cluster	3 rd cluster	Avg. 1 st +2 nd +3 rd clusters		
		First sease	on (2014)			Second sea	ason (2015)			
Bare plants	77.08a	71.75b	72.08a	73.54b	79.37a	71.79b	69.65b	73.60b		
Floating cover (Agryl)	77.43a	84.29a	75.08a	78.93a	76.57a	84.52a	75.70a	78.93a		
Control	39.17c	68.50b	45.83b	50.89b	40.42d	70.75c	47.50c	52.89c		
Ca+B	71.25b	68.75b	45.42b	61.81b	73.13c	68.13c	41.46c	60.90b		
GA ₃	100.00a	74.00b	95.00a	89.67a	100.00a	73.50bc	92.50a	88.67a		
IAA	85.00ab	74.38b	83.25a	80.88a	87.50b	71.56c	91.63a	83.56a		
GA ₃ + Ca+B	92.72a	82.50ab	89.50a	88.24a	89.09b	85.00b	84.25ab	86.11a		
IAA+ Ca+B	75.42b	100.00 a	82.50a	85.97a	77.71c	100.00a	78.75b	85.49a		

Effect of fruit setting substances

Data in Table (8) illustrate significant effects for application of fruit setting substances on tomato fruit setting (%). The data revealed that spraying tomato with GA_3 was the best treatment for fruit setting (%) in the 1st cluster in both seasons followed by spraying with GA₃+Ca+B and IAA in the 1st season, while the highest fruit setting % in 2nd cluster was recorded with application of IAA+Ca+B in both seasons. In addition, the highest fruit setting % in the 3rd cluster was achieved with spraying GA₃ and IAA in both seasons as well as spraying with GA₃+Ca+B or IAA+Ca+B in the 1st one. The same previous four treatments (GA₃, IAA, GA₃+Ca+B and IAA+Ca+B) increased the average fruit setting (%) of the 2nd cluster. It was obvious that the increment in 3rd cluster fruit setting due to spraying with GA₃, IAA, GA₃+Ca+B and IAA+Ca+B might be attribute to the increment in 3rd cluster fruit setting. Finally, it could be concluded that spraying with GA₃ was the superior treatment for average fruit setting (%) followed by spraying with GA₃+Ca+B, IAA+Ca+B and IAA.

Effect of interaction between floating covers and fruit setting substances

Data in Table (9) reveal significant effect of interaction between covering tomato plants with Agryl and enhancing fruit setting substances on fruit setting (%). The data illustrated that the interaction between application of Agryl with spraying with GA₃, IAA+Ca+B as well as GA₃+Ca+B, or spraying with IAA enhanced the fruit setting (%) in both seasons, and bare plants with GA₃and GA₃+Ca+B in the 1st season. In this connection, many researchers found decreases in pollen viability and fruit set (%) with rising in temperature (Peet et al., 1997; Zhou et al., 2016). However the obtained results showed increment in fruit setting under covering plants with Agryl and this might be due to the vital roles of IAA, GA₃ and the synergistic effect by the interaction of Ca+B. IAA plays a fundamental role in successful pollination and helps ovary to grow rapidly without pollination and fertilization. Additionally, GA₃can develop pollen grain and pollen tube as well as the ovary auxin content to the level which trigger fruit to grow (Smit and Combrink 2005; de Jong et al., 2009; Desouky et al., 2009; Haque et al., 2011; Ördog, 2011; Rab and Haq, 2012; Pattison et al., 2014).

Yield and its components

Effect of floating covers

Data presented in Table (10) show distinctly the effect for application or without application of floating covers on marketable, unmarketable and total yield of tomato plant. The data show that bare plants increased yield/plant, yield/fed., total yield, unmarketable yield as well as number of seeds/fruit. The yield and its components were increased in spite of slight increment in fruit setting (%) by application of Agryl, that may be owe to the increment in fruit weight of bare plants which increased the yield of plant and consequently the yield/fed. The increment in number of seeds was taken as indicator to developing the size of fruits and the peak

of auxin in fruits (Pattison *et al.* 2014) where seeds are considered the source of auxin in fruit and it promotes fruit growth by cell division and cell expansion. Peet *et al.* (1997) found a reduction in number of seeds/fruit due to rising the daily average of temperature from 25 to 26° C and from 28 to 29°C. The decline in number of seeds/ plant under high temperature may be owed to the decrease in pollen viability and the inhibition of pollen tube growth and fertility (Leah and Aloni, 2002; Kafizadeh *et al.*, 2008).

Effect of fruit setting substances

It was clear from the data presented in Table (10) the application of IAA+Ca+B that increased significantly the yield of tomato plant, marketable yield (ton/fed.) and hence total yield /fed. as well as number of seeds/fruit. The application of IAA separately increased the unmarketable yield/fed. (ton/fed.) measured as fruits infected by blossom-end rot. The obtained results were true in both seasons. In addition application of Ca+B or GA₃+Ca+B recorded the second rank of marketable and total yield (ton/fed.).The increments in marketable yield (ton/fed.)were 35.86% and 39.30% over the control treatment followed by spraying with GA₃+Ca+Bwhich recorded increments by 25.42% and 30.50%, while it increased by 24.66% and 31.62% with Ca+B in the 1st and 2nd seasons, respectively. The increase of yield may partially due to the high content of chlorophyll pigment (Fig. 4) leading to high photo-assimilation and consequently increasing in total fresh and dry weight of plant in addition to increasing in fruit setting (%) and so, increase in yield per plant and per feddan as shown in Tables (4, 6 and 8).

Effect of interaction between floating covers and fruit setting substances

Data presented in Table (11) reveal that spraying bare plant with IAA+Ca+B or GA₃+Ca+B were the superior treatments in the 1st season respectively where they increased the marketable yield of plant and per feddan, total yield /feddan, and number of seeds/fruit in both seasons. The relative increase in marketable yield /fed. was 39.48%, 38.86% and 35.77% for the same abovementioned treatments over the control treatments of bare plants in the 1st season, respectively, while spraying with IAA+Ca+B was the best treatment under application of floating cover which increased the marketable yield/fed. by 31.62% over the control of covered plants. In the 2^{nd} season, spraying plants with IAA+Ca+B or GA₃+Ca+B increased the yield /plant, marketable yield/fed., and the increment in relative yield were 47.75% and 45.50% for the previous treatment, respectively, compared to the control of bare plants. On the other hand, application of IAA alone increased the unmarketable yield (ton/fed.). It could be concluded that spraying tomato plants with IAA+Ca+B or GA₃+Ca+B were the superior treatments for the marketable and total yield (ton/fed.) for bare plants in both seasons. The increments in yield /plant caused an increment in marketable yield/ fed. The increase in bare plant yield may be owe to the increase in fruit weight. Fruit weight was decreased under high temperature that may be owe to the fast developing and fruits harvested rapidly before reaching the full size (Peet *et al.*, 1997). The increments in yield with application of IAA or GA_3 with Ca+B may be owe to their effects on fruit developing, cells division and expansion which result in increasing fruit size and consequently increasing yield/plant and per fed.

Tuble ()). Effect of interaction between nouting cover (ingry) and man betting buostances on tomate man betting (/o)	Table (9): Effect of interaction between	floating cover (Agryl) a	and fruit setting substances	on tomato fruit setting (%)
--	--	--------------------------	------------------------------	-----------------------------

					Fruit se	etting (%)			
Treatments		1 st cluster	2 nd cluster	3 rd cluster	Avg. 1 st +2 nd +3 rd clusters	1 st cluster	2 nd cluster	3 rd cluster	Avg. 1 st +2 nd +3 rd clusters
			First sea	ason (2014	-)		Second se	eason (2015	5)
	Control	41.67de	83.00a	56.67c	59.89d	45.83d	74.50cd	52.50de	57.61g
	Ca+B	87.50ab	50.00a	58.33c	65.28cd	93.75ab	55.00 e	54.17d	67.64f
D 1 (GA3	100.00a	65.00a	90.00ab	85.00ab	100.00a	72.50cd	85.00bc	85.83bc
Bare plants	IAA	80.00b	55.00a	75.00bc	70.00cd	90.00b	52.50 e	87.50bc	76.67de
	GA3+Ca+B	90.00ab	77.50a	87.50ab	85.00ab	85.00b	76.25cd	81.25c	80.83cd
	IAA+Ca+B	63.33c	100.0a	65.00c	76.11bc	61.67c	100.00a	57.50d	73.06ef
	Control	36.67e	54.00a	35.00d	41.89e	35.00e	67.00d	42.50e	48.17h
	Ca+B	55.00cd	87.50a	32.50d	58.33d	52.50d	81.25bc	28.75f	54.17gh
Floating	GA3	100.00a	83.00a	100.00a	94.33a	100.00a	74.50cd	100.00a	91.50ab
cover (Agryl)	IAA	90.00ab	93.75a	91.50ab	91.75a	85.00b	90.63ab	95.75ab	90.46b
	GA3+Ca+B	95.45ab	87.50a	91.50ab	91.48a	93.18ab	93.75ab	87.25bc	91.39ab
	IAA+Ca+B	87.50ab	100.00a	100.00a	95.83a	93.75ab	100.00a	100.00a	97.92a

Table (10): Effect of floating cover (Agryl) and fruit setting substances on yield of tomato plant

	Marketable yield		ketahle	Total No.	Marketal	ole yield	Unmar- ketable	Total	No.		
Treatments	Yield/plant (g)	Yield (ton/fed.)	yield (ton/fed.)	yield (ton/fed.)	seeds/ fruit	Yield/plant (g)	Yield (ton/fed.)	yield (ton/fed.)	yield (ton/fed	seeds/) fruit	
		First s	eason (201	4)		Second season (2015)					
Bare plants	2611.0a	14.01a	0.282a	14.272a	155.01a	2852.0a	13.38a	0.349a	13.729a	149.23a	
Floating cover (Agryl)	2305.0b	10.90b	0.117b	11.017b	60.33b	2271.0b	10.70b	0.125b	10.805b	60.63b	
Control	2196d	10.54e	0.107d	10.647d	81.50c	2073d	9.77c	0.117e	9.889d	78.50c	
Ca+B	2740b	13.14bc	0.139c	13.279ab	108.75b	2724ab	12.86ab	0.158d	13.018ab	103.15b	
GA ₃	2531c	12.15cd	0.170b	12.320bc	95.25bc	2460c	11.35b	0.257bc	11.604c	106.08b	
IAA	2560c	11.39d	0.394a	11.784cd	108.28b	2480bc	11.90b	0.376a	12.276bc	93.30bc	
GA ₃ +Ca+B	2757b	13.22ab	0.204b	13.424ab	109.00b	2722ab	12.75ab	0.292b	13.042ab	104.16b	
IAA+Ca+B	3154a	14.32a	0.183b	14.503a	143.30a	2912a	13.61a	0.222c	13.832a	136.40a	

Treatments		Marketable yield		Unmarket-	Total yield	No.	Marketable yield		Unmarket-	Total yield	No.
		Yield/ Plant (g)	Yield (ton/fed.)	- able yield (ton/fed.)	(ton/fed.)	seeds/ fruit	Yield/ Plant (g)	Yield (ton/fed.)	able yield (ton/fed.)	(ton/fed.)	seeds/ fruit
		First season (2014)					Second season (2015)				
	Control	2358c	11.32cd	0.107c	11.427d	137.00b	2209ef	10.24de	0.120f	10.360	122.00b
Bare plants	Ca+B	3278a	15.72a	0.150bc	15.870a	140.00b	2890bc	13.87b	0.181e	14.051b	132.50b
	GA ₃	2893b	13.89b	0.236bc	14.126b	163.00a	2725bcd	12.16c	0.404c	12.564c	166.50a
	IAA	2872b	12.01c	0.641a	12.651c	151.56ab	2919b	14.01b	0.604a	14.614b	145.60a
	GA ₃ + Ca+B	3207a	15.37a	0.304b	15.674a	169.00a	3154a	14.90a	0.473b	15.373a	162.00a
	IAA+ Ca+B	3418a	15.79a	0.353bc	16.143a	169.50a	3215a	15.13a	0.121d	15.251a	166.80a
	Control	2035e	9.77e	0.107c	9.877f	26.00e	1938f	9.30f	0.114f	9.414e	35.00f
	Ca+B	2202d	10.56de	0.128bc	10.688def	77.50d	2558d	11.860c	0.135f	11.995c	73.85d
Floating cover	GA ₃	2170de	10.41de	0.104c	10.514ef	27.50e	2195ef	10.54de	0.110f	10.650d	45.67ef
(Agryl)	IAA	2248d	10.77d	0.147bc	10.917de	65.00d	2041ef	9.79ef	0.148ef	9.938de	41.00e
	GA ₃ + Ca+B	2307cd	11.07d	0.103c	11.173de	49.00e	2290e	10.61d	0.111f	10.721d	46.33ef
	IAA+ Ca+B	2873b	12.86c	0.114c	12.974c	117.00c	2609cd	12.09c	0.132f	12.222c	106.00c

Table (11): Effect of interaction between floating cover and fruit setting substances on yield of tomato plant

CONCLUSION

The performance of tomato plants under high temperature stress (which grown under floating covers) was improved by spraying some substances as Ca+B, IAA, or GA_3 which enhanced the plant growth, proline concentration in leaves and fruit setting (%). On the other hand, total chlorophyll, marketable yield per plant and number of seeds/fruit which expressed as the viability of pollen grains and fruit size were decreased under high temperatures stress.

REFERENCES

- Aggarwal, M., S. Sharma, N. Kaur, D. Patahnia, K. Bhandhari, N. kausha, R. kaur, K. Singh, A. Srivastava and H. Nayyar (2011). Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (*Phaseolus vulgaris* L.) seedlings. Biol. Trace Element Res., 140(3): 354-367.
- Al-Shihi, A. A., A. M. Al-Said, F. A. Al-Said, U. E. Ammara and M. L. Deadman (2016). Optimising the duration of floating row cover period to minimise the incidence of tomato yellow leaf curl disease and maximise yield of tomato. Ann. Appl. Biol., 168: 328–336.
- Asad A., E. P. C. Blamey and D. G. Edward (2003). Effects of boron foliar applications on vegetative and reproductive growth of sunflower. Ann. Bot., 92: 565–570.
- Bates, L. S., R. P. Waldren and I. D. Tare (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.
- Berlinger M. J., R. A. J. Taylor, S. Lebiush-Mordechi, S. Shalhevet and I. Spharim (2002). Efficiency of insect exclusion screens for preventing whitefly transmission of tomato yellow leaf curl virus of tomatoes in Israel. Bulletin of Entomological Research, 92: 367– 373.
- de Jong, M., C. Mariani and W. H. Vriezen (2009). The role of auxin and gibberellin in tomato fruit set. J. Exp. Bot., 60(5): 1523-1532.
- Desouky, I. M., L. F. Haggog, M. M. M.Abd-El-Migeed, Y. F. M.Kishk and E. S. El-Hadi (2009). Effect of boron and calcium nutrients sprayson fruit set, oil content and oil quality of some olive cultivars. World J. Agric. Sci., 5: 180–185.
- Duncan, D. B. (1955). Multiple rang and multiple F test. Biometrics, 11: 1-42.
- El-Sherbeny, M. R. and J. A. T. Da Silva (2013). Foliar treatment with proline and tyrosine affect the growth and yield of beetroot and some pigments in beetroot leaves. J. Hort. Res., 21(2): 95-99.
- Gordon, G. G. (2006). The effects of color plastic mulches and row covers on the growth and

yield of okra and summer squash. M.Sc. Thesis, Auburn University, 74 pp.

- Haque, M. E., A. K. Paul and J. R. Sarker (2011). Effect of nitrogen and boronon the growth and yield of tomato (*Lycopersicon esculentum* M.). Inter. J. Bio-resource and Stress Manag., 2(3): 277–282.
- Hare, P. D., W. A. Cress and J. van Staden (2003). A regulatory role for proline metabolism in stimulating *Arabidopsis thaliana* seed germination. Plant Growth Regul., 39: 494-500.
- Hopkins, W. G. and N. P. A. Hüner (2009). Introduction to Plant Physiology. 4th ed. John Wiley & Sons, Inc. USA., 503 pp.
- Hu, W. H., Y. A. Xiao, J. J. Zeng and X. H. Hu (2010). Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. Biologia Plantarum, 54(4): 761-765.
- Kafizadeh, N., J. Carapetian and K. M. Kalantari (2008). Effect of heat stress on pollen viability and pollen tube growth in pepper. Res. J. Biol. Sci., 3(10): 1159-1162.
- Kaushal N., K. Gupta, K. Bhandhari, S. Kumar, P. Thakur and H. Nayyar (2011). Proline induces heat tolerance in chickpea (*Cicer* arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol. Mol. Biol. Plants, 17(3): 203-213.
- Khan, M. M. A., C. Gautam, F. Mohammad, M. H. Siddiqui, M. Naeem and M. N. Khan (2006). Effect of Gebberellic acid spray on performance of tomato. Turk. J. Biol., 30: 11-16.
- Leah, K. and B. Aloni (2002). Fruktokinase and hexokinase from pollen grains of bell pepper (*Capsicum annuum* L.): possible role in pollen germination under conditions of high temperature and CO₂ enrichment. Ann. Bot., 90: 607-612.
- Maggio, A., S. Miyazaki, P. Veronese, T. Fujita, J. Ibeas, B. Damsz, M. L. Narasimhan, P. M. Hasegawa, R. J. Joly and R. A. Bressan (2002). Does proline accumulation play an active role in stress-induced growth reduction? The Plant Journal, 31(6): 699-712.
- Mestre, T. C., F. Garcia-Sanchez, F. Rubio, V. Martinez and R. M. Rivero (2012). Glutathione homeostasis as an important and novel factor controlling blossom-end rot development in calcium-deficient tomato fruits. J. Plant Physiol., 169: 1719–1727.
- Ördog, V. (2011). Plant Physiology. Az Agrármérnöki MSc szak tananyagfejlesztése, TÁMOP-4.1.2-08/1/A-2009-0010 projekt 115pp.
- Pattison, R. J., F. Csukasi and C. Catala (2014). Mechanisms regulating auxin action during fruit development. Physiological Plantarum, 151(1): 62-72.
- Peet, M. M., D. H. Willits and R. Gardner (1997). Response of ovule development and post-

pollenproduction processes in male-sterile tomatoes tochronic, sub-acute high temperature stress. J. Exp. Bot., 48(306): 101-111.

- Pressman, E., M. M. Peet and M. Pharr (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anther. Ann. Bot., 90: 631-636.
- Rab, A. and I. Haq (2012). Foliar application of calcium chloride and borax influences plant growth, yield, and quality of tomato (*Lycopersicon esculentum* Mill.) fruit. Turk. J. Agric. For., 36: 695-701.
- Saidi, M., E. O. Gogo, F. M. Itulya, T. Martin and M. Ngouajio (2013). Microclimate modification using eco-friendly nets and floating row covers improves tomato (*Lycopersicon esculentum*) yield and quality for small holder farmers in East Africa. Agric. Sci., 4(11): 577-584.
- Smit, J. N. and N. J. J. Combrink (2005). Pollination and yield of winter-grown greenhouse tomatoes as affected by boron nutrition, cluster vibration and relative humidity. South Afr. J. Plant Soil, 22: 110–115.

- Snedecor, G. W. and W. G. Cochran (1980). Statistical Methods 7th ed. Iowa State Univ., Press. Ames. Iowa, USA.
- Srivastava, P. C. and U. C. Gupta (1996). Trace Elements in Crop Production. Science Publisher Inc., pp 355.
- Székely, G., E. Abrahám, A. Cséplo, G. Rigó, L. Zsigmond, J. Csiszár, F. Ayaydin, N. Strizhov, J. Jásik, E. Schmelzer, C. Koncz and L. Szabados (2008). Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J., 53(1): 11-28.
- Taber, H. G. and A. Webb (2008). Row covers for early tomato production. Iowa State Research Farm Progress Reports, Pp 515.
- Verbruggen, N. and C. Hermans (2008). Proline accumulation in plants: a review. Amino Acids, 35(4): 753-759.
- Zhou, R., K. H. Kjær, E. Rosenqvist, X. Yu, Z. Wu and C.-O. Ottosen (2016). Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. J. Agron. Crop Sci., 63(1): 68-80.

تحسين إنتاجية الطماطم تحت ظروف درجات الحرارة العالية

السيد محمد الطنطاوي'، رواء صلاح الشطورى' تسم الإنتاج النباتي (خضر)- كلية العلوم الزراعية البيئية - جامعة العريش- مصر تسم البساتين (خضر)- كلية الزراعة – جامعة قناة السويس – الإسماعيلية

أجريت تجربتان حقليتان خلال صيف موسمي ٢٠١٤ و ٢٠١٥ المنزرعة التجريبية بكلية العلوم الزراعية البيئية بالعريش - جامعة العريش – شمال سيناء وذلك لتحسين أداء الطماطم هجين أليسا (Alissa F1) المنزرعة تحت ظروف الحرارة العالية. اشتملت التجربة على ٢٢ معاملة عبارة عن التداخل بين عاملين الأول هو استخدام الأغطية الطافية (الأجريل)، و عدم التغطية بالاجريل، والعامل الثاني هو استخدام المعاد التي تحسن المعقد تحت ظروف الإجهاد الحراري وهي الرش بما يلي: الكالسيوم+ البورون، والجبرلين، واندول حمض الخليك، بعض المواد التي تحسن العقد تحت ظروف الإجهاد الحراري وهي الرش بما يلي: الكالسيوم+ البورون، والجبرلين، واندول حمض الخليك، بعض المواد التي تحسن العقد تحت ظروف، واندول حمض الخليك، على والجبرلين + الكالسيوم + البورون، والجبرلين، واندول حمض الخليك + الكالسيوم + البورون. وقد استخدم كل من الكالسيوم، والبورون، والجبرلين، واندول حمض الخليك المايون لكل منهم على التوالي. أظهرت النتائج أن صفات النمو وكلا من الوزن الغض، والدول بعض المواد التي وتركيز البرولن، و متوسط نسبة العقد قد زادت باستخدام الأغطية الطافية (الأجريل)، بينما انخفض المحتوى من والدول الوزن الغض، والبورون، والجبرلين، واندول حمض الخليك، والدون الغرب الين، و متوسط نسبة العقد قد زادت باستخدام الأغطية الطافية (الأجريل)، بينما انخفض المحتوى من الوزن الغض، والجاف، وتركيز البرولين، و متوسط نسبة العقد قد زادت باستخدام الأعطية الطافية (الأجريل)، بينما انخفض المحتوى من النول حمض الخليك، والبورون في المروين الخض، والحوان، والمحصول الكلى للفدان، وعدد البنور في المحلي النورين ألى باستخدام الأور في النولي الغلى، و بالجبرلين + الكالسيوم + البورون ألى المعان الحوان الخفض المحتوى من النول حمض الخليك بالكالسيوم بالبورون ألى الن صفات النمو وكل الشرائين المعام المحصول الكلى الفدان، والمحصول الكلى للفدان، وعدد البنون وعد البنور في ألمي المعان التي وعد البنور في المرق الر ألى باستخدام الذول حمض الخليك + الكالسيوم بالبورون ألى ألى ألى باستخدام النول مع الكلى، والدول لمن ألى باستخدام النول حمض الخليك بالكلى الفين ألموان ألى باستخدام الخليك بالكالسيوم بالبورون ألم القاب الشرائين المعام العدي واندول حمض الخليك بالخان وعد البنون وعن الكلى النوان ألي والدول ألم في معلم ماملة بالمرة. وعد البنون في ومو النورن أوض