A NEW SCAFFOLD FOR D_{3} DOPAMINERGIC AFFINITY CONTAINING ARYLPIPERAZINE FRAGMENT: MOLECULAR MODELING, SYNTHESIS, IN VITRO AND IN VIVO PHARMACOLOGICAL EVALUATION

\author{
Dalal A. Abou El Ella* ${ }^{1}$ and Franziska K. U. Müller ${ }^{2}$
 ${ }^{1}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, El-Khalifa El-Maamoon St., 11566, Abbassia, Cairo, Egypt
 ${ }^{2}$ Biological Screening Units, Institute of Pharmacy, Philosophenweg 14, D-07743 Jena, Germany

 ```تحتوي علي نواه غير متجانسة الحقات ومرتبطة بنو اة أريل بييرازين خالال```

 ```
المركبات المشيدة علي ضغط دم القطط ذات ضغط الدم الطبيعي. وقد اظظهرت
 النتائج فاعلية قليلة مقارنه بعقار البيرازوسين مما قد يثبت ارتباط محدود
 لهذه المركبات تجاه مسنقبلات الالفا الآدربنالية.

```
}

\begin{abstract}
A new series of \(N\)-(6-substitutedbenzo[d]thiazol-2-yl)-2-(4-arylpiperazin-1-yl) acetamides (3a-f) and 2-(3-(4-arylpiprazin-1-yl)propylthio)benzo[d]thiazoles/-oxazoles/-imidazole ( \(6 a-f\) ) was synthesized by connecting arylpiperazine through a semi-rigid or flexible spacer to a heterocyclic moiety, respectively. The radioligand binding experiments for the \(D_{1}, D_{2}, D_{3}\) and \(D_{5}\) subtypes expressed in CHO cells were examined for the target compounds \(\mathbf{3 a - f}, \mathbf{6 a}, \mathbf{6 b}, \mathbf{6 d}\) and \(\mathbf{6}\). Compound \(\mathbf{6 a}\) showed the best binding affinity for dopamine \(D_{3}\) receptor and is considered as a new scaffold for \(D_{3}\) dopaminergic affinity. Furthermore, molecular modeling of the best-fitted conformer of target compounds \(\mathbf{3 a}, \boldsymbol{6} \boldsymbol{b}\), \(\mathbf{6 c}, \mathbf{6 d}\) and \(\mathbf{6 f}\) to \(\alpha_{1}\)-adrenoceptor \(\left(\alpha_{1}-\boldsymbol{A R}\right)\) antagonist hypothesis was performed using CATALYST software, HipHop modules. Based on the results of simulation studies, these target compounds were evaluated for their in vivo hypotensive activity on blood pressure of normotensive cats.
\end{abstract}

\footnotetext{
Received in 17/11/2007, Received in revised form in 29/12/2007 \& Accepted in 30/12/2007
*Corresponding author e-mail address: dalal999@hotmail.com
}

\section*{INTRODUCTION}

Arylpiperazine is a core fragment of many bioactive compounds exhibiting a variety of pharmacological effects. It has been shown that their action can be mediated by different subpopulations of serotonin (5-hydroxytryptamine, \(\quad 5-\mathrm{HT})^{1}, \quad \alpha_{1-}\) adrenergic \(^{1 \& 2}\) and dopaminergic \({ }^{1,3 \& 4}\) receptors. Such a multireceptor potential implicates their frequent use as a source of new agents with different therapeutic properties.

The dopaminergic system plays important role in regulating neuronal motor control, cognition, emotion and vascular function. Neuropsychiatric diseases such as schizophrenia, Parkinson's disease, or addiction are strongly related to a disregulation of the dopaminergic signal transduction \({ }^{5 \& 6}\). Therefore, dopamine receptors are attractive as therapeutic targets. There are five dopamine receptor subtypes that may be divided into two subfamilies: \(\mathrm{G}_{\mathrm{s}}\)-coupled \(\mathrm{D}_{1}\) like receptors \(\left(D_{1}, D_{5}\right)\) and \(G_{i}\)-coupled \(D_{2}\)-like receptors \(\left(D_{2}, D_{3}, D_{4}\right)^{7}\). The therapy of schizophrenia with typical antipsychotic drugs can implicate severe side effects, such as extrapyramidal motor effects. Higher subtype-selectivity and new binding profiles of different dopamine receptor subtypes may lead to more effective neuroleptic drugs with fewer therapy-limiting side effects. The discovery of new dopaminergic
ligands \({ }^{3,4,8-11}\) with high affinity and selectivity for \(D_{3}\) receptor subtype represented a breakthrough in the pharmacology of dopamine receptors. Recently, lead compound BP \(897^{3 \& 12}\) was designed and investigated as ligand for dopamine \(\mathrm{D}_{3}\) receptor. On the basis of the features in the lead structures BP \(897(K i=1.4 \mathrm{nM})\), ST \(198(K i=12 \mathrm{nM})^{10}\) and FAUC 365 \((K i=0.5 \mathrm{nM})^{10}\), it was promising to prepare a potential \(\mathrm{D}_{3}\) ligands retaining the same pharmacophoric features (Aryl / Heteroaryl moiety, spacer and basic moiety), Figure 1. The plan of investigation involved the incorporation of benzo[d]thiazole / -oxazole/ -imidazole unit as a heteroaryl bioisostere attached to arylpiperazine (basic moiety) through modified semi-rigid or flexible spacer.

Moreover, with respect to the potential multireceptor profile of such derivatives, molecular modeling studies \({ }^{13}\) for \(\alpha_{1}\)-ARs were evaluated. The \(\alpha_{1}\)-ARs are mainly involved in the cardiovascular and central nervous system \({ }^{14}\) and they have divergent affinities for many synthetic drugs, which interact selectively as agonist or antagonists. Ligands acting as antagonists at the \(\alpha_{1}\)-ARs subtypes have been used in the treatment of a variety of diseases including hypertension \({ }^{15}\). In view of molecular simulation results, selected compounds were evaluated for their hypotensive activity.


Fig. 1: Features similarities between the leads (BP 897, ST 198 and FAUC 365) and target compounds (3a-f, 6a-f)

\section*{MATERIALS AND METHODS}

Melting points were determined with a Stuart Scientific apparatus and are uncorrected. FT- IR spectra were recorded on a Perkin-Elmer spectrophotometer and measured by \(v \mathrm{~cm}^{-1}\) scale using KBr cell. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) spectra were measured in \(\delta\) scale on Brucker 200, 400 and 500 MHz spectrometers. All the spectra were referred to TMS. \({ }^{13} \mathrm{C}-\mathrm{NMR}\) spectra were measured in \(\delta\) scale on Brucker 200, 400 and 500 MHz spectrometers. The electron impact (EI) mass spectra were recorded on Finnigan Mat SSQ 7000 (70 eV) mass
spectrometer. Analytical thin layer chromatography (TLC) on silica gel plates containing UV indicator was employed routinely to follow the course of reactions and to check the purity of products. All reagents and solvents were purified and dried by standard techniques. Elemental microanalyses were performed at Microanalytical Center, Cairo and Vienna Universities.

\section*{Chemistry}

\section*{2-(4-arylpiperazin-1-yl)-N-(6-substitutedbenzo[d]thiazol-2yl)acetamides (3a-f)}

General procedure: To a hot solution of 2 -chloro- \(N\)-(6-substituted benzo[ \(d\) ]thiazol-2-yl)acetamide (2a-c) \((1.15 \mathrm{mmol})\) in acetonitrile \((15 \mathrm{~mL})\) and DMF ( 2 mL ), a mixture of arylpiprazine ( 1.15 mmol ) and triethylamine \((0.3 \mathrm{~mL})\) in acetonitrile \((3 \mathrm{~mL})\) was added. The reaction mixture was refluxed for 8 h . The solvent was evaporated under vacuum and the residue was triturated with water. The formed solid was recrystallized from ethanol - acetone for compound 3a and from ethanol water to produce the titled compounds 3b-f.

\section*{\(N\)-(6-Chlorobenzo[d]thiazol-2-yl)-2-(4-phenylpiperazin-1-yl)acetamide (3a)}

It was separated as white crystals ( \(0.38 \mathrm{~g}, 0.98 \mathrm{mmol}, 86.4 \%\) ), m.p. \(225-226^{\circ} \mathrm{C}\). IR ( \(\mathrm{KBr}, \mathrm{cm}^{-1}\) ): 3589 (br, \(\mathrm{NH}), 2849\left(\mathrm{CH}_{2}\right), 1686(\mathrm{NC}=\mathrm{O}) .{ }^{1} \mathrm{H}-\) NMR, 400 MHz (DMSO- \(d_{6}:\) ): \(\delta 2.75\)
(m, \(4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), \(3.22\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) of piperazine moiety), 3.41 ( s, 2H, \(\mathrm{COCH}_{2}\) ), 6.95 \(7.32\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.42\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,4}\right.\) \(\left.=9.5 \mathrm{~Hz}, J_{5,7}=2.7 \mathrm{~Hz}, \mathrm{H}-5\right), 7.72(\mathrm{~d}\), \(\left.1 \mathrm{H}, J_{4,5}=9.5 \mathrm{~Hz}, \mathrm{H}-4\right), 8.18(\mathrm{~d}, 1 \mathrm{H}\), \(\left.J_{7,5}=2.7 \mathrm{~Hz}, \mathrm{H}-7\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 386\) \(\left(\mathrm{M}^{+}, 44\right), 388\left(\mathrm{M}^{+}+2,15\right)\). Anal. Calcd for \(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{OS}: \mathrm{C}, 58.98\); H, 4.95; N, 14.48. Found: C, 58.74; H, 4.96; N, 14.23.

\section*{\(N\)-(6-Chlorobenzo[d]thiazol-2-yl)-2-(4-(3-trifluoromethyl)phenyl) piperazin-1-yl)acetamide (3b)}

It was separated as beige crystals ( \(0.18 \mathrm{~g}, 0.39 \mathrm{mmol}, 34.6 \%\) ), m.p. \(156-158^{\circ} \mathrm{C}\). IR ( \(\mathrm{KBr}, \mathrm{cm}^{-1}\) ): 3589 (br, \(\mathrm{NH}), 2849\left(\mathrm{CH}_{2}\right), 1690(\mathrm{NC}=\mathrm{O}) .{ }^{1} \mathrm{H}-\) NMR, 400 MHz (DMSO- \(d_{6}:\) ): \(\delta 2.75\) ( \(\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), \(3.29\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) of piperazine moiety), 3.42 (s, \(2 \mathrm{H}, \mathrm{COCH}_{2}\) ), 7.08 \(\left(\mathrm{d}, 1 \mathrm{H}, J_{6^{\prime}, 5^{\prime}}=9.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right.\) of \(3-\mathrm{CF}_{3^{-}}\) \(\mathrm{C}_{6} \mathrm{H}_{4}\) ), 7.19 (s, \(1 \mathrm{H}, \mathrm{H}-2\) of \(3-\mathrm{CF}_{3}-\) \(\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.25\left(\mathrm{~d}, 1 \mathrm{H}, J_{4^{\prime}, 5^{\prime}}=9.4 \mathrm{~Hz}, \mathrm{H}-\right.\) \(4^{\prime}\) of \(\left.3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.41\left(\mathrm{t}, 1 \mathrm{H}, J_{5^{\prime}, 4^{\prime}}=\right.\) \(J_{5^{\prime}, 6^{\prime}}=9.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\) of \(3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\) ), \(7.48\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,4}=9.4 \mathrm{~Hz}, J_{5,7}=2.3\right.\) \(\mathrm{Hz}, \mathrm{H}-5), 7.75\left(\mathrm{~d}, 1 \mathrm{H}, J_{4.5}=9.4 \mathrm{~Hz}\right.\), \(\mathrm{H}-4), 8.14\left(\mathrm{~d}, 1 \mathrm{H}, J_{7,5}=2.3 \mathrm{~Hz}, \mathrm{H}-7\right)\). \({ }^{13} \mathrm{C}-\mathrm{NMR}, 400 \mathrm{MHz}\) (DMSO- \(d_{6}\) :): \(\delta\) 47.49, 52.15, 59.92, 110.80, 114.48, \(118.69,121.37,121.66,126.41\), 127.56, 129.63, 129.89, 133.06, 147.26, 151.09, 158.28, 169.49. MS \((\mathrm{m} / \mathrm{z}, \%): 454\left(\mathrm{M}^{+}, 10\right), 456\left(\mathrm{M}^{+}+2\right.\), 4). Anal. Calcd for \(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{OS}\). \(0.4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.93\); H, 4.07; N, 12.11 . Found: C, 52.35; H, 4.46; N, 11.60.
\(N\)-(6-Chlorobenzo[d]thiazol-2-yl)-2-(4-(2-methoxyphenyl)piperazin-1yl)acetamide (3c)

It was separated as beige crystals (0.22 g, \(0.53 \mathrm{mmol}, 45.8 \%\) ), m.p. \(170-172^{\circ} \mathrm{C}\). IR ( \(\mathrm{KBr}, \mathrm{cm}^{-1}\) ): 3581(br, \(\mathrm{NH}), 2822\left(\mathrm{CH}_{2}\right), 1691(\mathrm{NC}=\mathrm{O}) .{ }^{1} \mathrm{H}-\) NMR, \(400 \mathrm{MHz}\left(\mathrm{DMSO}-d_{6}:\right): \delta 2.73\) (br, \(4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), 3.05 (br, \(4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), \(3.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.79\) \(\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.94(\mathrm{~m}, 4 \mathrm{H}, 2-\) \(\left.\mathrm{OCH}_{3}-\underline{\mathrm{C}}_{6} \underline{\mathrm{H}}_{4}\right), 7.47\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,4}=9.5\right.\) \(\mathrm{Hz}, \mathrm{H}-5), 7.74\left(\mathrm{~d}, 1 \mathrm{H}, J_{4,5}=9.5 \mathrm{~Hz}\right.\), \(\mathrm{H}-4), 8.14\) (s, \(1 \mathrm{H}, \mathrm{H}-7\) ). \({ }^{13} \mathrm{C}-\mathrm{NMR}\), 400 MHz (DMSO- \(d_{6}:\) :) \(\delta 42.85\), 50.21, 53.08, 55.67, 60.37, 112.22, 118.38, 121.19, 121.83, 121.91, \(122.12, \quad 122.31,126.99,128.04\), 133.51, 141.42, 147.69, 152.33, 158.69. MS (m/z, \%): \(416\left(\mathrm{M}^{+}\right.\), 1.66), \(418\left(\mathrm{M}^{+}+2,1\right)\). Anal. Calcd for \(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 57.62 ; \mathrm{H}, 5.08\); N, 13.44. Found: C, 57.17; H, 5.08; N, 13.55.

\section*{\(N\)-(6-Chlorobenzo[d]thiazol-2-yl)-2-(4-(4-nitrophenyl)piperazin-1yl)acetamide (3d)}

It was separated as faint yellow crystals \((0.20 \mathrm{~g}, 0.46 \mathrm{mmol}, 40.8 \%)\), m.p. \(155-160^{\circ} \mathrm{C}\). IR \(\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)\) : 3569 (br, NH), \(2822\left(\mathrm{CH}_{2}\right), 1691\) ( \(\mathrm{NC}=\mathrm{O}\) ). \({ }^{1} \mathrm{H}-\mathrm{NMR}, \quad 400 \mathrm{MHz}\) (DMSO- \(d_{6}\) :): \(\delta 2.95\) (br, \(4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), 3.25 (br, 4H, 2 \(\mathrm{CH}_{2}\) of piperazine moiety), 3.34 ( s , \(2 \mathrm{H}, \mathrm{COCH}_{2}\) ), \(7.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right.\) and H-6' of 4-nitro- \(\mathrm{C}_{6} \mathrm{H}_{4}\) ), 7.49 (d, 1 H , \(\left.J_{5,4}=8.7 \mathrm{~Hz}, \mathrm{H}-5\right), 7.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right.\) and H-5' of 4-nitro- \(\mathrm{C}_{6} \mathrm{H}_{4}\) ) 8.08 (d, \(\left.1 \mathrm{H}, J_{4,5}=8.9 \mathrm{~Hz}, \mathrm{H}-4\right), 8.18(\mathrm{~s}, 1 \mathrm{H}\),

H-7). MS (m/z, \%): 431 ( \(\mathrm{M}^{+}, 6\) ), 433 \(\left(\mathrm{M}^{+}+2,2.5\right)\). Anal. Calcd for \(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 52.84 ; \mathrm{H}, 4.20\); N, 16.22. Found: C, 52.55; H, 4.13; N, 15.97.

\section*{2-(4-(2-Methoxyphenyl)piperazin-1-yl)- \(N\)-(6-nitrobenzo[d]thiazol-2yl)acetamide (3e)}

It was separated as faint yellow crystals ( \(0.23 \mathrm{~g}, 0.54 \mathrm{mmol}, 46.9 \%\) ), mp \(190-192^{\circ} \mathrm{C}\). IR \(\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3280\) (NH), 2933 and \(2818\left(\mathrm{CH}_{2}\right), 1703\) ( \(\mathrm{NC}=\mathrm{O}\) ). \({ }^{1} \mathrm{H}-\mathrm{NMR}, \quad 200 \quad \mathrm{MHz}\) (DMSO- \(d_{6}\) :) : \(\delta 2.89\) (br, \(4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), 3.06 (br, \(4 \mathrm{H}, 2\) \(\mathrm{CH}_{2}\) of piperazine moiety), 3.68 (s, \(\left.2 \mathrm{H},-\mathrm{COCH}_{2}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)\), \(6.93\left(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{OCH}_{3}-\underline{\mathrm{C}}_{6} \underline{\mathrm{H}}_{4}\right), 7.90(\mathrm{~d}\), \(\left.1 \mathrm{H}, \mathrm{J}_{4,5}=9.7 \mathrm{~Hz}, \mathrm{H}-4\right), 8.29(\mathrm{~d}, 1 \mathrm{H}\), \(\left.J_{5,4}=9.7 \mathrm{~Hz}, \mathrm{H}-5\right), 9.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7)\). \({ }^{13} \mathrm{C}-\mathrm{NMR}, 200 \mathrm{MHz}\) (DMSO- \(d_{6}\) :): \(\delta\) 49.33, 52.63, 55.33, 59.38, 111.89, 118.07, 119.12, 120.67, 120.83, 121.83, 122.69, 132.20, 140.76, 143.07, 151.95, 153.33, 163.04, 168.55. MS (m/z, \%): \(427\left(\mathrm{M}^{+}, 39\right)\). Anal. Calcd for \(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S} . \mathrm{H}_{2} \mathrm{O}\) : C, 53.87; H, 5.16; N, 15.71. Found: C, 53.51; H, 4.75; N, 15.40.

\section*{2-(4-(2-Methoxyphenyl)piperazin-1-yl)- \(N\)-(6-methylbenzo[d]thiazol-2yl)acetamide (3f)}

It was separated as beige crystals ( \(0.25 \mathrm{~g}, 0.63 \mathrm{mmol}, 54.9 \%\) ), mp 122\(124^{\circ} \mathrm{C}\). IR ( \(\mathrm{KBr}, \mathrm{cm}^{-1}\) ): 3171 (br, \(\mathrm{NH}), 2964\) and \(2819\left(\mathrm{CH}_{2}\right), 1689\) ( \(\mathrm{NC}=\mathrm{O}\) ). \({ }^{1} \mathrm{H}-\mathrm{NMR}, \quad 500 \quad \mathrm{MHz}\) (DMSO- \(d_{6}\) ): \(\delta 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)\),
2.72 (br, \(4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), 3.00 (br, \(4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), \(3.41(\mathrm{~s}, 2 \mathrm{H}\), \(\left.\mathrm{COCH}_{2}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.90(\) \(\left.\mathrm{m}, 4 \mathrm{H}, 2-\mathrm{OCH}_{3}-\underline{\mathrm{C}}_{6} \underline{\mathrm{H}}_{4}\right), 7.24(\mathrm{~d}, 1 \mathrm{H}\), \(\left.J_{5,4}=8.0 \mathrm{~Hz}, \mathrm{H}-5\right), 7.63\left(\mathrm{~d}, 1 \mathrm{H}, J_{4,5}=\right.\) \(8.0 \mathrm{~Hz}, \mathrm{H}-4), 7.75\) (s, 1H, H-7). \({ }^{13} \mathrm{C}-\) NMR, \(500 \mathrm{MHz}\left(\mathrm{DMSO}-d_{6}\right): \delta 20.96\) \(\left(\mathrm{CH}_{3}\right), 49.98\) ( 2 C of piperazine moiety), 52.75 ( 2 C of piperazine moiety), \(\quad 55.29 \quad\left(\mathrm{OCH}_{3}\right), \quad 60.22\) \(\left(\mathrm{NCH}_{2}\right), 111.87,117.99,120.16\) (C4), 120.81, 121.30 (C-7), 122.44, 127.25 (C-5), 131.50 (C-7a), 132.98 (C-6), 141.15 (C-1'), 146.41 (C-3a), 151.98 (C-2'), 156.57 (C-2), 169.21 (C=O). MS (m/z, \%): \(396\left(\mathrm{M}^{+}, 6 \%\right)\). Anal. Calcd for \(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}\) S. 0.85 \(\mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.19 ; \mathrm{H}, 6.24 ; \mathrm{N}, 13.60\). Found: C, 61.53; H, 6.09; N, 13.42.

\section*{2-(3-(4-arylpiperazin-1-yl)propyl-}
thio)benzo[d]thiazoles / -oxazoles /imidazole (6a-f)
General procedure: To a hot solution of 2-mercapto-benzo[d] thiazoles / -oxazole or -imidazole (4ad) \((1.15 \mathrm{mmol})\) in acetonitrile ( 20 mL ) and DMF ( 1 mL ), arylpiprazine \((\mathbf{5 a} / \mathbf{5 b}, 1.15 \mathrm{mmol})\) in acetonitrile (3 mL ) was added. To the reaction mixture, anhydrous potassium carbonate ( 1.15 mmol ) and few crystals of potassium iodide was added. The reaction mixture was refluxed for 7 h . After cooling, water was added. The formed solid was filtered and recrystallized from ethanol / water to produce the titled compounds 6a-f.

2-(3-(4-Phenylpiperazin-1-yl)propylthio)benzo[d]thiazole (6a)

It was separated as colourless crystals ( \(0.12 \mathrm{~g}, 0.32 \mathrm{mmol}, 28.6 \%\) ), mp \(115-116^{\circ} \mathrm{C}\). IR ( \(\mathrm{KBr}, \mathrm{cm}^{-1}\) ): 2931 and \(2833\left(\mathrm{CH}_{2}\right), 1597(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\) NMR, 200 MHz (DMSO- \(d_{6}:\) ): \(\delta 2.15\) (m, \(2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\) ), 3.09 (br, \(6 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\) and \(2 \mathrm{CH}_{2}\) of piperazine moiety), 3.30 (br, \(4 \mathrm{H}, 2\) \(\mathrm{CH}_{2}\) of piperazine moiety), 3.44 ( t , \(\left.2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 6.83(\mathrm{t}, 1 \mathrm{H}\), \(J_{4^{\prime}, 3^{\prime}}=J_{4^{\prime}, 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\) of phenylpiperazine), 6.97 (d, 2H, \(J=8.9 \mathrm{~Hz}\), \(\mathrm{H}-2^{\prime}\) and \(\mathrm{H}-6\) ' of phenylpiperazine), \(7.23\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.\) and H-5' of phenylpiperazine), \(7.37\left(\mathrm{t}, 1 \mathrm{H}, J_{5,4}\right.\) \(\left.=J_{5,6}=7.9 \mathrm{~Hz}, \mathrm{H}-5\right), 7.47\left(\mathrm{t}, 1 \mathrm{H}, J_{6,5}\right.\) \(\left.=J_{6,7}=7.9 \mathrm{~Hz}, \mathrm{H}-6\right), 7.86\left(\mathrm{~d}, 1 \mathrm{H}, J_{7,6}\right.\) \(=7,9 \mathrm{~Hz}, \mathrm{H}-7), 8.00\left(\mathrm{~d}, 1 \mathrm{H}, J_{4,5}=7.9\right.\) \(\mathrm{Hz}, \quad \mathrm{H}-4) .{ }^{13} \mathrm{C}-\mathrm{NMR}, 200 \mathrm{MHz}\) (DMSO- \(d_{6}\) :): \(\quad \delta \quad 24.39\) \(\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 30.18 \quad\left(\mathrm{SCH}_{2}\right)\), 46.49 ( 2 C of piperazine moiety), 51.52 (2 C of piperazine moiety), \(54.93\left(\mathrm{CH}_{2} \mathrm{~N}\right), 115.79(\mathrm{C}-4\) '), 119.66 (C-2' and C-6'), 121.15 (C-7), 121.86 (C-4), 124.56 (C-5), 126.45 (C-6), 129.08 (C-3' and C-5'), 134.59 (C-1'), 150.03 (C-3a), 152.70 (C-7a), 166.36 (C-2). MS (m/z, \%): \(369\left(\mathrm{M}^{+}, 6 \%\right)\). Anal. Calcd for \(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{~S}_{2}\). \(0.2 \mathrm{H}_{2} \mathrm{O}\) : C, 64.32; H, 6.27; N, 11.25. Found: C, 64.02; H, 5.85; N, 10.94.

\section*{2-(3-(4-(3-Chlorophenyl)piperazin-1-yl)propylthio)benzo[d]thiazole} (6b)

It was separated as colorless crystals \((0.29 \mathrm{~g}, 0.72 \mathrm{mmol}, 63.0 \%)\), \(\mathrm{mp} 148-150^{\circ} \mathrm{C}\). IR ( \(\mathrm{KBr}, \mathrm{cm}^{-1}\) ): 2932 and \(2830\left(\mathrm{CH}_{2}\right), 1591(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\)

NMR, 500 MHz (DMSO- \(d_{6}\) :): \(\delta 2.03\) (m, \(2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\) ), 2.66 (br, \(6 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\) and \(2 \mathrm{CH}_{2}\) of piperazine moiety), 3.23 (br, 4H, 2 \(\mathrm{CH}_{2}\) of piperazine moiety), 3.41 (t, \(\left.2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 6.78(\mathrm{~d}, 1 \mathrm{H}\), \(J_{6^{\prime}, 5^{\prime}}=8.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\) of \(\left.3-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\), \(6.88\left(\mathrm{~d}, 1 \mathrm{H}, J_{4^{\prime}, 5^{\prime}}=8.1 \mathrm{~Hz}, \mathrm{H}-4\right.\) ' of \(3-\) Cl-C \(\mathrm{C}_{6} \mathrm{H}_{4}\) ), 6.94 (s, \(1 \mathrm{H}, \mathrm{H}-2\) ' of 3-Cl\(\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.20\left(\mathrm{t}, 1 \mathrm{H}, J_{5^{\prime}, 4^{\prime}}=J_{5^{\prime}, 6^{\prime}}=8.1\right.\) \(\mathrm{Hz}, \mathrm{H}-5\) ' of \(3-\mathrm{Cl}^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\) ), \(7.36(\mathrm{t}, 1 \mathrm{H}\), \(\left.J_{5,4}=J_{5,6}=7.5 \mathrm{~Hz}, \mathrm{H}-5\right), 7.46(\mathrm{t}, 1 \mathrm{H}\), \(\left.J_{6,5}=J_{6,7}=7.5 \mathrm{~Hz}, \mathrm{H}-6\right), 7.85(\mathrm{~d}, 1 \mathrm{H}\), \(\left.J_{7,6}=7.5 \mathrm{~Hz}, \mathrm{H}-7\right), 8.00\left(\mathrm{~d}, 1 \mathrm{H}, J_{4,5}=\right.\) \(7.5 \mathrm{~Hz}, \mathrm{H}-4) .{ }^{13} \mathrm{C}-\mathrm{NMR}, 500 \mathrm{MHz}\) (DMSO- \(d_{6}\) :): \(\quad \delta \quad 25.49\) \(\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 30.76 \quad\left(\mathrm{SCH}_{2}\right)\), 47.03 ( 2 C of piperazine moiety), 52.02 ( 2 C of piperazine moiety), \(55.73\left(\mathrm{CH}_{2} \mathrm{~N}\right), 113.66\left(\mathrm{C}-4{ }^{\prime}\right), 114.59\) (C-2'), 118.19 (C-6'), 121.06 (C-7), 121.73 (C-4), 124.39 (C-5), 126.33 (C-6), 130.39 (C-5'), 133.80 (C-1'), 134.50 (C-3a), 151.89 (C-3'), 152.73 (C-7a), 166.70 (C-2). MS (m/z, \%): \(403\left(\mathrm{M}^{+}, 9\right), 405\left(\mathrm{M}^{+}+2,4\right)\). Anal. Calcd for \(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{~S}_{2}\). \(0.25 \mathrm{H}_{2} \mathrm{O}\) : C, 58.75 ; H, 5.51 ; N, 10.28. Found: C, 58.27 ; H, 5.82 ; N, 10.02.

\section*{5-Chloro-2-(3-(4-(3-chloro-} phenyl)piperazin-1-yl) propylthio)benzo[d]thiazole (6c)

It was separated as colorless crystals \((0.20 \mathrm{~g}, 0.45 \mathrm{mmol}, 40.0 \%)\), \(\mathrm{mp} 50-52^{\circ} \mathrm{C}\). IR \(\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2931\) and \(2827\left(\mathrm{CH}_{2}\right), 1590(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\) NMR, \(200 \mathrm{MHz}\left(\mathrm{DMSO}-d_{6}:\right): \delta 1.97\) (p, 2H, \(J=7.5 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\) ), \(2.49\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.\) and 2 \(\mathrm{CH}_{2}\) of piperazine moiety), 3.17 (m, \(4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), 3.27
\(\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 6.52\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6,5^{\prime}}=\right.\) \(8.2 \mathrm{~Hz}, J_{6^{\prime}, 4^{\prime}}=1.8 \mathrm{~Hz}, \mathrm{H}-6\) of \(3-\mathrm{Cl}-\) \(\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 6.86\left(\mathrm{dd}, 1 \mathrm{H}, J_{4^{\prime}, 5^{\prime}}=8.2 \mathrm{~Hz}\right.\), \(J_{4^{\prime}, 6^{\prime}}=1.8 \mathrm{~Hz}, J_{4^{\prime}, 6^{\prime}}=1.8 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\) of \(3-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}\) ), 6.92 (s, 1H, H-2' of 3-Cl\(\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.19\left(\mathrm{t}, 1 \mathrm{H}, J_{5^{\prime}, 4^{\prime}}=J_{5^{\prime}, 6^{\prime}}=8.2\right.\) \(\mathrm{Hz}, \mathrm{H}-5\) ' of \(3-\mathrm{Cl}^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\) ), 7.40 (dd, 1 H , \(\left.J_{6,7}=8.9 \mathrm{~Hz}, J_{6,4}=1.8 \mathrm{~Hz}, \mathrm{H}-6\right)\), \(7.90\left(\mathrm{~d}, 1 \mathrm{H}, J_{4.6}=1.8 \mathrm{~Hz}, \mathrm{H}-4\right), 8.02\) (d, \(1 \mathrm{H}, J_{7,6}=8.9 \mathrm{~Hz}, \mathrm{H}-7\) ). MS (m/z, \%): \(438\left(\mathrm{M}^{+}, 2\right)\). Anal. Calcd for \(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{~S}_{2}\). \(1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.56\); H, 5.16; N, 9.02. Found: C, 51.88; H, 4.71; N, 8.96.

\section*{2-(3-(4-Phenylpiperazin-1-yl)propylthio)benzo [d]oxazole (6d)}

It was separated as colourless crystals \((0.16 \mathrm{~g}, 0.46 \mathrm{mmol}, 40.0 \%)\), \(\mathrm{mp} 79-80^{\circ} \mathrm{C}\). IR ( \(\mathrm{KBr}, \mathrm{cm}^{-1}\) ): 2942 and \(2817\left(\mathrm{CH}_{2}\right)\), \(1597(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\) NMR, \(200 \mathrm{MHz}\left(\mathrm{DMSO}-d_{6}:\right): \delta 1.97\) (p, \(2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\) ), \(2.50\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.\) and 2 \(\mathrm{CH}_{2}\) of piperazine moiety), 3.10 (br, \(4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), 3.36 \(\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 6.75(\mathrm{t}, 1 \mathrm{H}\), \(J_{4^{\prime}, 5^{\prime}}=J_{4^{\prime}, 3^{\prime}}=7.5 \mathrm{~Hz}, \quad \mathrm{H}-4^{\prime}\) of phenylpiperazine), 6.89 (d, 2H, \(J=7.5 \mathrm{~Hz}\), \(\mathrm{H}-2^{\prime}\) and \(\mathrm{H}-6\) ' of phenylpiperazine), \(7.18\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.\) and \(\mathrm{H}-5^{\prime}\) of phenylpiperazine), \(7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\) 5 and H-6), 7.61-7.64 (m, 2H, H-7 and \(\mathrm{H}-4) .{ }^{13} \mathrm{C}-\mathrm{NMR}, 200 \mathrm{MHz}\) (DMSO-d \(d_{6}\) :): \(\quad \delta \quad 26.08\) \(\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 29.90 \quad\left(\mathrm{SCH}_{2}\right)\), 48.13 (2 C of piperazine moiety), 52.02 (2 C of piperazine moiety), \(56.07\left(\mathrm{CH}_{2} \mathrm{~N}\right), 110.10(\mathrm{C}-4 '), 115.31\) (C-2' and C-6'), 118.17 (C-7), 118.66 (C-4), 124.13 (C-5), 124.53 (C-6), 129.05 (C-3' and C-5'), 141.34 (C-1'),
150.99 (C-3a), 151.01 (C-7a), 164.62 (C-2). MS (m/z, \%): 353 ( \(\mathrm{M}^{+}, 6 \%\) ). Anal. Calcd for \(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OS}\) : C, 67.96; H, 6.56; N, 11.89. Found: C, 67.44; H, 6.54; N, 11.65.

\section*{2-(3-(4-(3-Chlorophenyl)piperazin-1-yl)propylthio)benzo[d]oxazole (6e)}

It was separated as colourless crystals ( \(0.17 \mathrm{~g}, 0.44 \mathrm{mmol}, 38.6 \%\) ), \(\mathrm{mp} 70-71^{\circ} \mathrm{C}\). IR ( \(\mathrm{KBr}, \mathrm{cm}^{-1}\) ): 2941 and \(2835\left(\mathrm{CH}_{2}\right), 1593(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}-\) NMR, \(500 \mathrm{MHz},\left(\mathrm{DMSO}-d_{6}:\right): ~ \delta 2.03\) \((\mathrm{p}, 2 \mathrm{H}, \quad J=7.69 \mathrm{~Hz}\), \(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\) ), 2.61 ( \(\mathrm{t}, \quad 2 \mathrm{H}\), overlapped, \(\mathrm{SCH}_{2} \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}\) ), 2.64 (br, \(4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), 3.21 (br, \(4 \mathrm{H}, 2 \mathrm{CH}_{2}\) of piperazine moiety), 3.38 (t, 2H, \(J=7.69 \mathrm{~Hz}\), \(\left.\mathrm{SCH}_{2}\right), 6.78\left(\mathrm{dd}, 1 \mathrm{H}, J_{6^{\prime}, 5^{\prime}}=7.57 \mathrm{~Hz}\right.\), \(J_{6^{\prime}, 4^{\prime}}=1.90 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\) of \(3-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}\) ), \(6.88\left(\mathrm{dd}, 1 \mathrm{H}, J_{4^{\prime}, 5^{\prime}}=7.57 \mathrm{~Hz}, J_{4^{\prime}, 6^{\prime}}=\right.\) \(1.90 \mathrm{~Hz}, \mathrm{H}-4\) ' of \(3-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}\) ), 6.94 (s, \(1 \mathrm{H}, \mathrm{H}-2\) of \(3-\mathrm{Cl}^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\) ), \(7.20(\mathrm{t}, 1 \mathrm{H}\), \(J_{5^{\prime}, 4^{\prime}}=7.57 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\) of \(3-\mathrm{Cl}^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\) ), 7.30-7.33 (m, 2H, H-5 and H-6), 7.63-7.65 (m, 2H, H-7 and H-4). \({ }^{13} \mathrm{C}\) NMR, 500 MHz , (DMSO- \(d_{6}\) :): \(\delta\) \(25.59 \quad\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 29.71\) \(\left(\mathrm{SCH}_{2}\right), 47.09\) ( 2 C of piperazine moiety), 52.06 ( 2 C of piperazine moiety), \(55.66\left(\mathrm{CH}_{2} \mathrm{~N}\right), 110.09(\mathrm{C}-7)\), 113.63 (C-4'), 114.55 (C-2'), 118.15 (C-6' and C-4), 124.13 (C-5), 124.52 (C-6), 130.37 (C-5'), 133.78 (C-1'), 141.28 (C-3a), 151.19 (C-3'), 151.93 (C-7a), 164.48 (C-2). MS (m/z, \%): \(387\left(\mathrm{M}^{+}, 8\right), 389\left(\mathrm{M}^{+}+2,4\right)\). Anal. Calcd for \(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{OS} .0 .5 \mathrm{H}_{2} \mathrm{O}\) : C, 60.46; H, 5.79; N, 10.58. Found: C, 60.16; H, 5.50; N, 10.16.

2-(3-(4-(3-Chlorophenyl)piperazin-1-yl)propylthio)-1H-benzo-[d]imidazole (6f)

It was separated as brown crystals ( \(0.37 \mathrm{~g}, \quad 0.95 \mathrm{mmol}, 84.1 \%\) ), mp. \(100^{\circ} \mathrm{C}\). IR ( \(\mathrm{KBr}, \mathrm{cm}^{-1}\) ): \(3161(\mathrm{br}\), \(\mathrm{NH}), 2948\) and \(2818\left(\mathrm{CH}_{2}\right), 1594\) ( \(\mathrm{C}=\mathrm{C}\) ). \({ }^{1} \mathrm{H}-\mathrm{NMR}, 500 \mathrm{MHz}\), (DMSO\(\left.d_{6}:\right): \delta 1.98(\mathrm{p}, 2 \mathrm{H}, J=7.33 \mathrm{~Hz}\), \(\left.\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 2.70(\mathrm{~m}, \quad 6 \mathrm{H}\), \(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\) and \(2 \mathrm{CH}_{2}\) of piperazine moiety), 3.23 (br, \(4 \mathrm{H}, 2\) \(\mathrm{CH}_{2}\) of piperazine moiety), 3.32 ( t , \(2 \mathrm{H}, J=7.33 \mathrm{~Hz}, \mathrm{SCH}_{2}\) ), 6.77 (dd, \(1 \mathrm{H}, J_{6^{\prime} 5^{\prime}}=8.10 \mathrm{~Hz}, J_{6^{\prime}, 4^{\prime}}=1.80 \mathrm{~Hz}, \mathrm{H}-\) \(\left.6^{\prime} 3-\mathrm{Cl}^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 6.87\left(\mathrm{dd}, 1 \mathrm{H}, J_{4^{\prime}, 5^{\prime}}=\right.\) \(8.10 \mathrm{~Hz}, J_{4^{\prime}, 6^{\prime}}=1.80 \mathrm{~Hz}, \mathrm{H}-4\) ' of \(3-\mathrm{Cl}-\) \(\mathrm{C}_{6} \mathrm{H}_{4}\) ), 6.93 ( \(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2\) of 3-Cl\(\mathrm{C}_{6} \mathrm{H}_{4}\) ), 7.11 (m, 2H, H-5 and H-6), \(7.19\left(\mathrm{t}, 1 \mathrm{H}, J_{5^{\prime}, 4^{\prime}}=8.10 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right.\) of 3-\(\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}\) ), 7.44 (m, 2H, H-4 and H-7). \({ }^{13} \mathrm{C}-\mathrm{NMR}, 500 \mathrm{MHz}\), (DMSO- \(d_{6}\) :): \(\delta\) \(25.87 \quad\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 29.05\) \(\left(\mathrm{SCH}_{2}\right), 46.88\) ( 2 C of piperazine moiety), 51.95 ( 2 C of piperazine moiety), \(55.72\left(\mathrm{CH}_{2} \mathrm{~N}\right), 113.78\) (C-4'), 114.72 (C-2'), 118.39 (C-6'), 121.41 (C-4-7), 130.51 (C-5'), 133.91 (C-1'), 150.11 (C-3'), 151.87 (C-3a and 7a). MS (m/z, \%): \(386\left(\mathrm{M}^{+}, 3\right), 388\) \(\left(\mathrm{M}^{+}+2\right.\), 1.3). Anal. Calcd for \(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClN}_{4}\) S. 1.1 \(\mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 59.00 ; \mathrm{H}\), 6.19; N, 13.76. Found: C, 58.52; H, 5.96; N, 13.61.

\section*{Pharmacology}

In vitro biological evaluation radioligand binding experiments

Cell culture and receptor density
Human \(\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \mathrm{D}_{5}\) receptors were stably expressed in Chinese

Hamster Ovary (CHO) cells. The densities of receptors measured with \(\left[{ }^{3} \mathrm{H}\right]\)-spiperone, Cells were grown at \(37^{\circ} \mathrm{C}\) under a humidified atmosphere of \(5 \% \mathrm{CO}_{2}: 95 \%\) air in HAM/F12medium (Sigma-Aldrich) for CHO cells supplemented with \(10 \%\) fetal bovine serum, \(1 \mathrm{mM} L\)-glutamine and \(0.2 \mathrm{~g} / \mathrm{mL}\) of G 418 (all by SigmaAldrich).

\section*{Preparation of Whole-CellSuspension \({ }^{16}\)}

Human \(D_{1}, D_{2}, D_{3}\) and \(D_{5}\) receptor cell lines were grown on T 175 culture dishes (Greiner bio-one, Frickenhausen) to \(85 \%\) confluency, the medium was removed and the cells were incubated with 3 mL trypsine-EDTA-solution (SigmaAldrich) to remove the cells from the culture dish. After incubation, cells were suspended in 3-6 mL added medium in order to stop the effect of trypsine-EDTA-solution. The resulting suspension was centrifuged (1800-2400 rot/min, \(4^{\circ} \mathrm{C}, 4 \mathrm{~min}\).), the pellet resuspended in 10 mL PBS (ice-cooled, calcium- and magnesiumfree), pelleted, and this procedure was repeated. The resulting pellet was then resuspended in 12 mL of buffer ( 5 mM magnesium chloride, 50 mM TRIS- \(\mathrm{HCl}, \mathrm{pH}=7.4\) ) and the resulting suspension was directly used for the radioligand binding assay.

\section*{Radioligand binding assay}

The binding studies were performed following the protocol previously described but in 96- well format \({ }^{17}\). The assays with the whole-cell-suspension were carried out in
triplicate in a volume of 550 L (final concentration): TRIS- \(\mathrm{Mg}^{2+}\)-buffer (345 L), [ \(\left.{ }^{3} \mathrm{H}\right]-\mathrm{SCH} 23390\) or \(\left[{ }^{3} \mathrm{H}\right]\) Spiperone ( 50 L ) for \(\mathrm{D}_{1}\) and \(\mathrm{D}_{2}\) family, respectively, whole-cellsuspension (100 L) and appropriate drugs (55 L). Non-specific binding was determined using haloperidol (10
\(\mathrm{M})\). The incubation was initiated by addition of the radioligand \(\left[{ }^{3} \mathrm{H}\right]\) Spiperone (Amersham Biosiences, Little Chalfont, UK). It was carried out in 96 deep well plates (Greiner bio-one, Frickenhausen) using a Thermocycler (Thermocycler comfort, Eppendorf, Wessling) at \(27^{\circ} \mathrm{C}\). The incubation was terminated after 90 min by rapid filtration with a PerkinElmer Mach III Harvester \({ }^{\text {TM }}\) using a PerkinElmer Filtermat A, previously treated with a \(0.25 \%\) polyethyleneimine-solution (SigmaAldrich) and washed once with water. The filtermat was dried for 3 min with 400 watt using a microwave (MW 21, Clatronic, Kempen). The dry filtermat was placed in a filter plate (Omni filter plates, PerkinElmer Life Sciences) and each field of the filtermat moistened with \(50 \mu \mathrm{~L}\) Microscint \(20^{\mathrm{TM}}\) scintillation cocktail. The radioactivity retained on the filters was counted using a Top Count \(\mathrm{NXT}^{\mathrm{TM}}\) microplate scintillation counter (Packard, Ct., USA). For determining the \(K_{\mathrm{i}}\) values at least two independent experiments each in triplicate were performed.

The competition binding data were analyzed with GraphPad Prism \({ }^{\text {TM }}\) software using nonlinear least squares fit. For calculating the
mean, standard deviation and standard error of the mean the software Microsoft Excel \({ }^{\mathrm{TM}}\) was used. \(K_{\mathrm{i}}\) values were calculated from \(I C_{50}\) values applying the equation of Cheng and Prusoff \({ }^{18}\).

\section*{In vivo biological evaluation}

In vivo biological evaluation of the tested compounds on the arterial blood pressure of normotensive adult cats was performed according to the reported method \({ }^{19}\).

\section*{Materials}

Heparin (5000 IU/mL), phenobarbitone sodium ( \(30 \mathrm{mg} / \mathrm{kg}\) ), and prazosin \(((250-1000 \mu \mathrm{~g} / \mathrm{Kg}))\), tested compounds are \(\mathbf{3 a}, \mathbf{6 b}, \mathbf{6 c}, \mathbf{6 d}\) and \(6 f(250-1000 \mu \mathrm{~g} / \mathrm{Kg})\).

\section*{Method}

Male cats weighing \(2-3 \mathrm{~kg}\) were anaesthetized with phenobarbitone sodium ( \(30 \mathrm{mg} / \mathrm{kg} \mathrm{ip}\) ) and the femoral artery of the leg was exposed and then connected to saline infusion through a cannula. Tested drugs were all dissolved in 1 mL DMSO and then diluted with water to the final volume. Tested compounds were injected gradually in increasing doses. The effects of prazosin (reference drug) and saline/DMSO (control) were compared to those of the tested compounds.

\section*{Statistical analysis}

Student's \(t\) test was used for analysis of the biochemical parameters. The data were expressed as mean \(\pm\) standard error. Statistical
analysis was done according to Snedecor and Cochron \({ }^{20}\).

\section*{RESULTS AND DISCUSSION}

\section*{Generation of \(\alpha_{1}\)-AR antagonist hypothesis}

The generated \(\alpha_{1}\)-AR antagonist hypothesis was carried out adopting a reported method \({ }^{13}\) by using CATALYST software and HipHop modules. Such an ideal hypothesis encompassed five features namely; positive ionizable ( PI , red sphere), hydrogen bonding acceptor (HBA, green sphere) and three hydrophobic features (HY1, HY2 and HY3, blue sphere). Molecular modeling simulation studies were then conducted by measuring the compare/fit values, separately, between the conformational models of \(\mathbf{3 a}, \mathbf{6 b}, \mathbf{6 c}, \mathbf{6 d}, \mathbf{6 f}\) and the ideal \(\alpha_{1-}\) AR antagonist hypothesis (Figs. \(2 \& 3\) ). The results of the best fitting value, as well as the conformational
energy of the best-fitted conformer with this hypothesis are given in Table I.


Fig. 2: mapping of \(\alpha_{1}\)-AR antagonist hypothesis and \(\mathbf{6 b}\).


Fig. 3: mapping of \(\alpha_{1}\)-AR antagonist hypothesis and \(\mathbf{6 f}\).

Table I: Compare/fit and conformational energy values of the best fitted conformers of compounds \(\mathbf{3 a}, \mathbf{6 b}, \mathbf{6 c}, \mathbf{6 d}, \mathbf{6 f}\) and the \(\alpha_{1}\)-AR antagonist hypothesis.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Compds \\
No.
\end{tabular} & \begin{tabular}{c} 
Fitting values with \\
\(\alpha_{1}\)-antagonist \\
hypothesis
\end{tabular} & \begin{tabular}{c} 
Conf. energy at the \\
antagonist hypothesis \\
(kcal mol
\end{tabular} \\
\hline 3a & 2.90 & 14.80 \\
\hline \(\mathbf{6 b}\) & 3.82 & 4.03 \\
\hline \(\mathbf{6 c}\) & 3.61 & 0.07 \\
\hline \(\mathbf{6 d}\) & 2.99 & 11.61 \\
\hline \(\mathbf{6 f}\) & 3.20 & 0 \\
\hline
\end{tabular}

Compounds 3b-f, 6a, \(\mathbf{6 b}\) are not mentioned due to low fitting values.

\section*{Chemistry}

The designed target compounds were depicted in schemes 1 and 2. 2-Chloro- \(N\)-(6-substituted benzo[d]thia-zol-2-yl)acetamides (2a-c) were prepared through acylation of 2aminobenzothiazoles (1a-c) with chloroacetyl chloride obeying the reported methods \({ }^{21-23}\).

Alkylation of various arylpiperazines using the prepared chloroacetamidobenzothiazoles 2a-c afforded the target compounds N -(6-substitutedbenzo[d]thiazol-2-yl)-2-(4-arylpiperazin-1-yl)acetamides (3a-f), Scheme 1.

On the other hand, alkylation of the different 2-mercaptobenzothiazoles / -oxazole / -imidazole 4a-d with 1-(3-chloropropyl)-4-arylpiperazines 5a,b produced the target compounds 2-(3-(4-arylpiperazin-1yl)propylthio)benzo[ \(d]\) thiazoles (6ac), 2-(3-(4-arylpiperazin-1-yl)propylthio) benz[ \(d\) ]oxazoles ( \(\mathbf{6 d}, \mathbf{e}\) ) and 2-(3-(4-(3-chlorophenyl)piperazin-1-yl)-propylthio)-1 H -benz[ \(d\) imidazole ( \(\mathbf{6 f}\) ), Scheme 2.

The structures of the prepared compounds 3a-f and 6a-f were confirmed by elemental analysis and spectral data. \({ }^{1} \mathrm{H}-\) and \({ }^{13} \mathrm{C}-\mathrm{NMR}\) spectra ( 500 MHz ) as well as HH COSY, CH COSY and COLOC (long range CH -correlation) revealed the positions of protonated and quaternary carbon atoms of compounds 3a, 6b, 6e and \(\mathbf{6 f}\).

\section*{Pharmacology}

\section*{In vitro biological evaluation}

Benzo[ \(d\) ]thiazole-acetamides, 3a-f and heteroarylthiopropylpiperazines, 6a-f were subjected to an in vitro biological evaluation for their affinities for \(D_{1}, D_{2}, D_{3}\) and \(D_{5}\) receptor subtypes stably expressed in CHO cells (Table II). Heteroarylthiopropylpiprazines, 6a, 6b, 6d, 6e, and \(\mathbf{6 f}\) showed certain affinity for \(\mathrm{D}_{3}\), however, the benzothiazole-acetamidopiperazines 3a-f lacked the affinity toward all the dopamine receptor subtypes. Based on this finding, thiopropyl spacer seems



Reagents: a; Chloroacetyl chloride/triethylamine, b; Arylpiperazine/triethylamine.

Scheme 1


Reagents: a; Anhydrous potassium carbonate/ potassium iodide.

\section*{Scheme 2}

Table II: Results of radioligand binding studies (affinity) of compounds 3a-f, 6a, \(\mathbf{6 b}, \mathbf{6 d}, \mathbf{6 e}\) and \(\mathbf{6 f}\) for the human dopamine receptors stably expressed in CHO-cells.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compds No & \multicolumn{4}{|c|}{\(K_{i}\)-values [nM]
Average \(\pm\) SD or SEM
(Number of experiments in triplicate)} & \multicolumn{3}{|r|}{Ratio of \(K i\) values} \\
\hline \multirow[b]{2}{*}{3a} & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{5}\) & \(\mathrm{D}_{1} / \mathrm{D}_{3}\) & \(\mathrm{D}_{2} / \mathrm{D}_{3}\) & \(\mathrm{D}_{5} / \mathrm{D}_{3}\) \\
\hline & Inactive & > 10000 & inactive & > 10000 & - & - & - \\
\hline 3b & inactive & \(>10000\) & inactive & > 10000 & - & - & - \\
\hline 3c & \(>10000\) & \(>10000\) & inactive & > 10000 & - & - & - \\
\hline 3d & > 10000 & > 10000 & >10 000 & > 10000 & - & - & - \\
\hline 3 e & Inactive & Inactive & >10 000 & \(>10000\) & - & - & - \\
\hline 3 f & > 10000 & \(>10000\) & Inactive & \(>10000\) & - & - & - \\
\hline 6 a & \(569 \pm 198\) (2) & \(203 \pm 5\) (2) & \(14 \pm 5\) (2) & > 10000 & 41 & 15 & >714 \\
\hline 6b & \(200 \pm 50\) (3) & \(537 \pm 24\) (2) & \(69 \pm 6\) (2) & \(460 \pm 59\) (2) & 3 & 8 & 7 \\
\hline 6d & \(718 \pm 69\) (2) & \(243 \pm 9\) (2) & \(80 \pm 2\) (2) & \(358 \pm 34\) (2) & 9 & 3 & 4 \\
\hline 6 e & \(146 \pm 39\) (3) & \(411 \pm 70\) (2) & \(126 \pm 7\) (2) & \(224 \pm 20\) (2) & 1 & 3 & 2 \\
\hline 6 & \(1438 \pm 115\) (2) & \(952 \pm 117\) (2) & \(123 \pm 1\) (2) & \(522 \pm 301\) (4) & 12 & 8 & 4 \\
\hline
\end{tabular}

SD = Standard deviation
SEM = Standard error of the mean
The SEM was used, when the number of values was less than three.
playing an important role in binding selectively for \(D_{3}\), where the sulfur atom mimics the electronegative amide moiety present in BP 897, ST 198 and FAUC 365. Moreover, the three-carbon chain (spacer) probably gives the suitable distance between the positive ionizable nitrogen of piperazine and hydrophobic portion of the heteroaryl moiety. Among the tested compounds, 6a showed the highest binding affinity for \(\mathrm{D}_{3}(\mathrm{Ki}=\) 14 nM ) which was comparable to that of the lead ST 198 ( \(K i=12 \mathrm{nM}\) ), where \(\mathbf{6 a}\) has displayed the selectivity ratios: \(D_{1} / D_{3}=41, D_{2} / D_{3}=15\) and \(D_{5} / D_{3}>714\). On the other hand, compounds 6b, 6d, 6e, \(\mathbf{6 f}\) revealed moderate binding affinity ( Ki values \(=69-126 \mathrm{nM}\), Table II) for \(\mathrm{D}_{3}\) compared to that of the lead ST 198.

\section*{In vivo biological evaluation}

Hypotensive evaluation of the tested compounds \(\mathbf{3 a}, \mathbf{6 b}, \mathbf{6 c}, \mathbf{6 d}\) and 6f revealed that \(\mathbf{6 d}\) and \(\mathbf{6 f}\) elicited moderate hypotensive activity compared to that of prazosin at dose \(250 \mu \mathrm{~g} / \mathrm{Kg}\). However, the rest of compounds lacked hypotensive activity at the same dose level (250 \(\mu \mathrm{g} / \mathrm{Kg}\), Table III).

\section*{Conclusion}

According to the data obtained from \(\alpha_{1}\)-AR hypothesis, radioligand
binding experiments on dopamine receptor subtypes and in vivo hypotensive activity, three pharmacophoric features seem to be important for binding affinity to \(\mathrm{D}_{3}\). These features are firstly, the hydrophobic moiety represented by the heteroaryl bioisostere and secondly, the positive ionizable nitrogen in the arylpiperazine. These two pharmacophoric features are connected together with spacer which is considered the third important feature; its length and electronegativity may play important role in the selectivity for \(D_{3}\). Additionally, the unsubstiuted benzothiazole attached to phenylpiperazine fragment through thiopropyl spacer may be new scaffold for binding to \(\mathrm{D}_{3}\). Optimization of this spacer is the next goal for more selective \(\mathrm{D}_{3}\) ligands in the future work.

\section*{Acknowledgments}

Deep grateful for Prof. Dr. Ernst Urban, Institute of Pharmacy, Vienna University for his helpful in measuring the \(2 \mathrm{D}, 500 \mathrm{MHz}\) NMR spectra. Thanks also to all members of Pharmacology Department, Faculty of Pharmacy, Al-Azhar University for their aid in the in vivo biological evaluations.

Table III: Effects of compounds \(\mathbf{3 a}, \mathbf{6 b}, \mathbf{6 c}, \mathbf{6 d}\), and \(\mathbf{6 f}\) on systolic (SBP) and diastolic blood pressure (DBP) of anaesthetized normotensive cats.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \text { Compds } \\
\text { No. } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Dose } \\
(\mathrm{g} / \mathrm{Kg})
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { SBP }(\mathrm{mmHg}) \\
\pm \mathrm{SE} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Mean decrease } \\
\% \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { DBP (mmHg) } \\
\pm \text { SE } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \hline \text { Mean decrease } \\
\%
\end{gathered}
\] \\
\hline Control & - & \(100 \pm 1.2\) & - & \(90 \pm 1.3\) & - \\
\hline \multirow{3}{*}{Prazosin} & 250 & \(94.8 \pm 1.5 *\) & -5.20\% & \(86.5 \pm 2.2\) & -3.86\% \\
\hline & 500 & \(89.6 \pm 1.9^{*}\) & -10.40\% & \(82.7 \pm 0.4 *\) & -8.11\% \\
\hline & 1000 & \(79.7 \pm 2.3 *\) & -20.30\% & \(79.1 \pm 2.7 *\) & -12.14\% \\
\hline \multirow{3}{*}{3a} & 250 & \(100.0 \pm 2.8\) & 0.00\% & \(90.0 \pm 2.8\) & 0.00\% \\
\hline & 500 & \(95.8 \pm 3.1 *\) & -4.21\% & \(88.0 \pm 1.4\) & -2.22\% \\
\hline & 1000 & \(94.7 \pm 0.5 *\) & -5.26\% & \(87.0 \pm 1.4 *\) & -3.33\% \\
\hline \multirow{3}{*}{6b} & 250 & \(100.0 \pm 1.3\) & 0.00\% & \(90.0 \pm 2.3\) & 0.00\% \\
\hline & 500 & \(98.9 \pm 0.7\) & -1.10\% & \(89.0 \pm 0.1\) & -1.11\% \\
\hline & 1000 & \(91.6 \pm 2.2^{*}\) & -8.40\% & \(80.0 \pm 0.6 *\) & -11.11\% \\
\hline \multirow{3}{*}{6 c} & 250 & \(100.0 \pm 3.4\) & 0.00\% & \(90.0 \pm 2.6\) & 0.00\% \\
\hline & 500 & \(100.0 \pm 1.2\) & 0.00\% & \(90.0 \pm 1.9\) & 0.00\% \\
\hline & 1000 & \(94.4 \pm 1.2 *\) & -5.56\% & \(87.8 \pm 1.5\) & -2.50\% \\
\hline \multirow{3}{*}{6d} & 250 & \(97.3 \pm 2.4\) & -2.73\% & \(88.3 \pm 4.2\) & -1.88\% \\
\hline & 500 & \(97.3 \pm 0.6^{*}\) & -2.73\% & \(87.3 \pm 1.8\) & -2.99\% \\
\hline & 1000 & \(92.7 \pm 1.7 *\) & -7.27\% & \(85.3 \pm 2.7^{*}\) & -5.21\% \\
\hline \multirow{3}{*}{6 f} & 250 & \(98.0 \pm 2.4\) & -2.03\% & \(88.1 \pm 2.6\) & -2.11\% \\
\hline & 500 & \(93.9 \pm 1.6^{*}\) & -6.12\% & \(87.1 \pm 1.6\) & -3.16\% \\
\hline & 1000 & \(91.2 \pm 3.0^{*}\) & -8.85\% & \(81.5 \pm 2.0\) * & -9.47\% \\
\hline
\end{tabular}
*Statistically different from control with p value \(<0.05\).

\section*{REFERENCES}

1- S. Jurczyk, M. Kolaczkowski, E. Maryniak, P. Zajdel, M. Pawlowski, E. Tatarczynska, A. Klodzinska, E. ChojnackaWojcik, A. Pojarski, S. Charakchieva-Minol, B. Duszynska, G. Nowak and D.

Maciag, J. Med. Chem., 47, 2659 (2004).

2- T. Elworthy, A. Ford, G. Bantle, D. Morgans, R. Ozer, W. Palmer, D. Repke, M. Romero, L. Sandoval, E. Sjogren, F. Talamas, A. Vazquez, H. Wu, N. Arredondo, D. Blue, A. DeSousa, L. Gross, M. Kava, J.

Lesnick, R. Vimont, T. Williams, Q. Zhu, J. Pfister and D. Clarke, ibid., 40, 2674 (1997).
3- L. Bettinetti, K. Schlotter, H. Hübner and P. Gmeiner, ibid., 45, 4594 (2002).
4- A. Hackling, R. Ghosh, S. Perachon, A. Mann, H. Holtje, C. Wermuth, J. Schwartz, W. Sippl, P. Sokoloff and H. Stark, ibid., 46, 3883 (2003).
5- C. Missale, S. Nash, S. Robinson, M. Jaber and M. Caron, Physiol. Rev., 78, 189 (1998).

6- A. Sidhu and H. Niznik, Int. J. Dev. Neurosci., 18, 669 (2000).
7- P. Seeman and H. Van Tol, Trend Pharmacol. Sci., 15, 264 (1994).

8- T. Belliotti, S. Kesten, J. Rubin, D. Wustrow, L. Georgic, K. Zoski, H. Akunne and L. Wise, Bioorg. Med. Chem. Lett., 7, 2403 (1997).
9- S. Löber, H. Hübner and P. Gmeiner, ibid., 12, 2377 (2002).
10- B. Sasse, U. Mach, J. Leppaenen, T. Calmels and H. Stark, Bioorg. Med. Chem., 15, 7258 (2007).
11- C. Hocke, O.Prante, S. Löber, H. Hübner and P.Gmeiner, Bioorg. Med. Chem. Lett., 14, 3963 (2004).

12- M. Pilla, S. Perachon, F. Sautel, F. Garrido, A. Mann, C. Wermuth, C. Schwartz, B. Everitt and P. Sokoloff, Nature, 400, 371 (1999).

13- M. Ismail, M. Aboul-Enein, K. Abouzid and R. Serya, Bioorg. Med. Chem., 14, 898 (2006).
14- R. Barbaro, L. Betti, M. Botta, F. Corelli, G. Giannaccini, L. Maccari, F. Manetti, G. Strappaghetti and F. Corsano, J. Med. Chem., 44, 2118 (2001).
15- C. Forray, J. Wetzel, T. Brancheck, J.Bard, G. Chin, E. Shapiro, R. Tang, H. Lepor, P. Hartig,. R. Weinshbank and C. Gluchowski, Mol. Pharmacol., 45, 703 (1994).
16- M. Decker and J. Lehmann, Arch. Pharm. (Weinheim), 336, 466 (2003).
17- M. U. Kassack, B. Hofgen, J. Lehmann, N. Eckstein, J. M. Quillan and W. Sadee, J. Biomol. Screen, 7, 233 (2002).
18- Y. Cheng and W. Prusoff, Biochem. Pharmacol., 22, 3099 (1973).

19- T. Litchfield and A. Wilcoxon, J. Pharmacol. Exp. Ther., 96, 99 (1949).

20- G. Snedecor and W. Cochron,: Statistical Methods' Eight Edition, Louis State University press, Ames, lowa, U (1989).
21- F. El Telbany and T. El-Kersh, Egypt. J. Pharm. Sci., 28, 23 (1987).

22- P. Bhargava and G. Singh, J. Indian Chem. Soc., 38, 77 (1961).

23- M. Yousef, H. Eisa, M. Nasr and S. El-Bialy, Mans. J. Pharm. Sci., 13, 79 (1997).```

