Recent Advances in Diagnosis of Flavobacteriosis Among Some Freshwater Fishes

Eissa I. A. M.; Derwa, H.I; Mona M. Ismaiel; Maather M.M. El-Lamie and *Elsayed, T.M.

Dept. of Fish Diseases and Management and * Fish Farm Unit, Faculty of Vet. Medicine, Suez Canal University.

Abstract:

Columnaris disease caused by Flavobacterium columnare exists worldwide and affects a wide variety of fishes. This study aimed to investigate the isolation and characterization of Flavobacterium columnare from naturally infected fishes (Oreochromis niloticus and *Clarias gariepinus*) in Ismailia, using conventional biochemical methods and molecular techniques. Bacteriological examination revealed presence of 162 suspected Cytophaga isolates of which only 102 isolates were characterized as F. columnare strains according to colony character on Cytophaga agar which appeared yellow or whitish yellow in color, flat irregular with stiletto edge, clear swarming and rhizoid characters. Biochemical characterizations demonstrated that all isolates tested uniformly positive for catalase, gelatin liquefaction, absorption of Congo Red and flexirubin pigment, but they were negative for indol, Methyl red, Vogus Proskauer, and lactose, glucose, saccharose, manitol, arabinose and maltose fermentation. All isolates produced unique and clear PCR bands of the expected size (675 base pair). Consequently, PCR confirmed the positive results of the biochemical reactions of suspected isolated strain and concluded that it is of *F.columnare*.

Keywords: Columnaris disease, *Flavobacterium columnare*, Molecular characterization, PCR, *Oreochromis niloticus* and *Clarias gariepinus*

Introduction:

Flavobacterial diseases were reported firstly by *Davis (1922)*. These diseases caused by three bacteria within the family Flavobacteriaceae (Bernardet and 2006); namely. Nakagawa, Flavobacterium.columnare, which cause columnaris disease (Hawke & *Thune.* 1992 and Shotts Å

Starliper, 1999) Flavobacterium psychrophilum. which cause bacterial cold water disease (Nematollahi et al, 2003 and Starliper, 2011); and Flavobacterium branchiophilum. which cause bacterial gill disease (Shotts & Starliper, 1999).

Flavobacterium columnare, the causative agent of columnaris

disease, is a Gram-negative, nonflagellated bacilli, motile by gliding motility. The ideal temperature for its growth is 25 °C. The bacterium is considered as normal inhabitant in water and fish (*Schneck & Caslake, 2006 and Olivares-Fuster et al, 2007*).

Flavobacterium columnare can infect catfishes of any age, during any season (Griffin, 1992).Columnaris disease is the second most prevalent bacterial disease in channel catfish, about 23% of the total cases of bacterial diseases (Hawke and Thune, 1992). The disease causing losses economic secondary to catfish Enteric septicemia of (USDA, 2003). In Egypt, it is found that an acute infection with F. columnare was the primary cause of mass mortalities among the Nile tilapia (Oreochromis niloticus) and Nile catfish (Clarias gariepinus) collected from an aquaculture station in Sharkiya Province. during an acute episode of mass kills during the early summer of 2009 (Eissa et al, 2010).

As columnaris disease still faces some of the difficulties regarding this study the diagnosis, was undertaken investigate the to isolation and characterization of *F.columnare* from some naturally infected fishes O. niloticus and C. gariepinus in Egypt, using conventional biochemical methods molecular the and recent techniques.

Materials and methods: Fishes:

A total of 440 grossly affected fishes with columnaris like disease, of which 320 *Oreochromis niloticus* and 120 *Clarias gariepinus* were collected from different localities in Ismailia. These fishes were transferred alive to the Dept. of Fish Diseases and Management, Fac. of Vet. Medicine, Suez Canal Univ., for clinical examinations.

Clinical and postmortem examinations:

The grossly affected fishes with columnaris like disease were subjected for clinical examination according to the methods described by Schäperclaus et al (1992). Postmortem examination of fishes was done according to Conroy and (1981). Thev Herman were sacrificed and examined for the developed lesions in skin, gills, musculature and internal organs. **Bacteriological examination:**

Isolation: Naturally infected fishes with columnaris like disease were sacrificed by decapitation, samples were taken aseptically from affected areas of the body surface, mucus of the gills, skin and fins, inoculated into cytophaga broth, incubated at 18° C for 24 hours and then plated on Ordals agar and incubated at 22° C for 72 hrs. Fish surface was disinfected with 70% ethyl alcohol then opened as described by Schäperclaus et al. (1992). Samples were taken after sterilization of the exposed surface of the organs from liver, spleen and kidney. All

samples were streaked onto the same plating media. The plates were incubated at 22°C for 72 hrs. Suspected colonies were picked up, streaked on agar slants for purification and further identification. Suspected colonies were picked up from cytophaga agar plates and subcultured on the same medium for purification. A loopful of each pure culture was inoculated into two tubes of semisolid cytophaga agar medium, one of them was used as a stock culture, and the other used for detection of motility. The cultures on slant agar were used for biochemical Final tests. identification of the isolates was based upon the morphological, biochemical cultural and characteristics according to Griffin (1992) and Schaperclaus et al (1992).

Molecular characterization: Bacterial isolates:

biochemically identified Seven F.columnare isolates, of which four isolates represent the localities from which Oreochromis niloticus were collected (F1, F2, F3, F4) and three isolates represent the localities from which Clarias gariepinus were collected (F5,F6,F7). All isolates tested for molecular characterization and identification columnare Flavobacterium by primers.

DNA extraction

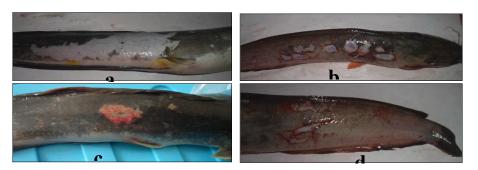
DNA was extracted from bacterial cultures using QIAamp® DNA mini kit (QIAGEN, Germany). Bacterial

cells were harvested in а microcentrifuge tube by centrifugation at 5000 \times g for 10 min. Cell pellets were re-suspended in 180 µllysis buffer (20 mg/ml lysozym; 20 mMTris-HCl, pH 8.0; 2 mM EDETA: 1.2% Triton) and incubated at 37°C for 30 min. Proteinase K and Buffer AL (20µl) were then added and mixed by vortexing. After 30 min incubation at 56°C, ethanol was added and thoroughly mixed to vield homogenous solution. DNA was then extracted as per manufacturer's instructions. DNA was extracted from tissue samples bv QIAamp® DNA mini kit (QIAGEN, Germany) according to manufacturer's instructions the following tissues the animal protocol.

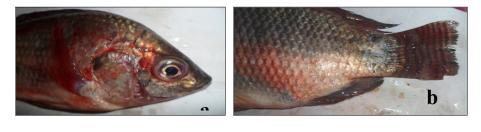
Polymerase chain reaction procedures

The extracted DNA was amplified using Polymerase Chain Reaction (RT-PCR): using Qiagen one step RT-PCR Kit of 100 reactions. Two specific primers, Forward (598-CAGTGGTGAAATCTGGT-614) (1260 and Reverse GCTCCTACTTGCGTAGT-1276) were used. PCR mixtures contained 200 µM of each deoxynucleotide, 3 mM magnesium chloride, PCR mMTris/HCl, 50 buffer (10 mMKCl, pH 8), 20 pM of each primer, 100 to 125 ng of genomic DNA, and 2.5 U Tag polymerase (Roche Diagnostics, Mannheim, Germany).

Thermal cycling and amplification procedures were done according to the method of Qiagen one step RT-PCR Kit. PCR mixtures contained 1 pg to 500 ng of template DNA, 400 mM of dNTP mix, 0.6mM of each primer (Forwardand Reverse), 2X reaction buffer and 2.5 U of Taq (Invitrogen, DNA polymerase Carlsbad, CA)in 50 ml reaction mixture. Thermal cycling was done cycler. thermal The in а amplification procedure consisted of 30 cycles of amplification. Each cycle consisted of three steps, denaturation of the chromosomal DNA, primer annealing to the bacterial isolate DNA template and primer extension, as follows: 94 °C for 30 seconds, 45 °C for 30 seconds and 72 °C for 2 min. The 30 amplification cycles were preceded by initial denaturation at 94 °C for 15 min and the final cycle was followed by 8 min primer extension period at 72 °C after which the final mixture was held at 4 °C for a period not to exceed 17 h. For long term storage the samples were kept at -20 °C.


Agarose Gel Electrophoresis:

The PCR products were loaded in agarose gel (50 µl) placed in the electrophoresis chamber and covered with electrolyte solution in 1X TBE with allowing running the PCR product in the gel at 95 V for 30 minute to determine the base pairs of the PCR product (675) bp which could be visualized in the presence of marker (Fermentase) and using Gel documentation system. (Biometra, Germany). Isolates were considered positive when a 675 bp band was detected.


Results:

1. Clinical and postmortem findings of naturally infected fishes:

Naturally infected fishes showed rapid movement of the opercula, floating near the surface with loss of sensation just before death. Some fishes showed excessive mucus, loss of scales in case of *O.niloticus* with erosions and red-grayish patches on head region and abdomen beside the general signs (loss of appetite, dullness, loss of balance, roughness and respiratory distress). In addition to swimming near water surface, gasping and engulfing the atmospheric air were observed. Grevish ulcers were surrounded by red eroded zones, were found at pelvic and anal areas. Hemorrhages were seen at the base of the pectoral fins. The caudal fin was frayed and showed swollen gravish discolored margin. All cases showed necrosis of the caudal fin with presence of gravish spots on the head region were constant findings. Stretched gill covered with pale sticky gills were noted and it was characterized by yellow-brown necrotic tissue at the distal end of the gill filaments with excessive mucus in gill pouches. Some cases showed eye opacity. Also. examination revealed pale internal organs and congested kidneys (Plate 1 and 2).

(Plate 1): *a*-Naturally infected Clarias gariepiuns showing loss of shiny appearance with desquamation of the skin (saddle back) lesion, *b*- showing desquamation of the skin and multiple ulcers, *c*- showing typical deep ulcers on the skin and musculature,*d*- showing desquamation of the skin and abrasion.

(Plate 2): *a*-Naturally infected Oreochromis niloticus showing haemorrhagic pectoral fin and necrosis on skin,b- showing loss of scales and erosion of caudal fin,c- showing loss of scales, haemorrhage and necrosis on the caudal fin,d- showing loss of scales, with necrotic area.

Bacteriolgical examination:

Table (1) summarize the cultural characters biochemical and suspected of reactions Flavobactrium columnare strains isolated from both naturally fishes. infected Bacteriological examination revealed presence of 162 suspected Cytophaga isolates of which only 102 isolates were proved as *Flavobacterium columnare* strains.

Primary suspected bacterial cultures isolated from tissues of naturally infected fish on Cytophaga agar showed yellow or whitish yellow coloration, flat irregular with stiletto edge, clear swarming and rhizoid characters.

Seasonal prevalence of *Flavobacteriosis* among examined fishes (*O.niloticus* and *C. gariepinus*):

Three hundred and twenty O.niloticus fish were examined throughout the four seasons of the year where the percentage of fish which Flavobacterium from columnare was isolated were zero, 20.9, 33.8 and 12 %, in winter, spring, summer and autumn, respectively as shown in figure (1). On the other hand, a total of 120 C. gariepinus fish were examined and the percentage of infection were zero, 26.6, 40 and 8 % in winter,

spring, summer and autumn, respectively, as shown in figure (2).

Molecular Identification of *F. columnare* by polymerase chain reaction (PCR).

A pair of 16S RNA gene-based PCR primers, were used for the specific detection of F.columnare isolates from tested seven biochemically identified F_{\cdot} *columnare* isolates. A11 isolates produced unique and clear PCR bands of the expected size (675 base pair) (Fig. 3). Consequently, PCR confirmed the positive results of the biochemical reactions of suspected isolated strain and concluded that it is of *F. columnare*.

Table (1): Morphological, cultural and Biochemical characteristics of Flavobacterium columnare strains isolated from O. niloticus and C. gariepinus naturally infected with columnaris disease.

Item	Character
Colonies	Rhizoid Yellowish in colour
Growth on neomycin sulfat and polymyxin B media	+ve
Gram stain	-ve
Morphology	Rods
Binding to Congo red	+ve
Motility	Motile (gliding)
Flexirubin pigment	+ve
Gelatin liquefaction	+ve
Oxidase	+ve
Catalase	+ve
Fermentation of glucose, lactose, saccharose, manitol, maltose and arabinose.	-ve
Methyl red	-ve
Indol, VogusProskauer	-ve

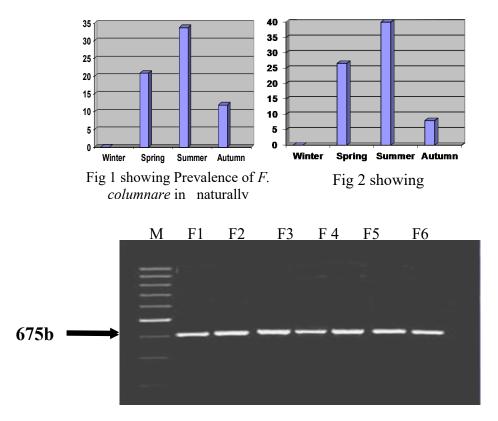


Fig. (3): Agarose gel electrophoresis of PCR ampilified products of DNA extracted from F. columnare strains using specific primers.

F1=isolate from O.niloticus from cement ponds

F2= isolate from *O.niloticus* from earthen ponds

F3= isolate from *O.niloticus* from Ismailia channels

F5= isolate from *C. gariepinus* from cement ponds

F6= isolate from *C. gariepinus* from earthen ponds

F7= isolate from C. gariepinus from Ismailia channel

Discussion:

Columnaris disease, caused by *F. columnare* is is one of the oldest known fish diseases world wide and has been asignificant problem in many warm water fish species for decades. It is one of the most important bacterial diseases of channel catfish, *Ictalurus punctatus*,

commercially raised in the US (USDA, 2003).

In this study external lesions of the affected fishes, irrespective of fish species, including erosions, ulcers and fin rot with different degrees. Haemorrhage were seen at the base of the pectoral fins. The caudal fin frayed with grayish discoloured

margin. Necrosis of the caudal fin and presence of grayish spots on the head region were constant findings. These findings are in consistent with those described in many publications (Morrison et al, 1981; Amend, 1982; Bullock et al, 1986; Amin et al, 1988; Latremouille, 2003; Bernardet & Bowman 2006; Eissa et al, 2010 and Declerecq et al, 2013). Our results revealed that the seasonal prevalence of columnaris disease in affected fishes reached its maximum at season while it summer was negligible at winter. Therefore, it appears that the columnaris disease dependent. is temperature The relationship between increased *F.columnare* infections and summer in one side and the relationship of increased mortality and severity of infections are temperature dependant have been reported by several authors (Chen et al, 1982, Wakabayshi 1991, Suomalainen 2005 and Ahmed et al (2007). In addition, predisposing factors that enhance the probability of columnaris disease among cultured fish have been proposed by many investigators including overcrowding, unbalanced nutrition, reduced oxygen contact of water and increase organic load as well as sudden change in pH (Sarig, 1976 and Reffat, 2000). F. columnare can differentiated than other yellow pigmented bacteria by colonies morphology, binding to Congo red, utilization of sugar, degradation of gelatin, production of catalase,

hydrogen sulfide and chondroitinase, (Griffin, 1992 and Plumb, 1999).

Our cultural and biochemical characterizations revealed that are specific to F. columnare (motility, nitrate reduction. flexirrubin production, absorption of Congo Red, fermentation of glucose and sucrose, desamination of Ltryptophan, gelatin and catalase hydrolysis), demonstrated that all isolates tested uniformly positive Motility, Oxidase. catalase. for liquefaction. flexirubin gelatin pigment and binding to Congo red, but they were negative for indol, Methyl red, Vogus Proskauer, and lactose, glucose, saccharose, manitol, arabinose and maltose. These results agree with **Decostere** et al (1988), Trivanto et al (1999), Trivanto and Wakabavashi (1999), Arias et al (2004), Pilarski et al (2008) and Dong Thanh Ha (2013) regardless of the fish species from which they were collected. The absorption of Congo red, which occurred in all isolates, is indicative of galactosamine glucan production by F. columnare, and Bernadet (1989), Griffin (1992), Decostere et al (1999) and Pilarski et al (2008) corroborate this fact. All isolates in this study were positive for gelatin hydrolysis, and this is one of the main features of the bacterium F. columnare.

Regarding the molecular identification *F.columnare* by PCR produced unique and clear PCR bands corresponded to the 675 bp

internal fragments of the 16S rRNA genes confirmed without doubt that the isolated strains were *F.columnare*. These results were compatible with those was recorded by *Darwish et al (2004)*, *Eissa et al* (2010) and Mohamed & Refat (2011).

References

Ahmed S.M., Ahmed A.I.,

Elkamel A.A. and Walaa F.E. (2007): Columnaris disease in sharptooth catfish *Clarias garipinus*. Assiut Vet. Medical journal, 53: 51-63.

Amend D.F. (1982):Columnaris (*Flexobacter columnaris*) disease of freshwater fishes and a brief review of other flexibacterial diseases of fish. In: Les antigens des microorganismes pathogens Despoisons, symposium international(Antigen of fish pathogens)139-151.

Amin N.E., Abdallah I.S., Faisal M., Easa M. El-S., Alaway T., Alyan S.A. (1988):Columnaris infection among cultured Nile tilapia *Oreochromis niloticus*. Antonie van Leeuwenhoek 54: 509-520.

Arias C.R., Welker T.L., Shoemaker C.A., Abernathy J.W. and Klesius P.H. (2004): Genetic fingerprinting of *Flavobacterium columnare* isolates from cultured fish. Journal of Applied Microbiology 97: 421-428.

Bernardet J.F. (1989): '*Flexibacter colurnnaris'*: first description in France and comparison with bacterial strains from other origins. Dis Aquat Org 6:37-44.

Bernardet J.F. and Bowman J.P.(2006):The genus *Flavobacterium. Prokaryotices*, 7: 481-531.

Bernardet J.F., Nakagawa Y. (2006): An introduction to the family Flavobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E,Schleifer KH, Stackebrandt E, editors. The prokaryotes, vol.7. Springer-Verlag; p. 455–80.

Bullock, G.L.; Hsu, T.C. and Shotts, E.B.(1986):Columnaris disease of fishes. USFWS. Fish Disease Leaflet, 1-9.

Chen C.R.L., Chung Y.Y. and Kuo G.H.(1982): Studies on the pathogenicity of *F.columnare*.1. Effect of dissolved oxygen and ammonia on the pathogenicity of *F.columnare* to eel *Anguilla japonica* .CAPD Fisheries Series No.8, Reports on fish disease Research 4, 57-61.

Conroy D.A. and Herman L.R.(1981): Textbook of Fish Diseases . T.F.H.Pub. West Sylvania.

Darwish A.M., Ismaiel A.A., Newton J.C. and Tang J. (2004): Identification of *F. columnare* by a species specific Polymeras chain reaction and renaming of ATCC43622 strain to F. johnsoniae. Molecular and Cellular probes 18:421-427.

Davis H.S. (1922): A new bacterial disease of freshwater fishes. Bulletin of the U,S. Bureau of Fisheries 38:261-280.

Declercq A. M., Haesebrouck, F., Broeck, W. V.; Bossier P. and Decostere, A. (2013):Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Veterinary Research, 44:27-44

Decostere A., Haesebrouk F. and Devriese L. `A. (1988):characterization of four *Flavobactrium columnar* strains isolated from tropical fish. Vet Microbiol, 62:35-45.

Decostere A., Haesebrouck F., Van Driessche E., Charlier G., Ducatelle R. (1999): Characterization of the adhesion of *Flavobacterium columnare (Flexibacter columnaris)* to gill tissue. J Fish Dis , 22:465–474.

Dong Thanh Ha, NopadonPirarat, ChannarongRodkhum

(2013):Isolation and characterization of

Flavobacterium columnare From red tilapia (Oreochromis sp.) inThailand: ICVS (38). 1-2.

Eissa A. E., ManalZaki M. and Abdel Aziz A. (2010): Flavobacterium columnare / Myxobolus tilapiae concurrent infection in the earthen pond reared Nile tilapia (Oreochromis niloticus) the during early summer; Interdisciplinary Bio Central

Griffin B.R. (1992): A simple procedure for identification of *Cytophaga columnaris*. J AquatAnim Health, 4:63–66.

Hawke J.P. and Thune R.L. (1992): Systemic isolation and

antimicrobial susceptibility of *Cytophaga columnaris* from commercially reared channel catfish. J Aquat Anim Heal;4 (2):109–13.

Latremouille D.N. (2003): Fin erosion in aquaculture and natural environments. Reviews in Fisheries Science, 11, 315-335.

Mohamed H.M. and Refat N.A. (2011): Pathological Evaluation of probiotic, Bacillus subtilis, against *F. columnare* in Tilapia Nilotica (*Oreochromis Niloticus*) Fish in Sharkia Governorate , Egypt. Journal of American Scince 7:244-256.

Morrison C., Cornick J., Shum G. and Zwicker B. (1981): Microbiology and histopathology of "saddle-back" disease of underyearling Atlantic salmon, Salmosalar. J Bacteriol, 78:225– 230.

Nematollahi A., Decostere A., Pasmans F., Haesebrouck F. (2003): Flavobacterium psychrophilum infections in salmonid fish. J Fish Dis; 26(10):563–74.

Olivares-Fuster O., Baker J.L., Terhune J.S., Shoemaker C.A., Klesius P.H. and Arias C.R. (2007): Host-specific association between *Flavobacterium columnar* egenomovars and fish species. SystAppl Microbiol, 30:624–633.

Pilarski,F.,Rossini,AJ,Ceccarelli,PS.(2008):IsolationandcharacterizationofFlavobacteriumcolumnare(Bernardet et al. 2002)from four

tropical fish species in Brazil.Brazilian Journal of Biology; 68 (2): 409-414.

Plumb J.A. (1999): Health principal maintenance and cultured microbial diseases of fishes. Ames. IA: Iowa State University Press.

Reffat M. (2000): Immunological studies on the causative agent of columnaris disease of freshwater fish. PhD Thesis, Fac. Vet.Med., Suez Canal Univ.

Sarig S. (1976): Fish diseases and their control in aquaculture. FAO Technical Conference on aquculture,

Ktoto.Aq/Conf/76.R32,pp14.

Schaperclaus W., Kulow H. and Schreckenbach K. (1992): Fish Diseases, Vol. I. A.A.Balkema / Rotterdam.

Schneck, J.L. and Caslake, L.F.(2006):Genetic diversity of *Flavobacterium Columnar* isolated from fish collected from warm and cold water. J. Fish Disease 29: 245-248.

Shotts, E. and Starliper, C. (1999): Flavobacterial diseases: columnaris disease, cold-water disease and bacterial gill disease. In: Woo PTK, Bruno DW, editors. Fish diseases and disorders: viral, bacterial and fungal infections, vol.

3. New York (NY): CABI Publishing. p. 559–576.

Starliper C.E. (2011): Bacterial coldwater disease of fishes caused by *Flavobacterium psychrophilum*. J Adv Res; 2 (2): 97–108.

Suomalainen L.R. (2005): *Flavobaterium columnare* in Finish fish farming. Characterization and putative disease management strategies. PhD Thesis, Univ.ofJyVaskyla. Yliopisto.

Triyanto and Wakabayashi, H. (1999): Genotypic diversity of strains of *Flavobacterium columnare* from diseased fish. Fish Pathol. 34: 65-71.

Triyanto, Kumamaru A. and Wakabayashi H. (1999): The use of PCR targeted 16s rRNA for identification of genomovars of *F. columnare* Fish Pathol. 34: 217-218.

United States Department of Agriculture (2003): Reference of 2002 U. S. catfish health and production practices. Center for Epidemiology and Health, Fort Collins, Colorado. P. 64-67.

Wakabayashi H. (1991): Effect of Environmental Conditions on the Infectivity of *Flexibacter-Columnaris* to Fish. Journal of Fish Diseases 14: 279-290.

الملخص العربي

تم اجراء هذه الدراسة لعزل الفلافوفوباكتر كولمنار من اسماك البلطى والقراميط بمحافظة الاسماعيلية باستخدام الطرق التقلدية وكذلك الPCR. بالفحص البكتيرى تم عزل ١٦٢ عترة تبين ان منها ١٠٢ فقط فلافوبكترا كولمنار حسب الخصائص للمستعمرات البكترية التى ظهرت بلون ابيض مصفر متعرجة الجوانب متميزة بشكل التبن باستخدام الخصائص الكميائية الحيوية وجد ان الميكروب يعطى نتائج ايجابية مع الكتلاز والجيلاتين والكونجو الاحمر وصبغات الفكسور بين وسالب مع الاندول والميثيل الاحمر والكربوهيدرات جميع العترات تم تأكيد تشخيصها بتقنية المركروا عطى الحجم المتوقع ٦٧٥ زوج ثنائي.