# Comparative Studies on *Mycoplasma Gallisepticum* and *Mycoplasma Synoviae* in Migratory and Captive Quails

Khafagy, A. A.\*, Eid, H. M. \*, Hassan, A. M. \*\*, and Mona, E. M. \*\*\*
 \*Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Suez Canal University.
 \*\*Mycoplasma Research Department, Animal Health Research Institute, Dokki, Giza.
 \*\*\*B.V.SC 2003-Cairo University

### Abstract

This study was conducted to compare between the Mycoplasma gallisepticum and Mycoplasma synoviae in migratory and captive quails. Fifty four (13.5%) and 87 (21.75%) Mycoplasma strain isolates were isolated from 400 samples from migratory and quails captive gallisepticum respectively. (2.5%)Mvcoplasma Ten strains were isolated from captive quails by culture identified PCR while. method and bv 9 (2.25%)gallisepticum strains were isolated Mycoplasma from migratory quails by culture method but 11 (2.75%) strains were identified by PCR. Mycoplasma synoviae couldn't be isolated by culture method or PCR. The effective antibiotic was Tylosin which could most 88.88% inhibit the growth of of *Mvcoplasma* gallisepticum isolated in case of migratory quails and 80% in case of captive quails using MIC Technique.

### Introduction

*Mycoplasma* is the causative agent of Chronic Respiratory Disease (CRD) in chickens and infectious sinusitis in turkeys, chickens, game birds (as quails), pigeons, and birds of all passerine ages al.. (Hennigana *2012*). et Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) are considered to be the most important of the pathogenic Mycoplasmas, and both occur in world-wide (OIE Terrestrial Manual, 2004). During the recent years there has been a noticeable increase in the number of quail farms in Egypt which are considered an important alternative source of high quality protein with low amount of cholesterol. Quails and other migratory birds play a considerable role in dissemination of many pathogens and act as reservoir and carrier of microbial agents for domestic birds and human (*Fatma, 2004*). Culture method represented the parformance standard for direct

performance standard for direct detection of the organism (Maricarmen et al., 2005), but PCR represent rapid and 392

sensitive method, which is able to provide accuracy results in the presence of mixed Mvcoplasma infection and bacterial contamination or inhibition of growth bv antibiotics, antibodies and other host factors (Stipkovitz, 2001): so the aim of this work was to evaluate the using of recent techniques in confirming the identification of *Mycoplasma* Mvcoplasma gallisepticum and synoviae isolated from quails to classical methods and also to determine the most effective antimicrobials.

### Materials & Methods

**1- Sampling:** A total of 800 samples were collected from quails (400 samples from migratory quails and 400 from captive quails). These samples were collected during different months of the year in different governorates from different organs; as shown in (Table 1).

2- Isolation of Mycoplasma: The samples were cultured in Frey's broth and on Frey's agar medium (Frev et al., 1968) as described by (Sabrv and Ahmed. 1975). Digitonin sensitivity test (Freundt *1973*) was done et al., to differentiate between *Mycoplasma* Acholeplasma and genera, also urea hydrolysis test (Razin, 1978) differentiation between for Mycoplasma and Ureaplasma genera.

**3- Biochemical characterization tests:** To identify the purified *Mvcoplasma* isolates using different glucose tests as fermentation, arginine deamination, tetrazolium reduction tests (Erno and Stipkovits, *1973*). and film and spot formation medium (Fabricant and Freundt, 1967).

4- List of Antibiotics used for Minimum Inhibitory Concentration MIC Technique:

MIC applied on the 10 *Mycoplasma* gallisepticum samples isolated from captive quails and 9 *Mycoplasma* gallisepticum samples isolated from migratory quails using culture method the bv following antibiotics:

• Doxycycline produced by GMP (certified Spain -EU).

• Erythromycin produced by Pantex-Holland.

• Tilmicosin produced by ELA-Geneva.

• Tiamutin produced by Sandos GmbH (Basale Switzerland).

• Tylosin produced by Elanco-USA.

• Enrofloxacin produced by Invesa-Spain.

The best method for interpretation of the results which compare the **MIC** results to C-max (maximum plasma concentration of the drug at the use by optimum dose) according to (*Burch and Valks, 2002; El-Soud et al., 2004, and Abu-Basha et al., 2007)* to determine the sensitive isolates (the antibiotic will be sensitive if **MIC** for it was less than C-max). The following (Table 2) shows C-max for different antibiotic used:

| 5- Polymerase Chain Reaction         | Two sets of primers were used for      |
|--------------------------------------|----------------------------------------|
| PCR:                                 | detection of 16S gene of               |
| PCR applied on the 800 samples       | Mycoplasma synoviae. The selected      |
| (400 captive and 400 migratory       | primers were prepared as described     |
| quail samples) for detection of      | by <i>Lauerman (1998)</i> and the      |
| <i>Mycoplasma gallisepticum</i> and  | sequences of the primers were:         |
| Mycoplasma synoviae.                 | 16SF 5' -                              |
| a) DNA Extraction and                | GAGAAGCAAAATAGTGATATCA - 3`.           |
| purification:                        | 16SR 5`-                               |
| DNA extraction by rapid method       | CAGTCGTCTCCGAAGTTAACAA - 3`.           |
| (Fan et al., 1995).                  | c) PCR Amplification and               |
|                                      | Cycling Protocols                      |
| <b>DNA</b> extraction using QIA amp. | 6-Identification of the PCR            |
| b) Oligonucleotide Primers           | Products (Electrophoresis)             |
| Selection                            | (Sambrook, 1989):                      |
| Two sets of primers were used for    | Identification of the PCR              |
| detection of mgc2 gene of the        |                                        |
| isolated Mycoplasma gallisepticum.   | products (Electrophoresis)             |
| The selected primers were prepared   | following amplification, a $5\mu$ l of |
| as described by Garcia et al., 2005  | the PCR product was mixed              |
| and the sequences of the primers     | with $2\mu l$ of loading buffer and    |
| were:                                | taken for electrophoresis on a         |
| mgc2F 5`-                            | 2% (weight/volume) agarose gel         |
| CGCAATTTGGTCCTAATCCCCAACA -          | (Biometra USA). Gel was                |
| 3`.                                  | stained with ethidium bromide          |
| <b>mgc2R</b> 5`-                     | and inspected under UV lamp            |
| TAAACCCACCTCCAGCTTTATTTCC -          | (Biometra USA). A visible band         |
| 3`.                                  | being sized by <b>DNA</b> molecular    |
|                                      |                                        |
|                                      | marker was considered as               |

positive sample.

## **Table (1):** Migratory and Captive Quail Samples collected during Different Months of the Year in Different Governorates from Different Organs

| Bird                 | Total<br>Number |                                                       |    | Ν  | Aonths |    |    |    |     | Go  | vernorat | es      |     |         | Sample | e Types |         | Samples<br>Total |
|----------------------|-----------------|-------------------------------------------------------|----|----|--------|----|----|----|-----|-----|----------|---------|-----|---------|--------|---------|---------|------------------|
| Migrator<br>y Quails | 100             | 20<br>0 200 0 0 0 0 0 0                               |    |    |        |    |    |    | 80  | 80  | 80       | 80      | 80  | 10<br>0 | 100    | 100     | 10<br>0 | 400              |
| > v C                | 100             | 60                                                    | 60 | 60 | 60     | 60 | 60 | 40 | 80  | 80  | 80       | 80      | 80  | 10<br>0 | 100    | 100     | 10<br>0 | 400              |
| o Z =                | 200             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |    |    |        |    |    | 40 | 160 | 160 | 160      | 16<br>0 | 160 | 20<br>0 | 200    | 200     | 20<br>0 | 800              |

**Table (2):** Different Antimicrobial Agents used in Minimum Inhibitory

 Concentration (MIC) Method and Interpretation of their Sensitivity by C 

 max

| Antibioti     | Doxycycli | Erythromy | Tylosi | Tilmicos | Tiamut | Enrofloxa |
|---------------|-----------|-----------|--------|----------|--------|-----------|
| cs            | ne        | cin       | n      | in       | in     | cin       |
| C-max<br>(µg) | 54.58     | 6.9       | 4.2    | 2.46     | 3.56   | 1.88      |

**Table (3):** *MG mgc2 Gene (one of the cytadhesin genes that play an important role in the virulence of MG) PCR Cycling Protocol (Garcia et al., 2005)* 

| Initial Denaturation | Actual Cycles<br>Temperature/Second                                          | Final Extension        |
|----------------------|------------------------------------------------------------------------------|------------------------|
| 95°C for 3 minutes   | 35 cycles of:<br>Denaturation: 94/20<br>Annealing: 58/40<br>Extension: 72/60 | 72°C for 15<br>minutes |

**Table (4):** MS 16S Gene (subunit from ribosomal RNA responsible for thesynthesis of essential proteins) PCR Cycling Protocol (Lauerman, 1998)

| Initial Denaturation | Actual Cycles<br>Temperature/Second | Final Extension     |
|----------------------|-------------------------------------|---------------------|
|                      | 35 cycles of:                       |                     |
|                      | Denaturation: 94/60                 |                     |
| 94°C for 5 minutes   | Annealing: 55/60                    | 72°C for 10 minutes |
|                      | Extension: 72/120                   |                     |

### Results

In (Table 5) out of 19 Mycoplasma gallisepticum positive isolates the incidence from migratory and captive quails during different months of the year from different organs using culture method was the highest in September from nasal swabs (3 isolates = 15.79%),followed by lung tissues and trachea as the same (2 isolates = 10.53%), and finally air-sacs the percent was (0%): in October the highest incidence was from nasal swabs and lung tissues as the same (2 isolates = 10.53%), and finally trachea and air- sacs the percent was (0%); in November the highest incidence was from nasal swabs and trachea with (1 isolate = 5.26%); in December the highest incidence was from trachea and air-sacs with (1 isolate = 5.26%); in January the highest incidence was from nasal swabs and lung tissues with (1 isolate = 5.26%; in February the highest incidence was from lung tissues with (2 isolates = 10.53%); and finally in March the percent was (0%). On the other hand MG isolation during the migration months of the year from different organs of migratory and captive quails using culture method was highest at September from nasal swabs which was 3 isolates (by both culture and PCR) in case of migratory quails, and 2 isolates at February from lung tissues in case of captive quails (by both culture and PCR methods). Also out of 19 MG positive isolates the incidence

during different months of the year from different organs of migratory and captive quails using culture method was the most higher at September (7 isolates = 36.84%), followed by October (4 isolates = 21.05%). then November. December, January, and February as the same with (2 isolates =10.53%), and finally March with (0%). In (Table 6) out of 19 Mycoplasma gallisepticum positive isolates the incidence from migratory and captive quails in different governorates during different months of the year using culture method was the highest from North Sinai in September with (3 isolates = 15.79%), followed by October, November, and December as the same with (1 isolate = 5.26%); from Kafr El-Sheikh the highest incidence was in September with (3 isolates = 15.79%), then October and December as the same with (1 isolate = 5.26%); from El-Fayoum the highest incidence was in February with (2 isolates = 10.53%), followed by September, October, and January as the same with (1 isolate = 5.26%); from Matrouh the highest incidence was in November, and January as the same with (1 isolate = 5.26%); and finally; from Port Said the highest incidence was in October with (1 isolate = 5.26%). On the other hand Mycoplasma gallisepticum isolation was the highest from North Sinai governorate at September which was 3 isolates (4 by PCR) in case of migratory quails; and from El-

Fayoum governorate at February 2 isolates in case of captive quails. *Mycoplasma* Also out of 19 gallisepticum positive isolates the incidence from migratory and different captive quails in governorates during different months of the year using culture method was the most higher in North Sinai (6 isolates = 31.58%), followed by Kafr El-Sheikh, and El-Fayoum as the same with (5 isolates = 26.32%), then Matrouh with (2) isolates = 10.53%), and finally Port Said with (1 isolate = 5.26%).

In (Table7) out of 19 Mycoplasma gallisepticum positive isolates the incidence from different organs of migratory and captive quails in different governorates using culture method was the highest from nasal swabs in North Sinai (3 isolates = 15.8%) followed by Port Said, Kafr El-Sheikh Matrouh and El-• Fayoum as the same with (1 isolate = 5.3%); from lung tissues the highest incidence was in El-Fayoum (3 isolates = 15.8%), followed by Kafr El-Sheikh and North Sinai with (2 isolates = 10.5%); from trachea the highest incidence was in Kafr El-Sheikh (2 isolates 10.5%), followed by Matrouh and El-Fayoum as the same with (1 isolate = 5.3%); from air-sacs there were (1 isolate = 5.3%) in North Sinai from captive quails only. The highest incidence of MG was from lung tissues in **El-Fayoum** governorate which was 3 isolates both culture and PCR (in techniques) in case of captive

quails, also from nasal swabs and lung tissues in North Sinai governorate in case of migratory quails as 2 isolates (in both culture and **PCR** techniques).

Also out of 19 MG positive isolates the incidence from different organs of migratory and captive quails in different governorates using culture method was the highest from nasal swabs and lung tissues as the same (7 isolates = 36.84%), with followed by trachea with (4 isolates = 21.1%), and finally air-sacs with (1 isolate = 5.3%). In (Table7) out of 19 Mycoplasma gallisepticum positive isolates the incidence from different organs of migratory and captive quails in different governorates using culture method was the highest from nasal swabs in North Sinai (3 isolates = 15.8%) followed by Port Said, Kafr El-Sheikh, Matrouh and El-Fayoum as the same with (1 isolate = 5.3%); from lung tissues the highest incidence was in El-Fayoum (3 isolates = 15.8%), followed by Kafr El-Sheikh and North Sinai with (2 isolates = 10.5%); from trachea the highest incidence was in Kafr El-Sheikh (2 isolates = 10.5%), followed by Matrouh and E1-Fayoum as the same with (1 isolate = 5.3%); from air-sacs there were (1) isolate = 5.3%) in North Sinai from captive quails only. The highest incidence of MG was from lung tissues in El-Fayoum governorate which was 3 isolates (in both culture and PCR techniques) in case of captive quails, also from

nasal swabs and lung tissues in North Sinai governorate in case of migratory quails as 2 isolates (in both culture and **PCR** techniques).

Also out of 19 MG positive isolates the incidence from different organs of migratory and captive quails in different governorates using culture method was the highest from nasal swabs and lung tissues as the same with (7 isolates = 36.84%), followed by trachea with (4 isolates = 21.1%), and finally air-sacs with (1 isolate = 5.3%).

In (Table 8) Out of 400 samples in the migratory quails 23 Mycoplasma isolates were digitonin sensitivity, glucose fermentation tests positive; and arginine deamination, tetrazolium reduction, film & spot formation medium tests were negative which suggested being Mycoplasma gallinaceum.

Fourteen *Mycoplasma* isolates were digitonin sensitivity, arginine deamination, tetrazolium reduction, film & spot formation medium tests positive; and glucose fermentation test was negative which suggested being *Mycoplasma gallinarum*.

Nine *Mycoplasma* isolates were digitonin sensitivity, glucose fermentation and tetrazolium reduction tests positive; film & spot formation medium, and arginine deamination tests were negative which suggested being *Mycoplasma gallisepticum*.

Eight *Mycoplasma* isolates were digitonin sensitivity, glucose fermentation, and film & spot formation medium tests positive;

arginine deamination, tetrazolium reduction tests were negative which suggested being *Mycoplasma iners*. On the other hand out of 400 samples in the captive quails, 34 *Mycoplasma* isolates were digitonin sensitivity, glucose fermentation

tests positive; and arginine deamination, tetrazolium reduction; film & spot formation medium tests were negative which suggested being *Mycoplasma gallinaceum*.

Twenty tow *Mycoplasma* isolates were digitonin sensitivity, arginine deamination, tetrazolium reduction, film & spot formation medium tests positive; and glucose fermentation test was negative which suggested being *Mycoplasma gallinarum*.

Ten Mycoplasma isolates were digitonin sensitivity, glucose fermentation. and tetrazolium reduction positive: tests and arginine deamination, film & spot formation medium tests were negative which suggested being Mycoplasma gallisepticum.

Sixteen Mycoplasma isolates were digitonin sensitivity, glucose fermentation, and film & spot formation medium tests positive; arginine deamination, tetrazolium reduction tests were negative which suggested being Mycoplasma iners. Five Mycoplasma isolates were glucose digitonin sensitivity, fermentation, arginine deamination, and tetrazolium reduction tests positive; film & spot formation medium test was negative which suggested being *Mycoplasma* 

iowae.

In (Tables 9 & 10) showed that the effective antibiotic most was Tylosin which could inhibit the growth of 88.88% of Mycoplasma gallisepticum positive isolates in case of migratory quails, and 80% of *Mycoplasma* gallisepticum positive isolates in case of captive the other quails. on hand Doxycycline was the least effective antibiotic it inhibit only the growth of 44.44% of isolated Mycoplasma gallisepticum positive isolates in case of migratory quails and 40% in case of captive quails.

*Mycoplasma gallisepticum* isolates from migratory quails was more sensitive than the strain isolated from captive quails.

In (Table 11) out of 21 Mycoplasma gallisepticum positive isolates the incidence from migratory and during captive quails different months of the year from different organs using PCR technique was the highest in September from nasal swabs and trachea as the same (3 isolates = 14.29%), followed by lung tissues (2 isolates = 9.52%), and finally air-sacs the percent was (0%); in October the highest incidence was from nasal swabs (3 isolates = 14.29%), followed by lung tissues (2 isolates = 9.52%), and finally trachea and air- sacs the percent was (0%); in November the highest incidence was from nasal swabs and trachea with (1 isolate =4.76%); in December the highest incidence was from trachea and airsacs with (1 isolate = 4.76%); in January the highest incidence was

from nasal swabs and lung tissues isolate = 4.76%; in with (1 February the highest incidence was from lung tissues with (2 isolates =9.52%); and finally in March the percent was (0%). On the other hand MG isolation during the migration months of the year from different organs of migratory and captive quails using culture method was highest at September from nasal and tracheal swabs as the same which was 3 isolates in case of migratory quails, and 2 isolates at February from lung tissues in case of captive quails.

Also out of 21 MG positive isolates the incidence during different months of the year from different organs of migratory and captive quails using PCR technique was the most higher at September (8 isolates = 38.095%), followed by October (5 isolates = 23.81%), then November, December, January, and February as the same with (2 isolates = 9.52%), and finally March with (0%).

In (Table 12) out of 21 Mycoplasma gallisepticum positive isolates the from incidence migratory and captive quails in different during governorates different months of the year using PCR technique was the highest from North Sinai in September with (4 isolates = 19.05%), followed by October, November, and December as the same with (1 isolate =4.76%); from Kafr El-Sheikh the highest incidence was in September with (3 isolates = 14.29%), then

October and December as the same with (1 isolate = 4.76%); from El-Fayoum the highest incidence was in February with (2 isolates = 9.52%), followed by September, October, and January as the same with (1 isolate = 4.76%); from Matrouh the highest incidence was in October, November, and January as the same with (1 isolate =4.76%); and finally from Port Said highest incidence was the in October with (1 isolate = 4.76%). followed by Kafr El-Sheikh, North Sinai, Matrouh, and El-Fayoum as the same (0%). On the other hand Mycoplasma gallisepticum isolation was the highest at September from North Sinai governorate which was 4 isolates in case of migratory quails; and at February from El-Fayoum governorate 2 isolates in case of captive quails.

Also out of 21 *Mycoplasma* gallisepticum positive isolates the incidence from migratory and different captive quails in governorates during different months of the year using PCR technique was the most higher in North Sinai (7 isolates = 33.33%, followed by Kafr El-Sheikh, and El-Fayoum as the same with (5 isolates = 23.81%), then Matrouh with (3) isolates = 14.29%), and finally Port Said with (1 isolate = 4.76%).

In (Table 13) out of 21 *Mycoplasma* gallisepticum positive isolates the incidence from different organs of migratory and captive quails in different governorates using **PCR** technique was the highest from

nasal swabs in North Sinai (3 isolates = 15.8%) followed by Matrouh (2 isolate = 9.52%); then Port Said, Kafr El-Sheikh , and El-Fayoum as the same (1 isolate =4.76%); from lung tissues the highest incidence was in El-Fayoum (3 isolates = 14.29%), followed by Kafr El-Sheikh and North Sinai with (2 isolates = 9.52%); from trachea the highest incidence was in El-Sheikh (2 isolates Kafr = 9.52%), followed by North Sinai, Matrouh, and El-Fayoum as the same (1 isolate = 4.76%); from airsacs there was (1 isolate = 4.76%) in North Sinai from captive quails only. The highest incidence of MG was from lung tissues in El-Fayoum governorate which was 3 isolates (in both culture and PCR techniques) in case of captive quails, also from nasal swabs and tissues lung in North Sinai governorate in case of migratory quails as 2 isolates (in both culture and PCR techniques). Also out of 21 MG positive isolates the incidence from different organs of migratory and captive quails in different governorates using PCR technique was the highest from nasal swabs (8 isolates = 38.095%), followed by lung tissues with (7 isolates = 33.33%), then trachea with (5 isolates = 23.81%), and finally air-sacs with (1 isolate =4.76%).

|               |                     | 0         |                |           | 0                   |           |                | Sample    | Types               |           |                |           |                     |       |                |          |           |           |
|---------------|---------------------|-----------|----------------|-----------|---------------------|-----------|----------------|-----------|---------------------|-----------|----------------|-----------|---------------------|-------|----------------|----------|-----------|-----------|
| Month         |                     | Nasal S   | wabs           |           |                     | Lung T    | issues         |           |                     | Trac      | hea            |           |                     | Air-S | bacs           |          | of +ve    |           |
| s             | Migratory<br>quails | %         | Captive quails | %         | Migratory<br>Quails | %         | Captive quails | %         | Migratory<br>quails | %         | Captive quails | %         | Migratory<br>quails | %     | Captive quails | %        | Total No. | %         |
| Septem<br>ber | 3                   | 15.<br>79 | 0              | 0         | 1                   | 5.2<br>6  | 1              | 5.2<br>6  | 2                   | 10.<br>53 | 0              | 0         | 0                   | 0     | 0              | 0        | 7         | 36.<br>84 |
| Octobe<br>r   | 1                   | 5.2<br>6  | 1              | 5.2<br>6  | 2                   | 10.<br>53 | 0              | 0         | 0                   | 0         | 0              | 0         | 0                   | 0     | 0              | 0        | 4         | 21.<br>05 |
| Novem<br>ber  | 0                   | 0         | 1              | 5.2<br>6  | 0                   | 0         | 0              | 0         | 0                   | 0         | 1              | 5.2<br>6  | 0                   | 0     | 0              | 0        | 2         | 10.<br>53 |
| Decem<br>ber  | 0                   | 0         | 0              | 0         | 0                   | 0         | 0              | 0         | 0                   | 0         | 1              | 5.2<br>6  | 0                   | 0     | 1              | 5.2<br>6 | 2         | 10.<br>53 |
| Januar<br>y   | 0                   | 0         | 1              | 5.2<br>6  | 0                   | 0         | 1              | 5.2<br>6  | 0                   | 0         | 0              | 0         | 0                   | 0     | 0              | 0        | 2         | 10.<br>53 |
| Februa<br>ry  | 0                   | 0         | 0              | 0         | 0                   | 0         | 2              | 10.<br>53 | 0                   | 0         | 0              | 0         | 0                   | 0     | 0              | 0        | 2         | 10.<br>53 |
| March         | 0                   | 0         | 0              | 0         | 0                   | 0         | 0              | 0         | 0                   | 0         | 0              | 0         | 0                   | 0     | 0              | 0        | 0         | 0         |
| Total<br>No.  | 4                   | 21.<br>05 | 3              | 15.<br>79 | 3                   | 15.<br>79 | 4              | 21.<br>05 | 2                   | 10.<br>53 | 2              | 10.<br>53 | 0                   | 0     | 1              | 5.2<br>6 | 1<br>9    | 100       |

**Table (5):** The Incidence of Mycoplasma gallisepticum isolates from Migratory and Captive Quails during Different Months of the Year from Different Organs using Culture Method

*400* 

**Table (6):** The Incidence of Mycoplasma gallisepticum isolates fromMigratory and Captive Quails in Different Governorates during DifferentMonths of the Year using Culture Method

| Months 2      |                     |       |                |      |                     |       |                |      |                     |      |                |       |                     |      |                |       |                     |      |                |       |                     |     |                |       |                     |    |                |   |           |       |
|---------------|---------------------|-------|----------------|------|---------------------|-------|----------------|------|---------------------|------|----------------|-------|---------------------|------|----------------|-------|---------------------|------|----------------|-------|---------------------|-----|----------------|-------|---------------------|----|----------------|---|-----------|-------|
| orates        | S                   | epte  | mb             | er   |                     | Oct   | obe            | r    | N                   | love | mb             | er    | Γ                   | )ece | mbo            | er    |                     | Janı | uary           | ,     |                     | Fel | brua           | ary   |                     | Ma | ırch           |   | of +ve    |       |
| Gover-norates | Migratory<br>quails | %     | Captive quails | %    | Migratory<br>quails | %     | Captive quails | %    | Migratory<br>Quails | %    | Captive quails | %     | Migratory<br>quails | %    | Captive quails | %     | Migratory<br>quails | %    | Captive quails | %     | Migratory<br>quails | %   | Captive quails | %     | Migratory<br>quails | %  | Captive quails | % | Total No. | %     |
|               | 3                   | 15.79 | 0              | 0    | 1                   | 5.26  | 0              | 0    | 0                   | 0    | 1              | 5.26  | 0                   | 0    | 1              | 5.26  | 0                   | 0    | 0              | 0     | 0                   | 0   | 0              | 0     | 0                   | 0  | 0              | 0 | 9         | 31.58 |
| afr El-       | 2                   | 10.53 | 1              | 5.26 | 1                   | 5.26  | 0              | 0    | 0                   | 0    | 0              | 0     | 0                   | 0    | 1              | 5.26  | 0                   | 0    | 0              | 0     | 0                   | 0   | 0              | 0     | 0                   | 0  | 0              | 0 | 5         | 26.32 |
| El- Fayoum    | 1                   | 5.26  | 0              | 0    | 0                   | 0     | 1              | 5.26 | 0                   | 0    | 0              | 0     | 0                   | 0    | 0              | 0     | 0                   | 0    | 1              | 5.26  | 0                   | 0   | 2              | 10.53 | 0                   | 0  | 0              | 0 | 5         | 26.32 |
| Matrouh       | 0                   | 0     | 0              | 0    | 0                   | 0     | 0              | 0    | 0                   | 0    | 1              | 5.26  | 0                   | 0    | 0              | 0     | 0                   | 0    | 1              | 5.26  | 0                   | 0   | 0              | 0     | 0                   | 0  | 0              | 0 | 2         | 10.53 |
| Port Said     | 0                   | 0     | 0              | 0    | 1                   | 5.26  | 0              | 0    | 0                   | 0    | 0              | 0     | 0                   | 0    | 0              | 0     | 0                   | 0    | 0              | 0     | 0                   | 0   | 0              | 0     | 0                   | 0  | 0              | 0 | 1         | 5.26  |
| Total No.     | 6                   | 31.58 | 1              | 5.26 | 3                   | 15.79 | 1              | 5.26 | 0                   | 0    | 2              | 10.53 | 0                   | 0    | 2              | 10.53 | 0                   | 0    | 2              | 10.53 | 0                   | 0   | 2              | 10.53 | 0                   | 0  | 0              | 0 | 19        | 100   |

| Table (7): The Incidence of Mycoplasma gallisepticum isolates from         |
|----------------------------------------------------------------------------|
| Different Organs of Migratory and Captive Quails in Different Governorates |
| using Culture Method                                                       |

| Governorates |                  |       |                |      |                  |         |                |      |                  |       |                |      |                  |     |                |      |                         |      |                |   |                       |               |
|--------------|------------------|-------|----------------|------|------------------|---------|----------------|------|------------------|-------|----------------|------|------------------|-----|----------------|------|-------------------------|------|----------------|---|-----------------------|---------------|
| ypes         |                  | North | sina           | i    | к                | lafr El | l-Shei         | kh   |                  | El-Fa | youn           | ı    |                  | Mat | rouh           |      |                         | Port | Said           |   | positive              | tive          |
| Sample Types | Migratory quails | %     | Captive quails | %    | Migratory quails | %       | Captive quails | %    | Migratory quails | %     | Captive quails | %    | Migratory quails | %   | Captive quails | %    | <b>Migratory</b> quails | %    | Captive quails | % | Total No. of positive | % of positive |
| Nasal Swabs  | 2                | 10.5  | 1              | 5.3  | 1                | 5.3     | 0              | 0    | 0                | 0     | 1              | 5.3  | 0                | 0   | 1              | 5.3  | 1                       | 5.3  | 0              | 0 | 7                     | 36.84         |
| Lung Tissues | 2                | 10.5  | 0              | 0    | 1                | 5.3     | 1              | 5.3  | 0                | 0     | 3              | 15.8 | 0                | 0   | 0              | 0    | 0                       | 0    | 0              | 0 | 7                     | 36.84         |
| Trachea      | 0                | 0     | 0              | 0    | 1                | 5.3     | 1              | 2.3  | 1                | 5.3   | 0              | 0    | 0                | 0   | 1              | 2.3  | 0                       | 0    | 0              | 0 | 4                     | 21.1          |
| Air-Sacs     | 0                | 0     | 1              | 5.3  | 0                | 0       | 0              | 0    | 0                | 0     | 0              | 0    | 0                | 0   | 0              | 0    | 0                       | 0    | 0              | 0 | 1                     | 5.3           |
| Total No.    | 4                | 21.1  | 2              | 10.5 | 3                | 15.8    | 2              | 10.5 | 1                | 5.3   | 4              | 21.1 | 0                | 0   | 2              | 10.5 | 1                       | 5.3  | 0              | 0 | 19                    | 100           |

**Table (8):** Biochemical Characterization of Mycoplasma Species Isolatedfrom Migratory and Captive Quails

| s                                          |                          |             | Biochen                     | nical Tests             |                          |                                         | lates               | asma                                 | +ve              |
|--------------------------------------------|--------------------------|-------------|-----------------------------|-------------------------|--------------------------|-----------------------------------------|---------------------|--------------------------------------|------------------|
| Bird Types                                 | Digitonin<br>Sensitivity | Urease Test | Glucose<br>Fermentatio<br>n | Arginine<br>Deamination | Tetrazolium<br>Reduction | Film and<br>Spot<br>Formation<br>Medium | Suggested Isolates  | No. of <i>Mycoplasma</i><br>Isolates | Total No. of +ve |
| i i                                        | +                        | -           | +                           | -                       | -                        | -                                       | M.<br>gallinaceum   | 23                                   |                  |
| Four-hundred<br>Migratory Quail<br>Samples | +                        | -           | -                           | +                       | +                        | +                                       | M.<br>gallinarum    | 14                                   |                  |
| Four-h<br>ligrato<br>San                   | +                        | -           | +                           | -                       | +                        | -                                       | M.<br>gallisepticum | 9                                    |                  |
|                                            | +                        | -           | +                           | -                       | -                        | +                                       | M. iners            | 8                                    | 54               |

| ve                                    | + | - | + | - | - | - | M.<br>gallinaceum   | 34 |    |
|---------------------------------------|---|---|---|---|---|---|---------------------|----|----|
| lred Capti<br>Samples                 | + | - | - | + | + | + | M.<br>gallinarum    | 22 |    |
| ındred<br>ail San                     | + | - | + | - | - | + | M. iners            | 16 |    |
| Four-hundred Captive<br>Quail Samples | + | - | + | - | + | - | M.<br>gallisepticum | 10 | 87 |
| Ĩ                                     | + | - | + | + | + | - | M. iowae            | 5  |    |

**Table (9):** Minimum Inhibitory Concentration (MIC) Results of Mycoplasmagallisepticum Isolates from Migratory Quails

|                  |               |               | Minir         | num inhib     | itory conc    | entration     | mg/µl         |               |               | C-        | Numbe<br>r of<br>sensitiv |  |
|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------|---------------------------|--|
| Antibiotics      | Isolat<br>e 1 | Isolat<br>e 2 | Isolat<br>e 3 | Isolat<br>e 4 | Isolat<br>e 5 | Isolat<br>e 6 | Isolat<br>e 7 | Isolat<br>e 8 | Isolat<br>e 9 | max       | sensitiv<br>e<br>isolates |  |
| Doxycycline      | 32            | 64            | 64            | 64            | 32            | 16            | 128           | 64            | 32            | 54.5<br>8 | 4/9<br>(44.44)            |  |
| Erythromyci<br>n | 4             | 8             | 4             | 8             | 8             | 16            | 16            | 1             | 2             | 6.9       | 4/9<br>(44.44)            |  |
| Tylosin          | 0.25          | 0.5           | 0.06          | 0.06          | 0.13          | 1             | 0.5           | 8             | 2             | 4.2       | 8/9<br>(88.88)            |  |
| Tilmicosin       | 0.5           | 4             | 0.13          | 0.13          | 1             | 16            | 0.5           | 4             | 1             | 2.46      | 6/9<br>(66.66)            |  |
| Tiamutin         | 0.5           | 2             | 0.25          | 1             | 4             | 4             | 0.5           | 1             | 0.5           | 3.56      | 7/9<br>(77.77)            |  |
| Enrofloxacin     | 4             | 4             | 1             | 0.5           | 1             | 8             | 0.5           | 4             | 0.5           | 1.88      | 5/9<br>(55.55)            |  |

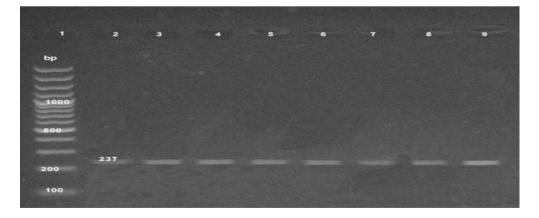
 Table (10): Minimum Inhibitory Concentration (MIC) Results of Mycoplasma gallisepticum Isolates from Captive Quails

| Antibiotics |               |               | М             | inimum i      | nhibitory     | concentr      | ation mg/     | μl            |               |                | C-        | Numb<br>er of<br>sensiti |  |
|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|-----------|--------------------------|--|
| Anubioues   | Isolat<br>e 1 | Isolat<br>e 2 | Isolat<br>e 3 | Isolat<br>e 4 | Isolat<br>e 5 | Isolat<br>e 6 | Isolat<br>e 7 | Isolat<br>e 8 | Isolat<br>e 9 | Isolat<br>e 10 | max       | ve<br>isolate<br>s       |  |
| Doxycycline | 128           | 64            | 32            | 32            | 128           | 32            | 32            | 64            | 64            | 64             | 54.5<br>8 | 4/10<br>(40%)            |  |

| Erythromy<br>cin | 16 | 8   | 1  | 4    | 16  | 4    | 8    | 1 | 8    | 4    | 6.9  | 5/10<br>(50%) |
|------------------|----|-----|----|------|-----|------|------|---|------|------|------|---------------|
| Tylosin          | 1  | 0.5 | 8  | 0.13 | 0.5 | 0.25 | 0.13 | 8 | 2    | 0.06 | 4.2  | 8/10<br>(80%) |
| Tilmicosin       | 16 | 2   | 8  | 0.13 | 0.5 | 0.5  | 4    | 4 | 1    | 0.13 | 2.46 | 6/10<br>(60%) |
| Tiamutin         | 4  | 2   | 16 | 1    | 2   | 1    | 4    | 1 | 0.25 | 0.25 | 3.56 | 7/10<br>(70%) |
| Enrofloxaci<br>n | 8  | 4   | 16 | 0.5  | 1   | 4    | 1    | 4 | 0.5  | 1    | 1.88 | 5/10<br>(50%) |

**Table (11):** The Incidence of Mycoplasma gallisepticum isolates from Migratory and Captive Quails during Different Months of the Year from Different Organs using PCR Technique

|               | <i>jjere</i>        |         | 0                 | 10 110 | ,                   | - en   |                   | Sample | e Types             | 5     |                   |      |                     |      |                   |      | e            |        |
|---------------|---------------------|---------|-------------------|--------|---------------------|--------|-------------------|--------|---------------------|-------|-------------------|------|---------------------|------|-------------------|------|--------------|--------|
| hs            | ľ                   | Nasal S | Swabs             | 5      | I                   | Jung T | issue             | s      |                     | Trac  | hea               |      |                     | Air- | Sacs              |      | of +ve       |        |
| Months        | Migratory<br>quails | %       | Captive<br>quails | %      | Migratory<br>Quails | %      | Captive<br>quails | %      | Migratory<br>quails | %     | Captive<br>quails | %    | Migratory<br>quails | %    | Captive<br>quails | %    | Total No. of | %      |
| Septe<br>mber | 3                   | 14.29   | 0                 | 0      | 1                   | 4.76   | 1                 | 4.76   | 3                   | 14.29 | 0                 | 0    | 0                   | 0    | 0                 | 0    | 8            | 38.095 |
| October       | 2                   | 9.52    | 1                 | 4.76   | 2                   | 9.52   | 0                 | 0      | 0                   | 0     | 0                 | 0    | 0                   | 0    | 0                 | 0    | 5            | 23.81  |
| November      | 0                   | 0       | 1                 | 4.76   | 0                   | 0      | 0                 | 0      | 0                   | 0     | 1                 | 4.76 | 0                   | 0    | 0                 | 0    | 2            | 9.52   |
| December      | 0                   | 0       | 0                 | 0      | 0                   | 0      | 0                 | 0      | 0                   | 0     | 1                 | 4.76 | 0                   | 0    | 1                 | 4.76 | 2            | 9.52   |
| January       | 0                   | 0       | 1                 | 4.76   | 0                   | 0      | 1                 | 4.76   | 0                   | 0     | 0                 | 0    | 0                   | 0    | 0                 | 0    | 2            | 9.52   |


| Total No. | March | February |
|-----------|-------|----------|
| 5         | 0     | 0        |
| 23.81     | 0     | 0        |
| 3         | 0     | 0        |
| 14.29     | 0     | 0        |
| 3         | 0     | 0        |
| 14.29     | 0     | 0        |
| 4         | 0     | 2        |
| 19.05     | 0     | 9.52     |
| 3         | 0     | 0        |
| 14.29     | 0     | 0        |
| 2         | 0     | 0        |
| 9.52      | 0     | 0        |
| 0         | 0     | 0        |
| 0         | 0     | 0        |
| 1         | 0     | 0        |
| 4.76      | 0     | 0        |
| 21        | 0     | 2        |
| 100       | 0     | 9.52     |

**Table (12):** The Incidence of Mycoplasma gallisepticum isolates fromMigratory and Captive Quails in Different Governorates during DifferentMonths of the Year using PCR Technique

| es                 |                     | Months |                |      |                     |       |                |      |                     |     |                |      |                     |     |                |      | +ve                 |     |                |      |                     |     |                |      |                     |    |                |   |           |       |
|--------------------|---------------------|--------|----------------|------|---------------------|-------|----------------|------|---------------------|-----|----------------|------|---------------------|-----|----------------|------|---------------------|-----|----------------|------|---------------------|-----|----------------|------|---------------------|----|----------------|---|-----------|-------|
| ample              | Se                  | epte   | mb             | er   |                     | Octo  | obei           | r    | N                   | ove | mb             | er   | D                   | ece | mbo            | er   |                     | Jan | uary           | y    | F                   | ebr | uar            | y    |                     | Ma | rch            |   | of +      |       |
| Type of Samples    | Migratory<br>quails | %      | Captive quails | %    | Migratory<br>quails | %     | Captive quails | %    | Migratory<br>Quails | %   | Captive quails | %    | Migratory<br>quails | %   | Captive quails | %    | Migratory<br>quails | %   | Captive quails | %    | Migratory<br>quails | %   | Captive quails | %    | Migratory<br>quails | %  | Captive quails | % | Total No. | %     |
| North Sinai        | 4                   | 19.05  | 0              | 0    | 1                   | 4.76  | 0              | 0    | 0                   | 0   | 1              | 4.76 | 0                   | 0   | 1              | 4.76 | 0                   | 0   | 0              | 0    | 0                   | 0   | 0              | 0    | 0                   | 0  | 0              | 0 | 7         | 33.33 |
| Kafr El-<br>Sheikh | 2                   | 9.52   | 1              | 4.76 | 1                   | 4.76  | 0              | 0    | 0                   | 0   | 0              | 0    | 0                   | 0   | 1              | 4.76 | 0                   | 0   | 0              | 0    | 0                   | 0   | 0              | 0    | 0                   | 0  | 0              | 0 | 5         | 23.81 |
| El- Fayoum         | 1                   | 4.76   | 0              | 0    | 0                   | 0     | 1              | 4.76 | 0                   | 0   | 0              | 0    | 0                   | 0   | 0              | 0    | 0                   | 0   | 1              | 4.76 | 0                   | 0   | 2              | 9.52 | 0                   | 0  | 0              | 0 | 5         | 23.81 |
| Matrouh            | 0                   | 0      | 0              | 0    | 1                   | 4.76  | 0              | 0    | 0                   | 0   | 1              | 4.76 | 0                   | 0   | 0              | 0    | 0                   | 0   | 1              | 4.76 | 0                   | 0   | 0              | 0    | 0                   | 0  | 0              | 0 | 3         | 14.29 |
| Port Said          | 0                   | 0      | 0              | 0    | 1                   | 4.76  | 0              | 0    | 0                   | 0   | 0              | 0    | 0                   | 0   | 0              | 0    | 0                   | 0   | 0              | 0    | 0                   | 0   | 0              | 0    | 0                   | 0  | 0              | 0 | 1         | 4.76  |
| Total No.          | 7                   | 33.33  | 1              | 4.76 | 4                   | 19.05 | 1              | 4.76 | 0                   | 0   | 2              | 9.52 | 0                   | 0   | 2              | 9.52 | 0                   | 0   | 2              | 9.52 | 0                   | 0   | 2              | 9.52 | 0                   | 0  | 0              | 0 | 21        | 100   |

**Table (13):** The Incidence of Mycoplasma gallisepticum isolates from Different Organs of Migratory and Captive Quails in Different Governorates using PCR Technique

| s               |                     |       |                   |      | iiqi                |        |                   |      | Go                  | ver   | nora              | ites  |                     |      |                   |      | -                   |      |                   |   | e                |        |
|-----------------|---------------------|-------|-------------------|------|---------------------|--------|-------------------|------|---------------------|-------|-------------------|-------|---------------------|------|-------------------|------|---------------------|------|-------------------|---|------------------|--------|
| Type of Samples | ľ                   | North | i Sina            | i    | Ka                  | afr El | l-She             | ikh  | ]                   | El Fa | your              | n     |                     | Mat  | rouh              |      |                     | Port | : said            |   | Total No. of +ve | %      |
| Type o          | Migratory<br>quails | %     | Captive<br>quails | %    | Migratory<br>quails | %      | Captive<br>quails | %    | Migratory<br>quails | %     | Captive<br>quails | %     | Migratory<br>quails | %    | Captive<br>quails | %    | Migratory<br>quails | %    | Captive<br>quails | % | Total            |        |
| Nasal swabs     | 2                   | 9.52  | 1                 | 4.76 | 1                   | 4.76   | 0                 | 0    | 0                   | 0     | 1                 | 4.76  | 1                   | 4.76 | 1                 | 4.76 | 1                   | 4.76 | 0                 | 0 | 8                | 38.095 |
| Lung tissues    | 2                   | 9.52  | 0                 | 0    | 1                   | 4.76   | 1                 | 4.76 | 0                   | 0     | 3                 | 14.29 | 0                   | 0    | 0                 | 0    | 0                   | 0    | 0                 | 0 | 7                | 33.33  |
| Trachea         | 1                   | 4.76  | 0                 | 0    | 1                   | 4.76   | 1                 | 4.76 | 1                   | 4.76  | 0                 | 0     | 0                   | 0    | 1                 | 4.76 | 0                   | 0    | 0                 | 0 | 5                | 23.81  |
| Air-sacs        | 0                   | 0     | 1                 | 4.76 | 0                   | 0      | 0                 | 0    | 0                   | 0     | 0                 | 0     | 0                   | 0    | 0                 | 0    | 0                   | 0    | 0                 | 0 | 1                | 4.76   |
| Total No.       | 5                   | 23.81 | 2                 | 9.52 | 3                   | 14.29  | 2                 | 9.52 | 1                   | 4.76  | 4                 | 19.05 | 1                   | 4.76 | 2                 | 9.52 | 1                   | 4.76 | 0                 | 0 | 21               | 100    |



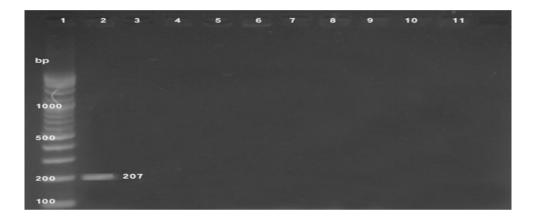
**Fig. (1):** Electrophoresis pattern of the PCR products of Mycoplasma gallisepticum Isolates from Migratory and Captive Quail Different Organs using mgc2 Gene

Lane 1: 100 bp DNA ladder.

Lane 2 : *Mycoplasma gallisepticum* isolate from migratory quail nasal swabs.

Lane 3 : Mycoplasma gallisepticum isolate from captive quail nasal swabs.

Lane 4: *Mycoplasma gallisepticum* isolate from migratory quail trachea.


Lane5: Mycoplasma gallisepticum isolate from captive quail trachea.

Lane 6: *Mycoplasma gallisepticum* isolate from migratory quail lungs.

Lane 7: Mycoplasma gallisepticum isolate from captive quail lungs.

Lane 8: Mycoplasma gallisepticum isolate from migratory quail air-sacs.

Lane 9: Mycoplasma gallisepticum isolate from captive quail air-sacs.



**Fig. (2):** Electrophoresis pattern of the PCR products of Mycoplasma synoviae Isolates from Migratory and Captive Quail Different Organs using 16S Gene

Lane 1: 100 bp DNA ladder.

Lane 2: Mycoplasma synoviae positive control.

Lane 3: Mycoplasma synoviae negative control.

Lane 4 : *Mycoplasma synoviae* isolate from migratory quail nasal swabs.

Lane 5 : *Mycoplasma synoviae* isolate from captive quail nasal swabs.

Lane 6: Mycoplasma synoviae isolate from migratory quail trachea.

Lane7: Mycoplasma synoviae isolate from captive quail trachea.

Lane 8: Mycoplasma synoviae isolate from migratory quail lungs.

Lane 9: Mycoplasma synoviae isolate from captive quail lungs.

Lane 10: Mycoplasma synoviae isolate from migratory quail air-sacs.

Lane 11: Mycoplasma synoviae isolate from captive quail air-sacs.

### Discussion

The data in (Table 5 & 11)revealed that the increase of Mvcoplasma gallisepticum in September was in coordination with results achieved by (Baha *El-Din.* 1993: El-Naenaeev et al. 2000: and Ibrahim and Busse, 2012); this is due to the stress associated with migration which increase the bird's susceptibility to pathogens or enhance their shedding rate (Dhama et al., 2008). On the other side the increment of the incidence in captive quails during December and other cold months is in agreement with (Lev and Yoder, 1997) it tends to be more severe and of longer duration in the cold months and affects vounger birds more severely than mature birds.

In (Table 6 & 12) the increment of the incidence from North Sinai governorate may be due to transmission of *Mycoplasma* through northern the east Egyptian borders which mav happen by air transmission or by the migratory birds themselves; this may explain the high incidence during September in North Sinai governorate (3 isolates = 15.79%) and this was in agreement with (Baha El-Din, 1993; and Ibrahim and Busse, 2012).

In (Table 7 & 13) increase incidence from nasal swabs indicated that the primary habitats of Mycoplasmas are the mucosal membranes of the respiratory tract. and/or the urogenital tract, eyes and joints. Adhesion of Mycoplasmas to host cells is a prerequisite for successful colonization. and (Levisohn ensuing pathogenesis Kleven. 2000). Also and Mycoplasmas constitute part of the normal flora in small migratory birds' respiratory tracts. This would suggest that migratory birds could carry disease-causing Mycoplasmas over large distances and spread disease through wild and domesticated populations (Christine, 2010), and these results were in coordination with the achieved by results (El-Shater 1986; Bencina et al., 1987; El-Naenaeey et al., 2000; and Vitula et al., 2011).

In (Table 8) the isolation of different types of Mycoplasma species from quails was conceded by (Bogomolova et al., 1978; 1978: Nascimento & Tiong. Nascimento, 1986; Reece et al., 1986; Bencina et al., 1987; El-Naenaeev et al., 2000; Murakami et al., 2002 and Fatma, 2004) and referred that Mycoplasma infection in quails should be considered as an important disease which act as a source of transmission to different species of birds (Fatma, 2004).

In (Table 9 & 10) the most effective antibiotic detected by minimum inhibitory concentration (MIC) was Tylosin which could inhibit the growth of 88.88% of *Mycoplasma gallisepticum* 

strain isolated in of case and 80% in migratory quails case of captive quails. Mvcoplasma gallisepticum migratory strain isolated from quails was more sensitive than the strain isolated from captive quails. these results were in agreement with (Kempf et al., 1989: al.. 1997: Ching et Hannan. 2000 and Reda and Abd El-Samie, 2012); and were disagreement in with Gerchman et al., 2011. On the other the hand. resistant to Doxycycline may be attributed to miss use of it in the field which resulted to development of acquired resistance of field isolates to this antibiotic.

On the other hand the positive PCR products amplified at 237bp this was in agreement with (Hnatow et al., 1998; Garcia et al., 2005; Lysnyansky et al., 2005). The mgc2 gene, which encodes a cvtadhesin protein (Hnatow et al., 1998), is currently the one of the preferred gene targets for this assay, due to its specificity for *Mycoplasma* gallisepticum (Garcia et al., 2005). Also they suggested that the mgc2 **PCR** is the method of choice for Mycoplasma gallisepticum in the field. expected size The for amplification products with mgc2 based PCR was varied in range of 236-302bp for *Mycoplasma* gallisepticum. Also Mycoplasma synoviae couldn't be isolated from both migratory and captive quails by culture method or PCR and these results were disagreement with (Bencina et al., 1987).

### References

### Abu-Basha, E.A.; Idkaidek, N.M.; and Al-Shunnaq, A.F.; (2007):

Pharmacokinetics of Tilmicosin (Provitil Powder and Pulmotil Liquid AC) Oral Formulations in Chickens Veterinary Research Communications, 31: 477–485.

Baha El Din, S. M.; (1993):

Notes on recent changes in the status of breeding herons in the Egyptian Nile Valley and Delta. Ornithological Society of the Middle East. Bulletin, 29, 12-15.

Bencina, D.; Dorrer, D.; and Tadina, T. (1987):

*Mycoplasma* species isolated from six avian species. Avian Pathology, 16(1987) 653-664.

Bogomolova, N. N.; Izotova, N. V.; Boriskin, I. S.; Lotte, V. D.; and Kolianova, I. S.; (1978):

Isolation and study of several properties of *Mycoplasma* from Japanese quail embryos. Vopr. Virusol. 1978:560–564.

# Burch, D.G.S.; and Valks, M.; (2002):

Comparison of Minimal Inhibitory Concentrations (MIC) Chicken against *Mycoplasma* of Tiamulin and Other Antimicrobials and their Concentrations the Blood. in 12<sup>th</sup> World Proseeding of the Association, Veterinary Poultry Cairo, Egypt, January 2002 P: 322.

Ching Wu, DVM, PhD; Thomas R. Shryock, PhD; Tsang Long Lin, DVM, PhD; and Melissa Fleck Veenhuizen, DVM, MS, CCW, TLL (1997):

Testing antimicrobial susceptibility against *Mycoplasma hyopneumoniae* in vitro. Animal Disease Diagnostic Laboratory, Purdue University, West Lafayette, Indiana, 47907; TRS, MFV: Elanco Animal Health.

### Christine R., (2010):

The Detection of Mycoplasmas in Migratory Birds. Thesis submitted by Zoology Department at Miami University.

Dhama, K., Mahendran M., and Tomar S., (2008):

Pathogens Transmitted by Migratory Birds: Threat Perceptions to Poultry Health and Production, International Journal of Poultry Science 7 (6): 516-525.

El-Naenaeey EY.; El-Messalmy M.; El-Sheikh S.; Hamouda A.; (2000):

Mycoplasmas prevalent in quails and some wild birds in Egypt, Veterinary Medical Journal Giza, 48: 91 - 110.

El-Shater, S. S. A.; (1986):

Some studies on chronic respiratory disease in fowls. Ph.D. Thesis (Poultry Diseases), Faculty of Vet. Med., Assiut University.

El-Soud, K. A.; Al-Tarazi Y. H. & Al-Batineh M. M.; (2004): Comparative pharmacokinetics bioavailability and of amoxicillin in chickens after intramuscular and intravenous. oral administrations. Veterinary Research Communication, 28. 599-607.

Erno H., and Stipkovits L., (1973):

Bovine Mycoplasmas, cultural and biochemical studies. Acta Vet Scared., 14: 450- 463.

## Fabricant, J.; and Freundt, E. A.; (1967):

Importance of extension and standardization of laboratory tests for the identification and classification of *Mycoplasma*. Ann. N. Y. Acad. Sci., 143: 50 - 58.

### Fan, H. H .;;Kleven,S. H. and Jackwood,M. W. (1995):

Application of polymerase chain reaction with arbitrary primers to strain identification of Mycoplasma gallisepticum .Avian Dis., 39(4):729–735.

### Fatma A.M., (2004):

Further studies on quail mycoplasmosis in Assuit governorate Assiut Veterinary Medical Journal, 50 (102):228-236.

Freundt E.A., Anderson B.E., Erno N., Kunze M., and Black F.T., (1973):

The sensitivity of mycoplasmatales to sodium polyanethol. Sulphate and digitonin. Zb1. Back. Parasite infehtkr, Hyg. L.Aby. Drig. A. (225): 104-112.

Frey M., Hanson, R. and Anderson, P., (1968):

A medium for the isolation of avian *Mycoplasmas*. Americ. Vet. J., 29:2163-2171.

Garcia N., Ikuta N., Levisohn S., and Keleven S.H., (2005):

Evaluation and comparison of various PCR methods for detection of *Mycoplasma* gallisepticum infection in chickens. Dis. Avian 49 (1): 125-132.

### Gerchman I., Levisohn S., Mikula I., Manso-Silván L. and Lysnyansky I., (2011):

Characterization of in vivoacquired resistance to macrolides of *Mycoplasma* gallisepticum strains isolated Veterinary from poultry Research, 42:90.

Hannan P. C.T., (2000):

Guidelines and recommendations for antimicrobial Minimum Inhibitory Concentration (MIC) testing against veterinary Mycoplasmas. Vet. Res. 31, 373-395.

Hnatow L.L., Keeler C.L, Tessmer L.L., Czymmek K. & Dohms J.E. (1998):

Characterization of MGC2. а *Mycoplasma* gallisepticum cytadhesin with homology to the *Mycoplasma* pneumonia 30 kilodalton protein P30 and Mycoplasma genitalium P32. Infect. Immun., Vol. 66(7): 3426-3442.

Hennigana, Suzanne L., Jeremy D. Driskellb, Naola Ferguson-Noelc, Richard A. Dluhyd, Yiping Zhaoe, Ralph A. Trippb, and Duncan C. K., (2012):

"Detection and Differentiation of Avian Mycoplasmas bv Surface-Enhanced Raman Spectroscopy Based on a Silver Nanorod Array". Applied and Environmental Microbiology 78 (6): 1930–1935.

Ibrahim W. A., and Busse P., (2012):

Migration of passerines through some protected areas in the eastern part of Egypt. Ring 34: 69-205.

Kempf I., Ollivier C., Morin M., Hospitalier R., Guittet M., and Bennejean, G., (1989):

Minimum inhibitory concentration of 13 antibiotics against 21 strains of avian *Mycoplasma*. The vet. Point 20:935-940.

### Lauerman, L.H., (1998):

Mycoplasma PCR assays. In L.H. Lauerman (Ed.), Nucleic Acid Amplification Assays for Diagnosis of Animal Diseases (pp. 41 \_52). Davis, CA: American Association of Veterinary Laboratory Diagnosticians.

# Levisohn, S. and Kleven, S.H. (2000):

Avian mycoplasmosis (*Mycoplasma gallisepticum*). In C.W. Beard & S. McNulty (Eds.), Diseases of Poultry: World Trade and Public Health Implications, Vol. 19 (pp. 425 \_442). Paris, France: Office International des Epizooties.

Ley, D. H.; and Yoder, H. W.; (1997): Mycoplasma gallisepticum infection In Disease of poultry, 10th ed. Calnek, B.W.; Barnes, H.J.;Beard, C.W.; McDougald, L.R. and Saif, Y. M.(eds.). Iowa state University Press, Ames, Iowa, pp. 194-207.

Lysnyansky, I.; Garcia, M.; & Levisohn, S.; (2005):

Use of mgc2- polymerase chain reaction-restriction fragment length polymorphism for rapid differentiation between field isolates and vaccine strains of *Mycoplasma gallisepticum* in Israel. Avian Dis., 49: 238–245.

Maricarmen G., Nilo I., Sharon L., and Keleven S.H., (2005):

Evaluation and comparison of various PCR methods for detection of М. gallisepticum infection chickens. Avian in Dis., 49: 125-132.

Murakami S., Miyama M., Ogawa A., Shimada J., & Nakane T., (2002):

Occurrence of conjunctivitis, sinusitis and upper region tracheitis in Japanese quail (Coturnix coturnix japonica), possibly caused by *Mycoplasma gallisepticum* accompanied by Cryptosporidium sp. infection, Avian Pathology, 31:4, 363-370.

Nascimento, M.G.F.; and Nascimento, E.R.; (1986):

Infections sinusitis in cortunix quails in Brazil. Avian Dis., v.30, n.1, p.228-230.

OIE, (2004):

Avian mycoplasmosis. In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 5th edition. **Razin, S.: (1978):** 

The mycoplasmas. Microbiol. Rev.42:414-70.

Reda, L. M.; and Abd El-Samie., L.K.; (2012):

Some Studies on the Diagnosis of *Mycoplasma gallisepticum* in Chicken. Nat Sci. ;10(12):247-251.

Reece, R.L.; Ireland, L., and Scott, P.C.; (1986):

Mycoplasmosis in racing pigeons. Australian Vet. J., 63 (5): 166-167.

Sabry, M. Z.; and Ahmed, A. A.; (1975):

Evaluation of culture procedure for primary isolation of Mycoplasmas from female genitalia of farm animals. J. Egypt. Vet. Med. Ass., 35: 18 -34.

Sambrook, J.; Fritsch, E.F; and Maniatis, T; (1989):

Gel electrophoresis of DNA. Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, chapter 6.

### Stipkovits, L.; (2001):

Development in *Mycoplasma* infection: diagnosis and control, Proceedings XII In: International Congress of the World Veterinary Poultry Association. Edited bv Sami Ahmed. A.A.; Sabry, Y.I.: Uousef. A.A.; El-Gohary; and Hashim, M.M. The Egyptian Branch of the World Veterinary F.: Vitula. Peckova, L.: Poultry Association. pp. 50-58. Bandouchova, H.; Pohanka, M.; Novotny, A.; Jira, D.; Kral1, J.; Tiong, S.K.; (1978): Isolation of *Mvcoplasma* Ondracek. K.: **Osickova**, J.; gallisepticum from sinuses of three Zendulkova, D.; Rosenbergova, quails (Coturnix coturnix japonica). K.; Treml, F.; and Pikula, J.; ( Veterinary Record, 103, 539. 2011):

الملخص العربي

أجريت هذه الدراسة للمقارنة بين ميكروب الميكوبلازما جاليسبتيكم و الميكوبلازما سينوفي في طيور السمان المهاجرة و المحبوسة، ٥٤ (١٣,٥%) و ٨٧ (٢١,٧٥%) من عترات الميكوبلازما تم عزلها من ٤٠٠ طائر سمان لكل من الطيور المهاجرة و المحبوسة على التوالي. تم عزل ١٠ عترات للميكوبلازما جاليسبتيكم بواسطة العزل الأولي و اختبار تفاعل عديد البلمرة المتسلسل من طيور السمان المحبوسة، بينما تم عزل ٩ عترات الميكوبلازما جاليسبتيكم بواسطة العزل ٩ عنوا الميكوبلازما جاليسبتيكم بواسطة العزل الأولي و اختبار الميكوبلازما جاليسبتيكم بواسطة العزل الأولي و ١١ عترة بواسطة اختبار تفاعل عديد الميكوبلازما من طيور السمان المهاجرة. و لم يتم عزل الميكوبلازما سينوفي بواسطة البلمرة المتسلسل من طيور السمان المهاجرة. و لم يتم عزل الميكوبلازما سينوفي بواسطة المعران الأولي و اختبار تفاعل عديد البلمرة المتسلسل. كان التاليوزين أكثر المضادات الحيوية فعالية حيث ثبط ٨٨,٨٨% من معزولات الميكوبلازما جاليسبتيكم في حالة طيور السمان المهاجرة و ٨٠% في حالة طيور السمان المحبوسة باستخدام اختبار أقل تركيز مثبط لنمو الميكروبات.