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Abstract 
 

     In this paper, literal analytical expressions in power series forms are developed for the 
physical characteristics near interior points of polytropes.  
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1. Introduction  

    Polytropic models are vital for two classes of theoretical astrophysics: stellar 
structure (Hunter, 2001; and Prialnik, 2007) and galactic dynamics (Binney and 
Tremains, 1987; and Bertin, 2000).  In stellar structure one can obtain the march of 
the physical variables inside polytropic equilibrium configurations (Hansen et al., 
2004).  Most stellar models had more or less direct bearing on polytropes, and many 
analytical solutions to the internal constitution of stars are connected with polytropic 
relationships.  

     As, for examples, convective stellar models with radiation pressures and without 
radiation pressures where considered in full details long time ago.  Öpik (1962) and 
Bobrov et al., (1978) have estimated the polytropic indices of planetary models 
obeying the polytropic equation of state.  Magnetic braking of the rotation of pre-
main sequence stars approximated as fully convective n = 1.5 polytropes, has been 
calculated by Okamoto (1969 and 1970).  Vandervoort (1980) has considered an 
application  to  galactic  bars  of  non-axisymmetric, triaxial  polytropes  with  index 
0.5  n  0.808.  

     Moreover, particular models give systematic expositions of theoretical results, 
which bear some interest on the structure of rotating stars (Tassoul, 1978).  White 
dwarfs and neutron stars are best studied using differentially rotating  polytropic 
cores (Eriguchi and Mueller, 1985) Most  stellar models had more or less direct 
bearing on polytropes, and many analytical solutions to the internal constitution of 
stars are connected with polytropic relationships.  A model of pulsar that has a 
magnetized core was presented (Koichi, 2005) and the behaviour in evolution of 
spin and luminosity was analyzed.  The stars are supposed to be polytropes, thereby 
rendering all physical quantities calculable with any desired precision. Recently 
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(Gonzalo, 2008), investigated spherically symmetric, static matter configurations 
with polytropic equation of state for a class of f(R) models in Palatini formalism.  

     In fact, the polytrope representation of stars models is a method that today still 
lends valuable technique and insights to the internal structure of stars.  It is also 
proven to be most versatile in examination of a variety of situations, including the 
analysis of isothermal cores, convective stellar interiors and fully degenerate stellar 
configurations.  Moreover, composite polytropes are used to construct spherical, 
hydrostatic models of molecular clouds (Charles and Christopher, 2000).  Recently, 
Cristina (2007) obtained in the presence of a weak poloidal magnetic filed, the filed 
distribution in a sequence of composite polytrobic stars with uniform density 
throughout the core of polytropic index n=0, and an envelope with n=1.  

     On the other hand, in galactic dynamics, the Lane-Emden equation of the 
polytropic equilibrium configurations is considered as generating function of 
potential models for flattened galactic systems, upon such potentials the forces and 
the star orbits in these systems could be determined.  These latter results are 
extremely important in galactic studies; one of their most explored aspects is the 
problem of the correlation between the parameters of the orbit of a star and its 
physical properties.  Recently (Tung et al., 2007) used initial configurations with 
n=3 polytropes for axisymmetric simulations of the, magnetorotational collapse of 
very massive stars.  Moreover, the effects of a positive cosmological constant on 
astrophysical and cosmological configurations described by polytrobic equation of 
state (Antolinez et al., 2007).  

     From the above brief notes, one can detected that, why a great effort has been 
devoted up to now, and is being devoted at present to express some characteristic 
physical parameters related to ploytrobic models (e.g. Sharaf et al., 1998; Sharaf et 
al., 2004 and Horedt, 2004).  

     The basic equation for ploytrobic configurations is the Lane-Emden differential 
equation.  

     In fact, in the absence of closed analytical solution of a given differential 
equation the power series solution (which of course assumed to be convergent) can 
serve as the analytical representation of its solution.  Moreover,  it is worth noting  
that  the  power series   is  one of the most powerful methods of mathematical  
analysis and is no less (and sometimes even more) convenient than the elementary 
functions especially when the problems are to be studied on computers.  In fact, 
most computers often use series in the calculations of the majority of the elementary 
functions.  Analytical solution for this equation was established (Sharaf and Sharaf, 
1994) in a form of power series, which can be convergent for any allowable indices 
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n.  Accelerated form of these power series are developed by Saad, (2004) using 
Pade' technique and changing of the independent variable.  For polytropic and 
isothermal gas spheres (N=3), Nouh, (2004) improved the convergence of the power 
series by using a combination of two accelerating techniques Eular-Abel 
transformation and Pade' approximation.  

     The physical characteristics of polytropic configurations depends in turn on the 
solutions of Lane-Emden equation and have been widely quoted in the astrophysical 
literatures.  

     Due to the importance of ploytrobic configurations as mentioned in brief, and the 
needs of having numerical and analytical treatments for their structures so as to suit 
any application are what motivated the present paper with the following objective:  

"To establish literal analytical expressions in power series forms for the physical 
characteristics of the ploytrobic configurations."  

     The importance of these expressions is due to some factors of these are:  

(i) Their analytical forms, offer in general much deeper insight into the nature 
of the physical characteristics to which they refer.  

(ii) These expressions are general in the sense that they could be used for any 
polytrobic index n, so they can suit many of the applications.   

(iii) The coefficients of each of these expressions have been found directly 
without the use of recurrence formulae.  

2. Lane-Emden equation and its analytical solution:  

     Consider equations of state of the form  
KP  ,          (1)  

where K and  are constants, known as polytropic equations of state.  It is customary 
to define the corresponding polytropic index, denoted by n, as  

n
11 .          (2)  

     Let r the space coordinate giving the distance from the centre of the star.  
Consequently, the density and the pressure are functions of the distance r.  
     Lane-Emden equation of index n is given by [e.g., Prialnik, 2007]  
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c  the central density and G is the gravitational constant its numerical value is  
G = 6.673  10-8 cm3/gm/sec2. 

     The relation between  and  is given as  
n

c   .           (4)  
Equation (3) is to be solved under the conditions  

at    = 0;           = 1;          0



d
d

.          (5)  

With these initial conditions, the second order differential Equation (3) (Lane-
Emden equation) will possess a unique solution.  This solution is called the Lane-
Emden function of index n and is denoted by  = n ().  

 

2.1  0    1 Power series solution of Lane-Emden equation  

     The power series solution of Lane-Emden equation valid  0    1 is (Sharaf 
and Sharaf, 1994) given as  
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which satisfies the initial conditions of Equation (5) , and the a's coefficients are 
completely determined in full recursive way from Equation (7) and  
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The well known closed analytical solution of Lane-Emden Equation for n = 0, 1 
and 5 could easily obtained from Equations (6) and (8), and we get  
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2.2 Symbolic expressions of the a's coefficients  

     Due to the limited space, the symbolic expressions of the a's coefficients are 
listed in Table (A1) of the Appendix for j = 1, 2, …, 7.  

3. Symbolic Expressions of the physical Characteristics of polytropes: 

     In this section literal analytical expressions in power series forms are established 
for  the  physical  characteristics of polytropes.   These series converge very rabidly 
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 0    1.  Due to the limited space, only the first five symbolic expressions of the 
coefficients for each physical characteristic will be listed in a separate table.  
 
3.1 The Mass 

     The mass interior to  is given as  
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then using Equation (6) we get  
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Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5 are listed in Table (A2) 
of the Appendix.  
 
 
3.2 The Mass-radius relation 

     The mass-radius relation is given as  
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Using Equation (6) we get  
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and   jcj ajv  28 .  
Symbolic expressions of the coefficients vj ; j = 1, 2, 3, 4, 5 are listed in Table (A3) 
of the Appendix.  
 
3.3 Central condensation  

     The central condensation is given as  

  1/3  


 ddc ,  

where   is the mean density.  Using Equation (6) we get  
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Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5 are listed in Table (A4) 
of the Appendix.  
 
3.4 The Temperature 

     The temperature is given as  
cTT  . 

Using Equation (6), we get  
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Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5 are listed in Table (A5) 
of the Appendix.  

3.5 Pressure 
     The pressure is given as  

1)(  n
cPP  . 

Using Equation (6), we get  
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Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5 are listed in Table (A6) 
of the Appendix.  
 
3.6 The Density 

     Since  
n
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Using Equation (6), we get  
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Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5 are listed in Table (A7) 
of the Appendix.  
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3.7 Gravity 

     The gravity g() could be written as  
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Then using Equation (6), we get  
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Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5 are listed in Table (A8) 
of the Appendix.  
 
 
3.8 Gravitational acceleration 

     The gravitational acceleration is given by  
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Using Equation (6), we get  
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Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5 are listed in Table (A9) 
of the Appendix.  

4. Conclusion  

     In concluding the present paper, literal analytical expressions in power series 
forms are developed for the physical characteristics near interior points of 
polytropes.  

     The importance of these expressions are due to some facts, of these are the 
following:  

1. The expressions are obtained as power series in .  Consequently, we can obtain 
physical characteristics X (say) very simply and efficiently by using any power 
series evaluation algorithms.  On the other hand, the solution of Lane-Emden 
equation to obtain the physical characteristics X by any  numerical differential 
equation solver gives us X only at definite values of   belonging to the set S, 
where  

...},3,2,,0{  S  
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where   the step size used in numerical differential equation solver.  So if we 
need the values of X at S* , we must  apply an interpolation formula.  A 
process, which needs more execution time, moreover, which is the most critical, 
the loss of accuracy that usually associated with the usage of interpolation 
formula.  

2. The analytical power series representations of the physical characteristics are 
invariant under many operations because, addition, multiplication, exponent ion, 
integration, different ion, etc of a power series is also a power series.  A fact 
which provides excellent flexibility in dealing with analytical as well as 
computational developments of the problems of polytropes.  

     Once more, numerical differential equation solver can not, by any way, provide 
such flexibility.  Moreover, these analytical formulae usually offer much deeper 
insight into the nature of a physical characteristic as compared to numerical 
integration.  
 

Appendices 
Table (A1): Symbolic expressions of the coefficients aj ; j = 1, 2, 3, 4, 5, 6, 7.  
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Table (A2): Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5. 
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Table (A3): Symbolic expressions of the coefficients vj ; j = 1, 2, 3, 4, 5. 
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Table  ِ◌(A4): Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5. 
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Table (A5): Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5. 
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Table (A6): Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5. 
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Table (A7): Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5. 
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Table (A8): Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5. 
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Table (A9): Symbolic expressions of the coefficients j ; j = 1, 2, 3, 4, 5. 
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