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ABSTRACT 

     A several types of forces are acting on the satellite.  These forces are classified into conservative and non-

conservative force.  The main concern in the present research work is to studding the effect of conservative 

forces on the satellite orbital motion and represent this effect on satellite ground track.  Where the ground tracks 

are the locus of points formed by the points on the Earth directly below a satellite as it travels in orbit.  A 

mathematical model and a program code is designed using Matlab package to calculate the perturbed ground 

track under J2 and luni-solar forces. Whereas the J2 and Luni-Solar are a conservative forces, the secular 

variation is presented only in RAAN and  .  Otherwise the remaining orbital element is varies periodically.      

The perturbed ground track is calculated under the effect of J2 and luni-solar forces. The perturbed position 

vectors for a satellite are converted to its corresponding latitudes and longitudes.  The satellite’s position in one 

revolution is displayed to represent where the satellite at the time desired.  
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1. INTRODUCTION 

The studying and modeling perturbations 

are key disciplines in astrodynamics. We must 

consider the forces acting on the satellite. There 

are two types of forces causing the perturbative 

effects on a satellite:  

1. Conservative forces (for example 

central-body and third-body gravitational).  

2. Non-conservative forces (for example 

solar-radiation pressure, thrust, and drag).  

Propagation concerns with the 

determination of the motion of a body over 

time. According to Newton’s laws, the motion 

of a body depends on its initial state (i.e., its 

position and orientation at some known time) 

and the forces that act upon it over time. There 

are three types of orbit propagators: 

1. Numerical Integration Propagators  

2. Analytic Propagators  

3. Semi-Analytic Propagators  

Ground tracks are the locus of points 

formed by the points on the Earth directly 

below a satellite as it travels in orbit.  To 

determine ground tracks for a satellite's orbit, 

we combine both of Kepler's routines with the 

conversion of a position vector to its sub-

satellite point.  This particular combination 

helps us in determine satellite orbit position and 

location relative to a ground site. 

2. The equation of motion with perturbation  

     The Equation of motion for two-body of 

relative motion is  

r
r

r


3


−= ,      (2.1)  

where  

 is Earth’s gravitational parameter,  = 

398600.4418 km3/sec2, and  

r


 is satellite position vector;  

the perturbations that effects on the satellite can 

we classified into two types:  

1. Gravitational perturbation: such as 

oblateness of Earth, N-body attraction and 

others.  

2. Non-gravitational perturbation: such as 

atmospheric drag, solar radiation pressure, and 

others, then  

ap = aGravitational + aNon-gravitational,   (2.2)  

where  
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ap is the acceleration due to the summation 

of perturbing forces, then the acceleration due 

to perturbation is given by  

par
r

r
 +−=

3


.     (2.3)  

3. The Earth's gravitational force 

The net result of the irregular shape of the 

Earth is to produce a variation in the 

gravitational acceleration that predicted using a 

point of mass distribution.  An accurate model 

of the Earth can be obtained through the use of 

a series of spherical harmonics; which 

effectively represent a gravitational body as a 

series of mass centers, some more dominant 

than others, the most dominant term being that 

of a perfectly uniform sphere. The gravitational 

potential of the Earth U is defined by [11], [22] 

and [44].  
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where  

R is Earth's mean equatorial radius, R = 

6378.165 km,  

 is Geocentric latitude of the satellite,  

 is Geocentric longitude of the satellite,  

Pl,m is the associated Legendre polynomial of 

degree l and order m,  and 

Cl,m & Sl,m are Geopotential coefficients.  

Equation (3.1) describes the gravitational 

attraction resulting from the irregular 

distribution of the Earth's mass using a 

potential function.  There are three types of 

spherical harmonic.  

Zonal harmonic represented by l where  

0, =−= mmll CJ .  (3.2)  

The potential on longitude vanishes and the 

field is symmetrical about the polar axis. These 

are bands of latitude.  For any ][sin, mlP  there 

are l circles of latitude which 0=iP , and 

hence (l+1) zones [11].  The strongest 

perturbation due to the Earth's shape is J2.  

Where  

J2 =   0.0010826269, J3 = - 0.000025323,       

J4 = - 0.000016204.    (3.3)  

Sectorial harmonic represent bands of 

longitude where l = m.  The polynomials 
90],[sin, =mlP . The sphere is divided 

into 2l sectors.  

Tesseral harmonic which l ≠ m ≠ 0, the 

sphere is divided into a checkerboard array. 

The number of circles of latitude which 

0][sin, =mlP  is equal to (l – m), whereas 

][sin][cos ,,  mSmC mlml +  vanish along 2m 

meridians of longitude.  These zero lines 

represent the center of the latitude and 

longitude bands.  Figures (3.1, 3.2 and 3.3) are 

the various types of harmonic coefficients.  

Now from equation (3.1), we use the 

gradient to determine the accelerations 

resulting from the central body.  The gradient 

operation produces acceleration components 

along each axis.  This is actually a special case 

for J2.  [3 and 10]  
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Using equation (3.2)  

   

   

Figure (Error! No text of specified style in document.-1): Zonal harmonics 
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Determine the associated Legendre 

function for ][sin0,2 P  [11].  

]1)(sin3[5.0][sin 2

0,2 −= P ,  (3.6)  

by a substitute in equation (3.5), then  
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Let  

rrk /sin = .    (3.8)  

Substituting in equation (3.7)  
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Differentiate equation (3.9) to get  
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Simplify to  









+−−=



  1
)(5

2

3
2

2

5

2

22

r

r

r

rRJ

r

R kk

l


. (3.11)  

Similarly, we obtain to 
lr

R



 2  and 
kr

R



 2 , the 

accelerations component due to J2 are  
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4. The Luni-Solar perturbation  

The other bodies, such as the Sun or Moon, 

have a greater effect on satellites in higher 

altitude orbits. Because the cause of 

perturbations from the Sun and the Moon is the 

gravitational attraction; which is conservative.  

   

   

Figure (3.1): Zonal harmonics  

 

   

   

Figure (3.2): Tesseral harmonics 
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let the third body denoted by 3 and assume 

the mass of the satellite is negligible.  The 

general form of the equation of motion for the 

three-body system is [11]  
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,  (4.1)  

where  

 is the subscript denoted to the Earth, and  

sat is the subscript denoted to the artificial 

satellite.  

The first term of equation (4.1) is the two-

body acceleration of the Earth acting on the 

satellite.  The second term has two parts (direct 

and indirect effect) and it represents the 

perturbation.  

5. Variation of the parameter (VOP)  

Lagrange and Gauss both developed VOP 

methods to analyze perturbations.  Lagrange's 

technique works for conservative accelerations. 

Gauss's technique works for non-conservative 

accelerations.  

The VOP equations of motion are a system 

of first-order differential equations that 

describe the rates of change for the time-

varying elements.  The gauss’s VOP uses the 

specific force components resolved in the 

satellite coordinate system RSW [8, 9 and 11].  

It’s expressed as  









+

−
= SR Fr

r

p
Fe

endt

da
sin

1

2

2
,  (5.1) 

2

R S

de 1 e e cos
sin F cos F ,

dt na 1 ecos

  − +  
=  + +  

+    

     (5.2)  

WF
ean

ur

dt

dI

22 1

cos

−
= ,    (5.3)  

WF
ean

ur

dt

d

22 1sin

sin

−
=




,   (5.4)  

2

R S W

d 1 e r r cot Isin u
cos F sin 1 F F ,

dt n a e p h

   −
= −  +  + −  

  

     (5.5)  

( )  )(sin)(2cos
1

02

0 tt
dt

dn
FrpFerp

aendt

dM
SR −−+−−= 

.      (5.6)  

     If the disturbing function R is known, 

we can use the Gaussian form of each force 

component.  

     The acceleration components of the 

disturbing force are  
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Using equation (3.1), then  
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zonal harmonics cause secular variation in three 

orbital elements, right ascension of ascending 

nod  the argument of perigee , and mean 

anomaly M [6 and 12].  

The secular rate of change of nod   is 

given by  

I
p

RJn
cos

2

3
2

2

2
sec

−= ,  (5.13)  

where  

R is the radius of the Earth,  

n is the mean motion,  

p is the semi-parameter,  

I is the inclination.  

     An analytical solution to determine the 

change in the node over time is  

t+= 
0 ,    (5.14)  

where 0 is the initial value of the node.  

The secular rate of change of argument of 

perigee  is  
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An analytical solution to determine the 

change in the argument of perigee over time is  

t+=  
0 ,    (5.16)  

where 0 is the initial value of the 

argument of perigee.  

An analytical solution to determine the 

change in the mean anomaly M over time is  

M = M0 + n t,      (5.17)  

where  

M0 is the initial value of mean anomaly.  

The secular rate of change of M0 is  

)sin32(
4
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(5.18)  

Now we will reproduce the VOP equations 

of motion under Luni-solar force.  These 

expressions show the complexity of 

analytically modeling for third-body 

perturbations. In the first, we needed to the 

direction cosines for the third body.  The 

direction cosines, A, B and C  

A = cos(I3) sin(u3) sin(-3) + cos(-3) 

cos(u3),     (5.19)  

B = cos(I) [cos(I3) sin(u3) cos(-3) – sin(-

3) cos(u3)] + sin(I) sin(I3) sin(u3),  

     (5.20)  

C = sin(I) [-cos(I3) sin(u3) cos(-3) + sin(-

3) cos(u3)] + cos(I) sin(I3) sin(u3),  

     (5.21)  

The secular and periodic (short and long 

periodic) rates of change (deg./day) of the 

elements [1] are  

0=a ,      (5.22)  
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For small eccentricities, the second-order 

terms become noticeable for the argument of 

perigee.  The only secular rate of changes will 

be in the node, the perigee, and the mean 

anomaly at epoch.  For a circular orbit, we 

obtain the secular rate of change of nod  is  
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The secular rate of change of argument of 

perigee  is  
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     Smith's equations [2] that include terms 

in e2 are  
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6. The Ground tracks 

     To convert a position vector for a 

satellite to the corresponding latitude and 

longitude (is the core technique in determining 
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ground tracks).  We have two ways to do this 

transformation: one is iterative and another is 

analytical [5].  We find the right ascension 

directly from the Cartesian position vector.  Let 

the equatorial projection of the satellite's 

position vector be  

22

Jlsat rrr += ,    (6.1)  

We find the right ascension through sine 

and cosine expressions  

sat

l

r

r



 =sin ,    (6.2.1)  

sat

J

r

r



 =cos .     (6.2.2)  

The difficult part of finding the geodetic 

latitude is that it usually requires iteration. To 

determine a starting value for the iteration, we 

can use the position vector as a rough guess 

because the declination and geocentric latitude 

are equal [7].  Thus,  

r

r satk
=sin ,     (6.3)  

Now we find an expression for geodetic 

latitude gd, we now have the satellite 

coordinates and not the site coordinates.  

Assume gd = .  The sine and cosine 

expressions [11] are given by  

ellp
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Solving the sine expression for hellp gives 

us  

−= S
r

h
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,    (6.5)  

the tangent expression is  
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Substitute hellp using equation (6.5)  
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where C  denoted by  
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Substitute equation (6.7) into equation (6.6)  
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Using equation (6.7), then  
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7. RESULTING AND CONCLUSION  

In this section, a computer simulation has 

been developed to the equation of perturbed 

orbital motion due to spherical zonal 

harmonics  and Luni-Solar forces using the 

Matlab program.  The perturbed ground track 

under  and Luni-Solar was calculated after 5 

days for China sat 2D, Molniya 3-31, and 

Egypt sat A satellites.  The two line elements 

[13] are  

China sat 2D  

1  43920U 19001A   19011.36550613  . 

00000967  13253-5  10000-3 0  9995 

2    43920  27.1061   4.7362 7309322 179.7744 

160.1328  2.28097794    25 

Molniya 3-31 

1 17328U 87008A   19002.75529764  

.00000161  00000-0  00000+0 0  9998  
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2  17328  63.9674 259.4577 6796076 265.7427  

20.5276  2.00665848230580  

Egypt sat A  

1 44047U 19008A   19055.20707225 -

.00003965  00000-0 -62322-3 0  9995 

2   44047  98.0166 121.3798 0003071  71.7230 

288.4358 14.72075970   373 
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Figure (7.1) shows one revolution of perturbed ground track for China sat 2D after 5 days.  
 

 
Figure (7.1): Perturbed ground track for China sat 2D. 

 
 

Figure (7.2) shows one revolution of perturbed ground track for Molniya 3-31 after 5 days.  
 

 
Figure (7.2): Perturbed ground track for Molniya 3-31 

 

Figure (7.3) shows one revolution of perturbed ground track for Egypt sat A after 5 days.  

 
Figure (7.3): Perturbed ground track for Egypt sat A 
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The perturbed ground track is calculated 

under the effect of J2 and luni-solar forces.  

The perturbed position vectors for a satellite is 

converted to the corresponding latitude and 

longitude. As expected the strongest 

perturbation due to the  acting on the nearest 

satellite to the Earth as shown Figure (7.1) to 

Figure (7.3). The satellite's positions in one 

revolution are displayed to represent where the 

satellite at the time desired.  
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 : الملخص العربي

هناا ع ةاانو ع اا ال وااا اى اا ر اىياال ماا    ة اا  اى  اا  

اىصن ة  ، حيث مصنف هذه اى  ر اى  ق م ن الأوىل ق و 

  وح فظاة   اىدانا اى سي ا  فا  يوح فظة واىث  ية ق ر غ

ماث ي  اى ا و اى ح فظاة ة ا  هذه اى رقة اىبحثية ه  دراساة 

اىيااث ي   اىح كااة اى نار ااة ىرق اا ر اىصاان ةية وا  اا د هااذا

ة اا  اى  اا ر الأرلأاال ىرق اا ر اىصاان ةية ، حيااث م اا ن 

اى   رات الأرلأية ه  و لأع اىن  ط اىي  مشا  د  اىن ا ط 

ة اال الأرم وب ةاا و عساامر اى  اا  اىصاان ة  ا ناا   ا ي  ىاا  

فاا  اى اانار    اام مصاا يم   اا رم ر  لأاا  ورواا    سااي نا  

ورىاال ىح اا م اى  اا ر الأرلأاال  Matlab   اا وح ح وااة 

اىشاا    –وقاا و بااذم اى  اا   2Jحاات مااث ي  اى ضااب م م

luni-solar    

اىشا   ها  قا و  –وق و باذم اى  ا   2Jف  حيا عن 

وح فظة ، ف ن مم ا  ا د اتاي ا م اك ا  ف ا  فا  كار واا 

، عواا   اا ق  ةن لاا  اى اانار ف  داا  ω و  Ω اىعنصاا  ا 

 م ي ف  ش ر دوري  

 يم ح  م اى  ا ر الأرلأال اى ضاب م محات ماث ي  

2J اىشااا      ااايم مح  ااار وي دااا ت  –اى  ااا  م وقااال باااذ

اى  قع اى ضب  ة ى     اىصان ة  اىا  اى  ا ر الأرلأال 

)عي تب ط اىب ل واىع م اى     اة      ايم م ثيار و قاع 

  وب  م   وقتاى    اىصن ة  ف  دورو واحنو ةنن عي 

http://www.space-track.org/
http://www.space-track.org/
http://www.space-track.org/

