PERTURBED GROUND TRACK UNDER THE INFLUENCE OF J_{2} AND LUNISOLAR FORCES

M.E. Awad ${ }^{1}$, I.A. Hassan ${ }^{2 *}$, H.R. Dewdar ${ }^{1}$, and A.A. Saad ${ }^{3}$
${ }^{1}$ Faculty of Science, Cairo University, Egypt.
${ }^{2}$ Faculty of Science, Al-Azhar University, Cairo, Egypt.
${ }^{3}$ National Authority for Remote Sensing and Space Science, Cairo, Egypt.
*Corresponding author : inlds_hassan@yahoo.com

Abstract

A several types of forces are acting on the satellite. These forces are classified into conservative and nonconservative force. The main concern in the present research work is to studding the effect of conservative forces on the satellite orbital motion and represent this effect on satellite ground track. Where the ground tracks are the locus of points formed by the points on the Earth directly below a satellite as it travels in orbit. A mathematical model and a program code is designed using Matlab package to calculate the perturbed ground track under J_{2} and luni-solar forces. Whereas the J_{2} and Luni-Solar are a conservative forces, the secular variation is presented only in RAAN and ω. Otherwise the remaining orbital element is varies periodically. The perturbed ground track is calculated under the effect of J_{2} and luni-solar forces. The perturbed position vectors for a satellite are converted to its corresponding latitudes and longitudes. The satellite's position in one revolution is displayed to represent where the satellite at the time desired.

Keywords: Satellite, oblateness, earth's gravitational force, luni-Solar force, ground Track.

1. INTRODUCTION

The studying and modeling perturbations are key disciplines in astrodynamics. We must consider the forces acting on the satellite. There are two types of forces causing the perturbative effects on a satellite:

1. Conservative forces (for example central-body and third-body gravitational).
2. Non-conservative forces (for example solar-radiation pressure, thrust, and drag).

Propagation concerns with the determination of the motion of a body over time. According to Newton's laws, the motion of a body depends on its initial state (i.e., its position and orientation at some known time) and the forces that act upon it over time. There are three types of orbit propagators:

1. Numerical Integration Propagators
2. Analytic Propagators
3. Semi-Analytic Propagators

Ground tracks are the locus of points formed by the points on the Earth directly below a satellite as it travels in orbit. To determine ground tracks for a satellite's orbit, we combine both of Kepler's routines with the conversion of a position vector to its sub-
satellite point. This particular combination helps us in determine satellite orbit position and location relative to a ground site.

2. The equation of motion with perturbation

The Equation of motion for two-body of relative motion is

$$
\begin{equation*}
\ddot{\vec{r}}=-\frac{\mu}{r^{3}} \vec{r}, \tag{2.1}
\end{equation*}
$$

where
μ is Earth's gravitational parameter, $\mu=$ $398600.4418 \mathrm{~km} 3 / \mathrm{sec} 2$, and
\vec{r} is satellite position vector;
the perturbations that effects on the satellite can we classified into two types:

1. Gravitational perturbation: such as oblateness of Earth, N-body attraction and others.
2. Non-gravitational perturbation: such as atmospheric drag, solar radiation pressure, and others, then
$a_{p}=a_{\text {Gravitational }}+a_{\text {Non-gravitational }}$,
where
a_{p} is the acceleration due to the summation of perturbing forces, then the acceleration due to perturbation is given by

$$
\begin{equation*}
\ddot{\vec{r}}=-\frac{\mu}{r^{3}} \stackrel{\rightharpoonup}{r}+\vec{a}_{p} \tag{2.3}
\end{equation*}
$$

3. The Earth's gravitational force

The net result of the irregular shape of the Earth is to produce a variation in the gravitational acceleration that predicted using a point of mass distribution. An accurate model of the Earth can be obtained through the use of a series of spherical harmonics; which effectively represent a gravitational body as a series of mass centers, some more dominant than others, the most dominant term being that of a perfectly uniform sphere. The gravitational potential of the Earth U is defined by [11], [22] and [44].
$U=\frac{\mu}{r} \sum_{l=0}^{\infty} \sum_{m=0}^{l}\left(\frac{R_{\oplus}}{r}\right)^{l} P_{l, m}[\sin \phi]\left\{C_{l, m}[\cos m \lambda]+S_{l, m}[\sin m \lambda]\right\}$,
where
R_{\oplus} is Earth's mean equatorial radius, $R_{\oplus}=$ 6378.165 km ,
ϕ is Geocentric latitude of the satellite,
λ is Geocentric longitude of the satellite,
$P_{l, m}$ is the associated Legendre polynomial of degree l and order m, and
$C_{l, m} \& S_{l, m}$ are Geopotential coefficients.
Equation (3.1) describes the gravitational attraction resulting from the irregular distribution of the Earth's mass using a potential function. There are three types of spherical harmonic.

$$
\begin{equation*}
J_{l}=-C_{l, m} \forall_{m}=0 \tag{3.2}
\end{equation*}
$$

The potential on longitude vanishes and the field is symmetrical about the polar axis. These are bands of latitude. For any $P_{l, m}[\sin \phi]$ there are l circles of latitude which $P_{i}=0$, and hence $(l+l)$ zones [11]. The strongest perturbation due to the Earth's shape is J_{2}. Where
$J_{2}=0.0010826269, J_{3}=-0.000025323$, $J_{4}=-0.000016204$.

Sectorial harmonic represent bands of longitude where $l=m$. The polynomials $P_{l, m}[\sin \phi], \quad \forall_{\phi}= \pm 90^{\circ}$. The sphere is divided into $2 l$ sectors.

Tesseral harmonic which $l \neq m \neq 0$, the sphere is divided into a checkerboard array. The number of circles of latitude which $P_{l, m}[\sin \phi]=0$ is equal to $(l-m)$, whereas
$C_{l, m}[\cos m \lambda]+S_{l, m}[\sin m \lambda]$ vanish along $2 m$ meridians of longitude. These zero lines represent the center of the latitude and longitude bands. Figures (3.1, 3.2 and 3.3) are the various types of harmonic coefficients.

Now from equation (3.1), we use the gradient to determine the accelerations resulting from the central body. The gradient operation produces acceleration components along each axis. This is actually a special case for J_{2}. [3 and 10]

$$
\begin{equation*}
R_{2}=\frac{\mu}{r}\left(\frac{R_{\oplus}}{r}\right)^{2} P_{2,0}[\sin \phi] C_{2,0} \tag{3.4}
\end{equation*}
$$

Using equation (3.2)
Zonal harmonic represented by l where

Figure (Error! No text of specified style in document.-1): Zonal harmonics

$$
\begin{equation*}
R_{2}=-\frac{\mu J_{2}}{r}\left(\frac{R_{\oplus}}{r}\right)^{2} P_{2,0}[\sin \phi] . \quad \text { (3.5) } \quad \frac{\partial R_{2}}{\partial r_{l}}=-\frac{3 \mu J_{2} R_{\oplus}^{2} r_{k}}{2 r^{5}}\left(-\frac{5\left(r_{k}^{2}\right)}{r^{2}}+1\right) . \tag{3.5}
\end{equation*}
$$

Determine the associated Legendre

$l=m=3$

$$
l=m=4
$$

$$
l=m=2
$$

$$
l=2, m=1
$$

Figure (3.1): Zonal harmonics

Figure (3.2): Tesseral harmonics
function for $P_{2,0}[\sin \phi][11]$.
$P_{2,0}[\sin \phi]=0.5\left[3 \sin ^{2}(\phi)-1\right]$,
by a substitute in equation (3.5), then
$R_{2}=-\frac{3 \mu J_{2}}{2 r}\left(\frac{R_{\oplus}}{r}\right)^{2}\left[\sin ^{2} \phi-\frac{1}{3}\right]$.
Let
$\sin \phi=r_{k} / r$.
Substituting in equation (3.7)

$$
\begin{equation*}
R_{2}=-\frac{3 \mu J_{2} R_{\oplus}^{2}}{2 r^{3}}\left(\frac{r_{k}}{r}\right)^{2}+\frac{\mu J_{2} R_{\oplus}^{2}}{2 r^{3}} \tag{3.9}
\end{equation*}
$$

Differentiate equation (3.9) to get

$$
\begin{equation*}
\frac{\partial R_{2}}{\partial r_{1}}=-\frac{3 \mu J_{2} R_{\oplus}^{2} r_{k}^{2}}{2 r^{3}}\left(-\frac{5\left(2 r_{i}\right)}{2 r^{7}}\right)+\frac{\mu J_{2} R_{\oplus}^{2}}{2}\left(-\frac{3\left(2 r_{1}\right)}{2 r^{5}}\right) \tag{3.10}
\end{equation*}
$$

Similarly, we obtain to $\frac{\partial R_{2}}{\partial r_{l}}$ and $\frac{\partial R_{2}}{\partial r_{k}}$, the accelerations component due to J_{2} are

$$
\begin{align*}
& a_{l}=\frac{\partial R_{2}}{\partial r_{l}}=-\frac{3 J_{2} R_{\oplus}^{2} r_{k}}{2 r^{5}}\left(1-\frac{5\left(r_{k}^{2}\right)}{r^{2}}\right), \tag{3.12}\\
& a_{J}=\frac{\partial R_{2}}{\partial r_{J}}=-\frac{3 J_{2} R_{\oplus}^{2} r_{J}}{2 r^{5}}\left(1-\frac{5\left(r_{k}^{2}\right)}{r^{2}}\right), \tag{3.13}\\
& a_{k}=\frac{\partial R_{2}}{\partial r_{k}}=-\frac{3 J_{2} R_{\oplus}^{2} r_{k}}{2 r^{5}}\left(3-\frac{5\left(r_{k}^{2}\right)}{r^{2}}\right) . \tag{3.14}
\end{align*}
$$

4. The Luni-Solar perturbation

The other bodies, such as the Sun or Moon, have a greater effect on satellites in higher altitude orbits. Because the cause of perturbations from the Sun and the Moon is the gravitational attraction; which is conservative.

Simplify to
let the third body denoted by 3 and assume the mass of the satellite is negligible. The general form of the equation of motion for the three-body system is [11]
where
\oplus is the subscript denoted to the Earth, and
sat is the subscript denoted to the artificial satellite.

The first term of equation (4.1) is the twobody acceleration of the Earth acting on the satellite. The second term has two parts (direct and indirect effect) and it represents the perturbation.

5. Variation of the parameter (VOP)

Lagrange and Gauss both developed VOP methods to analyze perturbations. Lagrange's technique works for conservative accelerations. Gauss's technique works for non-conservative accelerations.

The VOP equations of motion are a system of first-order differential equations that describe the rates of change for the timevarying elements. The gauss's $V O P$ uses the specific force components resolved in the satellite coordinate system RSW [8, 9 and 11]. It's expressed as

$$
\begin{align*}
& \frac{d a}{d t}=\frac{2}{n \sqrt{1-e^{2}}}\left(e \sin v F_{R}+\frac{p}{r} r F_{S}\right), \tag{5.1}\\
& \frac{\mathrm{de}}{\mathrm{dt}}=\frac{\sqrt{1-\mathrm{e}^{2}}}{\mathrm{na}}\left\{\sin v \mathrm{~F}_{\mathrm{k}}+\left(\cos v+\frac{\mathrm{e}+\cos v}{1+\mathrm{e} \cos v}\right) \mathrm{F}_{\mathrm{s}}\right\}, \tag{5.2}\\
& \frac{d I}{d t}=\frac{r \cos u}{n a^{2} \sqrt{1-e^{2}}} F_{W}, \tag{5.3}\\
& \frac{d \Omega}{d t}=\frac{r \sin u}{n a^{2} \sin v \sqrt{1-e^{2}}} F_{W}, \tag{5.4}\\
& \frac{\mathrm{~d} \omega}{\mathrm{dt}}=\frac{\sqrt{1-\mathrm{e}^{2}}}{\mathrm{nae}}\left\{-\cos v \mathrm{~F}_{\mathrm{n}}+\sin v\left(1+\frac{\mathrm{r}}{\mathrm{p}}\right) \mathrm{F}_{\mathrm{s}}\right\}-\frac{\mathrm{r} \cot \mathrm{sin} u}{\mathrm{~h}} \mathrm{~F}_{\mathrm{w}}, \tag{5.5}
\end{align*}
$$

$\frac{d M_{0}}{d t}=\frac{1}{n e a^{2}}\left\{(p \cos v-2 e r) F_{R}-(p+r) \sin v F_{S}\right\}-\frac{d n}{d t}\left(t-t_{0}\right)$

If the disturbing function R is known, we can use the Gaussian form of each force component.

The acceleration components of the disturbing force are
$F_{R}=\frac{\partial R}{\partial r}$,
$F_{S}=\frac{1}{r} \frac{\partial R}{\partial u}$,
$F_{W}=\frac{1}{r \sin u} \frac{\partial R}{\partial I}$.
Using equation (3.1), then
$F_{R}=\frac{\partial R}{\partial r}$,
$F_{S}=\frac{1}{r} \frac{\partial R}{\partial u}$,
$F_{W}=\frac{1}{r \sin u} \frac{\partial R}{\partial I}$.
zonal harmonics cause secular variation in three orbital elements, right ascension of ascending $\operatorname{nod} \Omega$ the argument of perigee ω, and mean anomaly M [6 and 12].

The secular rate of change of $\operatorname{nod} \Omega$ is given by
$\dot{\Omega}_{\mathrm{sec}}=-\frac{3 n J_{2} R_{\oplus}^{2}}{2 p^{2}} \cos I$,
where
R_{\oplus} is the radius of the Earth,
n is the mean motion,
p is the semi-parameter,
I is the inclination.
An analytical solution to determine the change in the node over time is
$\Omega=\Omega_{0}+\dot{\Omega} \Delta t$,
where Ω_{0} is the initial value of the node.
The secular rate of change of argument of perigee ω is

PERTURBED GROUND TRACK UNDER THE INFLUENCE OF $J_{2} \ldots$

$\dot{\omega}_{\mathrm{sec}}=-\frac{3 n J_{2} R_{\oplus}^{2}}{4 p^{2}}\left(4-5 \cos ^{2} I\right)$,
An analytical solution to determine the change in the argument of perigee over time is
$\omega=\omega_{0}+\dot{\omega} \Delta t$,
where ω_{0} is the initial value of the argument of perigee.

An analytical solution to determine the change in the mean anomaly M over time is
$M=M_{0}+n \Delta t$,
where
M_{0} is the initial value of mean anomaly.
The secular rate of change of M_{0} is
$\dot{M}_{0}=-\frac{3 n J_{2} R_{\oplus}^{2} \sqrt{1-e^{2}}}{4 p^{2}}\left(-2+3 \sin ^{2} I\right)$.

Now we will reproduce the $V O P$ equations of motion under Luni-solar force. These expressions show the complexity of analytically modeling for third-body perturbations. In the first, we needed to the direction cosines for the third body. The direction cosines, A, B and C
$A=\cos \left(I_{3}\right) \sin \left(u_{3}\right) \sin \left(\Omega-\Omega_{3}\right)+\cos \left(\Omega-\Omega_{3}\right)$
$\cos \left(u_{3}\right)$,
$B=\cos (I)\left[\cos \left(I_{3}\right) \sin \left(u_{3}\right) \cos \left(\Omega-\Omega_{3}\right)-\sin (\Omega-\right.$
$\left.\left.\Omega_{3}\right) \cos \left(u_{3}\right)\right]+\sin (I) \sin \left(I_{3}\right) \sin \left(u_{3}\right)$,
$C=\sin (I)\left[-\cos \left(I_{3}\right) \sin \left(u_{3}\right) \cos \left(\Omega-\Omega_{3}\right)+\sin (\Omega-\right.$
$\left.\left.\Omega_{3}\right) \cos \left(u_{3}\right)\right]+\cos (I) \sin \left(I_{3}\right) \sin \left(u_{3}\right)$,

The secular and periodic (short and long periodic) rates of change (deg./day) of the elements [1] are
$\dot{a}=0$,

$$
\begin{equation*}
\dot{r}_{p}=-a \dot{e}, \tag{5.22}
\end{equation*}
$$

$$
\begin{align*}
& \dot{e}=-\frac{15 \mu_{3} e \sqrt{1-e^{2}}}{4 n r_{3}^{3}}\left[2 A B \cos (2 \omega)-\left(A^{2}-B^{2}\right) \sin (2 \omega)\right] \\
& \dot{\mathrm{E}}=\frac{3 \mu_{3} \mathrm{C}}{4 \mathrm{nr}_{3}^{3} \sqrt{1-\mathrm{e}^{2}}}\left\{\mathrm{~A}\left[2+3 \mathrm{e}^{2}+5 \mathrm{e}^{2} \cos (2 \omega)\right]+5 \mathrm{e}^{2} \mathrm{~B} \sin (2 \omega)\right\},
\end{align*}
$$

$$
\begin{equation*}
\varsigma \&=\frac{3 \mu_{3} \mathrm{C}}{4 \mathrm{nr}_{3}^{3} \sin v \sqrt{1-\mathrm{e}^{2}}}\left\{\mathrm{~B}\left[2+3 \mathrm{e}^{2}-5 \mathrm{e}^{2} \cos (2 \omega)\right]+5 \mathrm{e}^{2} \mathrm{~A} \sin (2 \omega)\right\}, \tag{5.26}
\end{equation*}
$$

$$
\begin{align*}
\&= & \frac{3 \mu \sqrt{1-\mathrm{e}^{2}}}{2 \mathrm{nr}}\left\{5 \mathrm{AB} \sin (2 \omega)+\frac{5}{2}\left(\mathrm{~A}^{2}-\mathrm{B}^{2}\right) \cos (2 \omega)-1+\frac{3\left(\mathrm{~A}^{2}-\mathrm{B}^{2}\right)}{2}\right\}- \\
& \& \cos \mathrm{I}+\frac{15 \mu \mathrm{a}[\mathrm{~A} \cos \omega+\mathrm{B} \sin \omega]}{4 \mathrm{enr}}\left\{1-\frac{5}{2}\left(\mathrm{~A}^{2}-\mathrm{B}^{2}\right)\right\}, \tag{5.27}
\end{align*}
$$

For small eccentricities, the second-order terms become noticeable for the argument of perigee. The only secular rate of changes will be in the node, the perigee, and the mean anomaly at epoch. For a circular orbit, we obtain the secular rate of change of $\operatorname{nod} \Omega$ is

$$
\begin{equation*}
\dot{\Omega}_{\mathrm{sec}}=-\frac{3 \mu_{3}\left[2-3 \sin ^{2} I_{3}\right]\left(2+3 e^{2}\right)}{16 n r_{3}^{3} \sqrt{1-e^{2}}} \cos I \tag{5.28}
\end{equation*}
$$

The secular rate of change of argument of perigee ω is
$\dot{\omega}_{\mathrm{sec}}=-\frac{3 \mu_{3}\left[2-3 \sin ^{2} I_{3}\right]}{16 n r_{3}^{3} \sqrt{1-e^{2}}}\left(4+e^{2}-5 \sin ^{2} I\right)$.

Smith's equations [2] that include terms in e_{2} are

$$
\begin{equation*}
\dot{\Omega}_{\mathrm{sec}}=-\frac{3 \mu_{3}\left[2-3 \sin ^{2} I_{3}\right]\left(1-e^{2}\right)^{2}\left(1+5 e^{2}\right)}{8 n r_{3}^{3} \sqrt{\left(1-e_{3}^{2}\right)^{2}}} \cos I \tag{5.30}
\end{equation*}
$$

$\dot{\omega}_{\text {sec }}=\frac{3 \mu_{3}\left[2-3 \sin ^{2} I_{3}\right]\left(1-e^{2}\right)^{2}}{16 n r_{3}^{3} \sqrt{1-e^{2}}}\left(4+5 e^{2}\left(3-\frac{7}{2} \sin ^{2} I\right)-5 \sin ^{2} I\right)$.

6. The Ground tracks

To convert a position vector for a satellite to the corresponding latitude and longitude (is the core technique in determining

M.E. AWAD, et al.,

ground tracks). We have two ways to do this transformation: one is iterative and another is analytical [5]. We find the right ascension directly from the Cartesian position vector. Let the equatorial projection of the satellite's position vector be

$$
\begin{equation*}
r_{\delta s a t}=\sqrt{r_{l}^{2}+r_{J}^{2}} \tag{6.1}
\end{equation*}
$$

We find the right ascension through sine and cosine expressions
$\sin \delta=\frac{r_{l}}{r_{\text {ssat }}}$,
$\cos \delta=\frac{r_{J}}{r_{\delta s a t}}$.
The difficult part of finding the geodetic latitude is that it usually requires iteration. To determine a starting value for the iteration, we can use the position vector as a rough guess because the declination and geocentric latitude are equal [7]. Thus,
$\sin \delta=\frac{r_{k s a t}}{r}$,
Now we find an expression for geodetic latitude $\phi_{g d}$, we now have the satellite coordinates and not the site coordinates. Assume $\phi_{g d}=\delta$. The sine and cosine expressions [11] are given by
$\sin \phi_{g d}=\frac{r_{k}}{S_{\oplus}+h_{\text {ellp }}}$,
$\cos \phi_{g d}=\frac{r_{\delta}}{C_{\oplus}+h_{\text {ellp }}}$.
Solving the sine expression for $h_{\text {ellp }}$ gives us

$$
\begin{equation*}
h_{e l l p}=\frac{r_{k}}{\sin \phi_{g d}}-S_{\oplus} \tag{6.5}
\end{equation*}
$$

the tangent expression is
$\tan \phi_{g d}=\frac{\sin \phi_{g d}}{\cos \phi_{g d}}=\frac{r_{k}\left(C_{\oplus}+h_{\text {ellp }}\right)}{r_{\delta}\left(S_{\oplus}+h_{\text {ellp }}\right)}$.
Substitute $h_{\text {ellp }}$ using equation (6.5)
$\tan \phi_{g d}=\frac{r_{k}\left(C_{\oplus}+\frac{r_{k}}{\sin \phi_{g d}}-S_{\oplus}\right)}{r_{\delta}\left(S_{\oplus}+\frac{r_{k}}{\sin \phi_{g d}}-S_{\oplus}\right)}$,
where C_{\oplus} denoted by

$$
\begin{equation*}
C_{\oplus}=\frac{S_{\oplus}}{1-e_{\oplus}^{2}} \tag{6.7}
\end{equation*}
$$

Substitute equation (6.7) into equation (6.6)
$\tan \phi_{g d}=\frac{r_{k}\left(\frac{S_{\oplus}}{1-e_{\oplus}^{2}}+\frac{r_{k}}{\sin \phi_{g d}}-S_{\oplus}\right) \sin \phi_{g d}}{r_{k} r_{\delta}}$,
$\tan \phi_{g d}=\frac{r_{k}\left(1-e_{\oplus}^{2}\right)+S_{\oplus} \sin \phi_{g d}-S_{\oplus} \sin \phi_{g d}\left(1-e_{\oplus}^{2}\right)}{r_{\delta}\left(1-e_{\oplus}^{2}\right)}$
$\tan \phi_{g d}=\frac{r_{k}\left(1-e_{\oplus}^{2}\right)+S_{\oplus} e_{\oplus}^{2} \sin \phi_{g d}}{r_{\delta}\left(1-e_{\oplus}^{2}\right)}$.
Using equation (6.7), then
$\tan \phi_{g d}=\frac{\left(1-e_{\oplus}^{2}\right)\left[r_{k}+C_{\oplus} e_{\oplus}^{2} \sin \phi_{g d}\right]}{r_{\delta}\left(1-e_{\oplus}^{2}\right)}$,
$\tan \phi_{g d}=\frac{r_{k}+C_{\oplus} e_{\oplus}^{2} \sin \phi_{g d}}{r_{\delta}\left(1-e_{\oplus}^{2}\right)}$.

7. RESULTING AND CONCLUSION

In this section, a computer simulation has been developed to the equation of perturbed orbital motion due to spherical zonal harmonics J_{2} and Luni-Solar forces using the Matlab program. The perturbed ground track under I_{2} and Luni-Solar was calculated after 5 days for China sat 2D, Molniya 3-31, and Egypt sat A satellites. The two line elements [13] are

China sat 2D
$1 \quad 43920 \mathrm{U}$ 19001A 19011.36550613
00000967 13253-5 10000-3 09995
24392027.10614 .73627309322179 .7744 160.13282 .2809779425

Molniya 3-31
1 17328U 87008A . 00000161 00000-0 00000+0 09998
21732863.9674259 .45776796076265 .7427 20.52762 .00665848230580

Egypt sat A

1 44047U 19008A 19055.20707225 .00003965 00000-0 -62322-3 09995
24404798.0166121 .3798000307171 .7230 288.435814 .72075970373

Figure (7.1) shows one revolution of perturbed ground track for China sat 2D after 5 days.

Figure (7.1): Perturbed ground track for China sat 2D.

Figure (7.2) shows one revolution of perturbed ground track for Molniya 3-31 after 5 days.

Figure (7.2): Perturbed ground track for Molniya 3-31

Figure (7.3) shows one revolution of perturbed ground track for Egypt sat A after 5 days.

Figure (7.3): Perturbed ground track for Egypt sat A

The perturbed ground track is calculated under the effect of J_{2} and luni-solar forces. The perturbed position vectors for a satellite is converted to the corresponding latitude and longitude. As expected the strongest perturbation due to the I_{2} acting on the nearest satellite to the Earth as shown Figure (7.1) to Figure (7.3). The satellite's positions in one revolution are displayed to represent where the satellite at the time desired.

8. REFERENCES

[1] Cook, G.E. 1962. Luni-Solar Perturbations of the Orbit of an Earth Satellite. Geophysical Journal of the Royal Astronomical Society. Vol. 6: 271.
[2] Smith, D.E. 1962. The Perturbation of Satellite Orbits by Extra-Terrestrial Gravitation. Planetary and Space Science. Vol. 9: 659-674.
[3] Escobal, P.R. 1965. Methods of Orbit Determination. New York: Wiley.
[4] Awad, M.E.S. 1988. Encke's Special Perturbation Technique Associated with the KS Regularized Variables. Earth, Moon, and Planets 43, 1-7-20.
[5] Roy, A.E. 1988. Orbital Motion. Third Edition, Adam Hilger, J. W., Arrowsmith, Ltd., Bristol1, England.
[6] Awad, M.E.S. and Hassan, I.A. 1995. Study of the Earth's oblateness and Rotating Atmosphere Effects upon an Artificial Satellite in Terms of KS-Regular Variables. Earth, Moon, and Planets, 69, 1, 13-24.
[7] Kim, M.C. 1997. Theory of satellite groundtrack crossovers. Journal of Geodesy.
[8] Hassan, I.A; Hayman, Z.M and Basha, M.A. 2008. PRE-Solution of the perturbed motion of the artificial satellite. First Middle East and Africa IAU-Regional Meeting.
[9] Khalil I.K. and Mohamed N.S.I. 2011. Effects of radiation pressure and Earth's oblateness on high altitude artificial satellite orbit. Astronomy Studies Development.
[10] Wesam, T.W. 2011. Calculation of satellite obits under Perturbation effect. Ph.D. Thesis, Baghdad University.
[11] Vallado, D.A. 2013. Fundamentals of Astrodynamics and Applications. New York, NY: McGraw-Hill.
[12] Hany, R.D. 2014. Prediction of Satellite Motion under the Effects of the Earth's Gravity, Drag Force and Solar Radiation Pressure in terms of the KS-regularized Variables. IJACSA, 5, 5,3541.
[13] www.space-track.org.
الملخص العربي :
هنـاك عدة أنـواع مـن القوى التـى تـؤثر علـي القمـر الصناعي ، حيث تصنف هذه القوى الي قوتان الأولى قوة محافظة والثانية قوى غير محافظـة . الهدف الرئبيسي في هذه الورقة البحثية هو در اسـة تـأثنبر القوة المحافظـة علـي
 علـي المسـار الأرضــى للأفمـار الصـنـاعية ، حيث تكـون المسار ات الأرضية هي موضع النقاط التي تشكنلها النقاط على الأرض مباشـرة أسفل القمـر الصـناعي اثنـاء انتقالـه في المدار . ثـم تصـميم نمـوذج رياضـي ورمـز باسـتخدام برنـامج حزمـة Matlab وذلك لحسـاب المســار الأرضـى المضـطرب تحت تـأثنير J J وقوة جـنب القمـر - الثـمس . luni-solar
في حين أن ${ }^{\text {J }}$ وقوة جذب القمـر - الثمس هي قوة محافظة ، فقد نم إيجـاد اختلاف نر اكمـي فقط في كل مـن العنصـرين Ω و ف ، أمـا بـاقي عناصـر المـدار فإنهـا تختلف بشكل دوري .

يتم حساب المسـار الأرضـى المضطرب تحت تـأنثير
J2 الموقع المضطربة للقمر الصناعي الـي المسـار الأرضـى (أي خطوط الطول والعرض المقابلـة) . يتم تمثيـل موقع

القمر الصناعي في دورة واحدة عند أب وقت مطلوب .

