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    INTRODUCTION 

           Fishes worldwide mostly represent fifty percent (50%) of all recognized 

vertebrates. They significantly consider major protein sources for Humankind (FAO 

1997 and FAO 2000). According to Nelson (1994), more than 32,000 fish species 

from 482 families are known, roughly 13,000 live in the marine water surroundings. 

The Red sea possesses over 1000 fish species containing a diverse assemblage of 

Coral reef fishes that live adjacent to coral reefs (Alwany et al., 2007). Coral reef 

fishes possess diverse colours (juveniles) or colour alterations during sexual maturity 

(wrasses, Labridae) (Randall, 1982).  

           Parrotfishes (Scaridae) are herbivorous which reside near to coral reefs and 

composing a clade of ninety (90) species. They profile coral reef communities using 

their beak-like teeth to scratch algae and detritus off coral reefs to preclude algal 
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           Targeted DNA fragments were isolated from four scarids species; 

Scarus collana Rüppell 1835; Scarus frenatus Lacepède 1802; Scarus 

(Chlorurus) sordidus Forsskål 1775 and Scarus niger Forsskål 1775 using 

mitochondrial 16S rRNA gene-specific primers.  

           Analysis of obtained partial 16S rRNA gene nucleotide sequences 

showed a high level of nucleotide identity in the studied regions. This 

reflects a close genetic relationship and shared ancestry among studied 

parrotfishes. Nucleotide compositions of partial 16S rRNA gene 

nucleotide sequence biased towards adenine and similar preference 

towards thymine, cytocine, and guanine. Also, base constitutions revealed 

preference towards higher DNA conservations.  

           Phylogenetic analysis displayed patterns of assembly for studied 

species, and other included related taxa, which reflect their similar 

genetic makeup and their tendency to have similar niches. The 

phylogenetic trees revealed two evolutionary lineages splitting Scaridae 

and Wrasses which assumed that Scaridae should maintain the family 

status.  

          Obtained data could be beneficial for parootfishes classification, 

conservation, and their needed environments. Therefore, the acquisition 

of nucleotide sequences from other parrotfishes using the developed 

mt16S rRNA gene-specific primers utilized here would contribute in the 

future to the phylogenetic and evolutionary studies of parrotfish in the 

Red Sea territory. 
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overgrowth of corals (Hughes, 1994; 

Bellwood et al., 2004) and maintain a 

healthy resilient coral reef ecosystem 

(Bellwood et al., 2003; Burkepile and 

Hay, 2008; Cheal et al., 2010). 

Parrotfishes were previously classified 

as a family (Scaridae), but have 

recently been considered as subfamily 

Scarinae (family Labridae), but others 

still prefer to allocate them as a family 

(Bellwood, 1994; Choat and Bellwood, 

1998; Westneat and Alfaro, 2005; 

Randall, 2007).  

            The mitochondrial (mtDNA) 

genome possess much smaller gene 

contents, little recombination and 

speedy evolutionary level (Brown et 

al., 1979; Attardi, 1985; Hayashi Jun-I 

et al., 1985; Saccone et al., 1991). 

mtDNA genome was significantly 

used for studying the evolutionary 

association among various species, 

also in estimating divergence times of 

some marine invertebrates species 

(Olivo et al., 1983; Westneat and 

Alfaro, 2005; Lee, 2003). The mtDNA 

sequences of 16S rRNA gene are 

amongst the most widely used genetic 

marker for fish species identification, 

description, and in fisheries 

management (Greig et al., 2005; 

Kochzius et al., 2010; Faddagh et al., 

2012; Farrag et al., 2015). It is also 

been used for relatedness assessment 

and distinguishing among various taxa, 

and phylogeography research (Li et al., 

2008; Smith, et al., 2008; Lakra et al., 

2013; Yang et al., 2014). 

             Because of the classification 

and lineage history of parrotfishes is 

still unsettled. There is a requirement 

for more molecular evolutionary 

studies such as gene-specific markers 

to understand parrotfishes 

phylogenetic relationships, also to 

resolve their related taxonomic issues. 

The purpose of this study to analyse 

sequence disparities and molecular 

phylogenetic patterns amongst four 

Red Sea parrotfish species; Scarus 

collana, Scarus frenatus, Scarus 

(Chlorurus) sordidus and Scarus niger 

using partial mitochondrial 16S rRNA 

gene sequences. 

MATERIALS AND METHODS 

1. Fish Samples and Genomic DNA 

Extraction: 

          Fish samples used in this study 

were previously collected by EL-

Mahdi (2018a). About ~30 mg from 

muscle tissue specimens were used for 

genomic DNA extraction (EZ10 spin 

column genomic DNA kit, Bio Basic 

Inc., Canada). The DNA purity and 

concentration were estimated by UV 

spectrophotometry. 

2. PCR Amplification of Mitochondrial 

16S rRNA Gene: 

         A pair of primers were used to 

amplify the partial sequence of mt 16S 

rRNA gene. These are 16Sar-L 5’ 

CGC CTG TTT ACC AAA AAC ATC 

GCCT 3’ and 16Sbr-H 5’ CCG GTC 

TGA ACT CAG ATC ACG T 3’ 

(Palumbi 1996). The PCR reactions 

were performed in 25 ml final volumes 

containing 1.0× DreamTaq Green PCR 

Master Mix 2X (Thermo Scientific 

Inc), 10 pM of each primer and about 

50ng of each DNA sample. The 

cycling conditions included an initial 

denaturation at 95°C for 2 min, 35 

cycles (94°C for 1 min, 56°C for 1 min 

and 72°C for 2 min), and one cycle at 

72°C for 9 min for final extinction. 

PCRs were performed in the Primus 25 

advanced system (PEQLAB 

Biotechnologie GmbH). 

3. Gel Electrophoresis and DNA 

Sequences: 

         PCR products of 10 µL were 

separated by 1.5% (w/v) 

agarose/TAE/ethidium bromide (0.5 

µg/ml) at 90 V for 40 min. A 100 bp 

DNA ladder (0.1 µg/µl, Solis 

BioDyne, Estonia) was used for PCR 

product approximation. Gel images 

were taken under UV light using 

Elttrofor M20 SaS Photo-Gel System 

(Italy). PCR fragments were 

bidirectional sequenced (Macrogen 

Inc., Seoul, Republic of Korea) by the 
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same primers used for PCR 

amplification. 

4. DNA Sequence Analysis: 

          Sequence reads of both DNA 

strands were edited using BIOEDIT 

version 7.0.5.3 (Hall, 1999) and free 

SnapGene Viewer v3.2.1 (GSL 

Biotech). The obtained partial mt 16S 

rRNA gene sequences were compared 

to GenBank nucleotide sequence 

database for species identities. For a 

phylogenetic study, six selected DNA 

sequences were recovered from 

downloaded complete mtDNA 

genomes. These retrieved sequences 

correspond to DNA targeted regions. 

Those are flanked by 16S gene-

specific primers used for PCR 

amplification (Table 1). Five 

sequences were included as in-group 

while, the sixth one that is related 

species to them, Choerodon 

schoenleinii of Wrasses was chosen as 

out-group. 

          The Muscle software (Edgar, 

2004) implemented in MEGA6 version 

6 (Tamura, et al., 2013) was used for 

sequence alignments under default 

options. The MEGA6 program was 

also used for nucleotide compositions 

and phylogenetic analyses. A suitable 

nucleotide substitution model was 

chosen by Maximum likelihood (ML) 

fits of 24 nucleotide substitution 

models (Nei and Kumar, 2000) and 

trees were constructed using ML 

(Tamura et al., 2004) and UPMGA 

(Unweighted pair group method with 

arithmetic mean) (Sneath and Sokal, 

1973) with assessment of 1000 

bootstrap replicates (Felsenstein, 1985) 

for internal tree branches that 

measured in number of substitutions 

per site. 

 

Table 1. DNA sequences used in this study. The out-group species is 

highlighted in grey. 
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RESULTS 

1. PCR Amplification of 

Mitochondrial 16S rRNA Gene: 

         The PCR primers targeting 16S 

rRNA regions were reproductively 

amplified the DNA fragments from 

species under study. Expected DNA 

fragments of mitochondrial 16S rRNA 

gene generated amplicons of 

approximately 640 bp (Fig.1). 

 

 
 

Fig. 1: Electrophoretic separation of PCR products of mt 16S rRNA gene amplified from 

four studied parrotfish species SC: Scarus collana; SF: Scarus frenatus; SC: Scarus 

(Chlorurus) sordidus, and SN: Scarus niger; MW: DNA ladder (100-3000 bp). 

 

2. Sequence Analysis and Nucleotide 

Composition of mt 16S rRNA Gene: 

         BLAST search of partial 16S 

rRNA gene nucleotide sequences 

against nr database/parrofises (taxid: 

8247) verified the identity of studied 

species. After excluding primers bases, 

sequence alignment produced an 

average nucleotide length of 572.5 

base pairs and a consensus length of 

574 sites (Fig. 2) which included base 

pairs, gaps, and 2 indel 

(insertion/deletion) sites. In average, 

nucleotides composition (Table 2) was 

T(U) =23.0, C=25.1, A=29.0 and G= 

23.0. Overall, the G+C=45.40% and 

A+T=54.60% exhibited nucleotides 

favor towards AT contents. 

          Analysis of 574 sites of the 16S 

rRNA gene revealed 539 (93.90%) 

conserved nucleotides and 33 (5.75%) 

variable nucleotides. From the variable 

nucleotides, 12 (2.09%) were 

parsimony informative, and 21 

(3.66%) were singletons. A majority of 

the 16S rRNA gene was conserved 

(93.90%) however, a less sequence 

divergence of 5.75% was observed 

(Table 2). Also, nucleotide analysis 

showed part of 16S rRNA gene 

analysed here contains 2 indels in three 

species (red dashed, Fig. 2). 
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Fig. 2: Aligned partial sequences of mt 16S rRNA gene among investigated four Red Sea 

parrotfishes. Sequences from sense strand and nucleotide identities are designated by 

dots. The indels are in the red dash. 
 

 

Table 2: Nucleotide constitutions of mt 16S rRNA gene sequences analyzed for 4 

scarid species. C= conserved; V= variable; PI= parsimony informative; S= 

singleton sites. 
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3 Molecular Phylogentic Analysis of 

mt 16S rRNA Gene: 

          Analysis of ten sequences (4 

from current study, and 6 retrieved 

from Genbank/NCBI) produced ML 

and UMPGA trees rotted with 

Choerodon schoenleinii of Wrasses 

(Figs 3, 4). The suitable nucleotide 

substitution was found to be the K2 

(Kimura 2-parameter) +G model 

(BIC=3213.230; AIC=3087.115; lnL= 

-1524.490; transition/transversion bias 

(R) = 3.35; (+G) = 0.13; Nucleotide 

frequencies: f (A), f (T), f(C), and f 

(G), were 0.250, 0.250, 0.250, and 

0.250 receptively).  

The pairwise genetic distances among 

the 10 sequences of labriformes 

species computed by the K2+G model 

(rate variation among sites modeled 

with a gamma distribution, shape 

parameter = 0.13) is shown in Table 3. 

The distance values among species 

ranged from 0.00 (Scarus ghobban 

with Scarus rubroviolaceus) to 0.437 

(Bolbometopon muricatum with 

Choerodon schoenleinii). Among the 

four Red Sea parrotfishes, the highest 

genetic distance was between Scarus 

frenatus and Bolbometopon muricatum 
(0.136), whilst the lowest was between 

Scarus frenatus and Scarus niger (0.030). 

 
Table 3: Pairwise genetic distance concerning 10 nucleotide sequences (4 Red Sea 

parrotfishes + 6 retrieved sequences) computed by Kimura 2-parameter +G. Sites 

rate variation modeled with gamma distribution (shape parameter = 0.13). The 

out-group species is highlighted in grey. 

           

          The ML phylogentic tree (Fig. 

3) with the highest log likelihood (-

1522.6888), demonstrated three major 

clades (groups). In clade A, Scarus 

frenatus, Scarus niger, Scarus forsteni, 

Scarus ghobban, and Scarus 

rubroviolaceus are together assembled, 

however, both Scarus ghobban and 

Scarus rubroviolaceus are greatly 

closed to each other with bootstrap 

support of 100 (identical). Clade/group 

B contains Scarus collana and Scarus 

schlegeli (support of 88). Both Scarus 

sordidus and Bolbometopon 

muricatum are grouped together. 

While the Choerodon schoenleinii of 

Wrasses (outgroup) is separated from 

other species that pointed to its 

potential evolutionary divergence. 

            The UMPGA phylogenic tree 

(Fig. 4) is similar to that produced by 

ML method, however in the group C 

the Bolbometopon muricatum 

separately positioned. Furthermore, the 

tree displayed two evolutionary 

lineages, where scarid parroffihes 

(scarainae) are clustered based on their 

genetic closeness. While the out-group 

represented by Choerodon schoenleinii 

of wrasses may potentially represent a 

different evolutionary lineage. 
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Fig. 3: Phylogenetic tree inferred by the Maximum Likelihood method based on the Kimura 

2-parameter model using partial 16S gene sequences from four Red Sea Parrotfishes 

and other included species. Tree branch lengths measured in the number of 

substitutions per site, the rate variation among sites modeled with a gamma 

distribution (+G, shape parameter = 0.13). The bootstrap of 1000 replicates support is 

depicted next to the branches. 

 

 
 
Fig. 4: The UPMGA phylogenetic tree based on the Kimura 2-parameter model using partial 

16S gene sequences from four Red Sea Parrotfishes and other included species. The 
tree with branch lengths in the number of substitutions per site with rate variation 
among sites modeled with a gamma distribution (shape parameter = 0.13). The 
bootstrap support of 1000 replicates is shown next to the branches. 

 

DISCUSSION 

           In this study, the mitochondrial 

16S gene fragments were sequenced 

from four Red Sea parrotfish species 

and then were analysed for sequence 

variations and molecular phylogeny 

patterns. The 16S rRNA gene primers 

applied here were successfully 

amplified the targeted DNA fragments 

from each DNA sample. Similar 

studies used the same primers for 

generating 16S rRNA fragments in 

other fish species (Lee et al., 2014; 

Carvalho et al., 2004; EL-Mahdi, 

2018b).  

           In general, nucleotides 

conservative contents can indicate 

conserved similar structure or function. 

Nucleotide sequence alignments 

confirmed the reservation pattern of 
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the 16S rRNA gene (93.90%) with less 

sequence divergence (5.75% ) that 

supported by other studies where, the 

16S ribosomal gene is fairly conserved 

and therefore often used to inspect the 

relationships among different species 

and genera (Orrell et al., 2004; Mitani 

et al., 2009). 

            Nucleotide composition 

analysis of studied 16S rRNA gene 

confirmed a bias towards adenine and 

similar preference towards thymine, 

cytocine and guanine shifting the 

favoritism towards AT content. This 

was supported by reported fish 

molecular phylogeny studies (Lakra et 

al., 2009; Mohanty et al., 2013; EL-

Mahdi, 2018b). 

            Related taxes possess similar 

DNA base constitutions in comparison 

to those are distantly related. Results 

here demonstrated a high level of 16S 

rRNA gene nucleotide base identity 

and similarities for species under study 

(see alignment, Fig. 3). This suggests 

their close genetic background and 

evolutionary relationship which may 

reflect sequence building-function 

relationships. As reported, organisms 

having similar/identical nucleotide 

base composition are closely related 

than those are not related (Zeigler, 

2003; Gadagkar et al., 2005). 

            Remarkably patterns from 

phylogenetic analysis of 16S rRNA 

DNA sequences demonstrated a clear 

grouping of analyzed parrotfishes 

sequences (4 present study +6 

retrieved from Genbank/NCBI) into 

Scarid parrotfishes (Bolbometopon 

muricatum, scarus (Chlorurus) 

sordidus, Scarus forsteni, Scarus 

ghobban, Scarus rubroviolaceus, and 

Scarus schlegeli), while the 

Choerodon schoenleinii (outgroup) 

that correspond to Wrasses species is 

separated alone mirroring a separate 

evolutionary lineage. This patterns of 

assembling go with Bellwood’s (1994) 

of parrotfish relationships, also with 

other reporters (Randall, 2007; Randall 

and Parenti 2014), but disagree with 

Schultz’s (1958) and Streelman et al. 

(2002) division of the Scaridae into 

two subfamilies (Scarinae and 

Sparisomatinae). Here, the outlined 

phylogenetic analysis possibly assume 

that Scaridae is supposed to maintain 

the family position. 

Conclusion: 

            In this study, we evaluated 

sequence variations and molecular 

phylogeny of scarids species; Scarus 

collana Rüppell 1835; Scarus frenatus 

Lacepède 1802; Scarus (Chlorurus) 

sordidus Forsskål 1775 and Scarus 

niger Forsskål 1775 using partial 

mitochondrial 16S rRNA genes 

nucleotide sequences.  

Targeted DNA fragments were 

isolated and sequenced from four 

scarids species; Scarus collana 

Rüppell 1835; Scarus frenatus 

Lacepède 1802; Scarus (Chlorurus) 

sordidus Forsskål 1775 and Scarus 

niger Forsskål 1775 using 

mitochondrial 16S rRNA gene-specific 

primers.  

Results showed a high level of 

nucleotide identity in the studied 

regions, which reflects a close genetic 

relationship and shared ancestry 

among studied parrotfishes. Nucleotide 

compositions of partial 16S rRNA 

gene DNA sequence biased towards 

adenine and similar preference towards 

thymine, cytocine, and guanine. Also, 

it revealed a preference for higher 

nucleotide conservations.  

Phylogenetic analysis displayed 

grouping patterns of assembly for 

targeted species and included other 

related taxa, which confirmed their 

genetic similar constitutions and 

tendency to have similar niches. The 

phylogenetic trees clearly revealed two 

evolutionary lineages separating both 

Scaridae and Wrasses, which outlined 

an assumption that Scaridae is 

supposed to maintain the family status. 

Obtained data could be beneficial for 

parrotfishes classification, 

conservation, and their needed 

environments. Therefore, the 

acquisition of nucleotide sequences 

from other parrotfishes using the 
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developed mt16S rRNA gene-specific 

primers utilized here would contribute 

in the future to the phylogenetic and 

evolutionary studies of parrotfishes in 

the Red Sea territory. 
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ARABIC SUMMARY 

 

  Scaridae)) الببغاء أسماك لبعض الجزيئي والتطور النيكليوتيدى التسلسل تباينات 

 الميتوكوندري المورث تسلسلات باستخدام الأحمر البحر في

 

 محمد بسيونى محمد المهدى 

 كلية العلوم  -قسم علم الحيوان -معمل الوراثة الجزيئية و بيولوجيا الجزيئيات 

 جمهورية مصر العربية -قنا -جامعة جنوب الوادى  

 

 الببغاء أسماكلآربعة أنواع من  هتم عزل شظايا الحمض النووي المستهدففى تلك الدراسة،            

(Scaridae) Scarus collana Rüppell 1835 Scarus frenatus Lacepède 1802; Scarus 

(Chlorurus) sordidus Forsskål 1775, and Scarus niger Forsskål 1775, بواسطة بادئات 

 .رىالميتوكوند S11للمورث  مخصصة

في المناطق التي شملتها  التتابعات النيكلوتيديةأظهر تحليل تسلسل الحمض النووي ارتفاع مستوى تشابه          

 .قيد الدراسةأسماك الببغاء انواع وجود علاقة وراثية وثيقة وأصل مشترك بين  مشيرا الى الدراسة،

تتميز بارتفاع نسبة  المدروسة رىالميتوكوند S11المورث  جزاءة أن التتابعات النيكلوتيدية لآأوضحت الدراس

( اللاتى تمثلن بنسب الثيمين، السيتوسين والجوانيينالثلاثة قواعد الآخريات ) قاعدة الأدينين بالمقارنة مع

 المدروسة. (DNA) تيدية لشظايا الدنامتقاربة، كذلك بينت الدراسة الآرتفاع المحافظ لترتيب التتابعات النيكلو

المدرجة ذات  نواعالدراسة، وغيرها من الأ الاسماك قيدلأنواع النمط التجميعى  التحليل العنقودى الوراثى أظهر

التشابه البيئى المعيشى. كما اشارايضا الى احتمالية وجود والمتماثل  الوراثي همتركيب، حيث دل ذلك على الصلة

 الببغاء سماكربما يدعم الوضع التصنيفى لآ والذى Wrassesو Scaridae يفصلا كل من للتطور مسارين

(Scaridae)  .كعائلة مستقلة 

 المحافظة سبلوكذلك  مفيدة لتصنيف أسماك الببغاء،المستحصلة من هذه الدراسة ربما تكون  النتائجان          

البادئات  من أسماك الببغاء الأخرى بواسطةنيوكليتيدية  تتسلسلا على البيئية. لذلك فالحصول ومتطلباتها عليها

 الدراسات مستقبلا في يساهم أن شأنه المستخدمة فى تلك الدراسة، من رىالميتوكوند S11للمورث  المخصصة

 .الأحمر البحر في الببغاء لأسماك التطورية

 


