### Lobna A. Shelbaya

Department of Home Economics, Faculty of Specific Education, Mansoura University, Mansoura, Egypt

### ABSTRACT

he objective of this work was to study the effect of chamomile powder and oil against high fat, high fructose diet induced-metabolic disturbances in rats. Thirty six male rats were randomly assigned into 6 groups for 6 weeks as following: Group (I): normal control rats (-ve) fed on basal diet, Group (II): received basal diet contained chamomile powder 20 g /kg/ diet, Group (III): received basal diet contained chamomile essential oil 2 g /kg/ diet, Group (IV):(+ve) control: high fat diet and high fructose drinking (HF&HFr), Group (V): (+ve) and received chamomile powder 20 g /kg/ diet, Group (VI): (+ve) and received chamomile oil 2 ml /kg/ diet After 6 weeks, body weight, BMI, blood glucose, serum insulin, and calculated HOMA-index, lipid profile, leptin, resistin,  $TNF-\alpha$ , total antioxidant capacity and total oxidant capacity were analyzed in the study male rats. Results showed high phenolic content in chamomile powder as well as estimate volatile components. chamomile powder and oil showed significant decrease in blood glucose, serum insulin, HOMA-index, leptin, resistin, TNF-a, total oxidant capacity while increasing the total antioxidant capacity in addition to lipid profile normalization in groups that received high fructose high fat diet containing chamomile powder and oil as compared to (+ve) control. It can be concluded that consumption of chamomile powder and oil can improve the lipid profile, reduce insulin resistance, blood glucose level and inflammatory cytokines as well as it can protect the body from the oxidative stress, related to their phenolic compounds. Thus, chamomile consumption has a beneficial effect in control and

management of diabetes and diabetes associated complications with no risk of hypoglycemic effect.

*Key words: Hypoglycemic- Chamomile - Hypolipidmic- Inflammatory Cytokines* 

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. December 2017(50)99

### INTRODUCTION

Diabetic is considered as most serious diseases which that linked to hyperglycemia which occurs either when the pancreas produce enough cannot insulin, or when the body cannot effectively use the produced insulin (Ramachandran et al.. 2010). Visceral obesity one of the main risks of metabolic disorders Dysregulated production of certain inflammatory cytokines that exceeding the anti-inflammatory adipose tissue-derived mediators (adipokines as adiponectin) is known to stimulate a state known as insulin resistance (Nishimura et al., 2009).

Insulin and oral hypoglycemic drugs are commonly used for lowering glucose level in blood diabetics. However. thev have numerous adverse effects including hypoglycemia, weight gain, and lactic acidosis as well as hepatic and renal dysfunction (Tripathi and Singh, 2000). Thus, many herbal products commonly used are as traditional medicine for diabetes treatment throughout the world (Pushparay et al., 2000).

Lobna A. Shelbaya

Chamomile (Matricaria *recutita L.*) is a floury plant nat to Europe (Crevin and Philpott 1990). It was a curative herb because of its anti-inflammatory, calmed. antimicrobial, and antioxidant effect (Maschi et al.. 2008). Chamomile essential oil used in products including baked goods, confections, alcoholic beverages and herbal teas. Chamomile flowers are prepared as tea (Harbourne, et al. 2009). Flavonoids are the richness phenolic composites in herbicide have susceptibility to simmer lipid peroxidation products. inhibit DNA oxidative harm. and clear reactive oxygen species (ROS) (Mladěnka et

Lobna A. Shelbaya

(Matricaria

sensitivity,

This study was therefore undertaken to analyze the

Chamomile

level.

al., 2010) and (Galleano, et al. 2010). The biological virility of chamomile of phenolic because composites as (apigenin, quercetin, patuletin, luteolin glucosides), and but principal ingredient of essential oil extracted from chamomile as  $\alpha$ -bisabolol (Hadaruga et al., 2009).

# lipid profile, antioxidant capacity and inflammatory cytokines in rats.

recutita L.) powder and oil

effects on blood glucose

insulin

### **MATERIALS & METHODS**

### A- Materials:

**Chamomile powder and essential oil**: were obtained from Agriculture Research Center, Giza, Egypt

Fructose: Fructose was purchased from the International Company for Scientific and Medical Supplies, Cairo, Egypt.

*Chemicals:* Kits for measurements of lipid profile were purchased from Diagnosticum Zrt, Budapest and those for measurements of TOC and TAC were obtained from Labor Diagnostika Nord GmbH and Co, Germany. Insulin, resistin, leptin and TNF- $\alpha$  enzyme were attended from IBL Co., Japan.

*Experimental rats*: thirty six weanling male Sprague-Dawley rats weighing 60-70 g aged 3 weeks were used. Rats were adapted for 1 week before dietary manipulation under laboratory healthy conditions.

### **B-Methods:**

Determinationoftotalphenoliccompounds:Totalphenoliccompoundsweredeterminedaccordingto themethod ofWaskmundzka etal. (2007).

*Identification of chamomile* oil by GC-MS: The dry

Lobna A. Shelbaya

flowers of chamomile were ground by domestic model electronic mixer. Each sample was subjected to hydrodistilation apparatus in a Clevenger type apparatus for 6 hours according to the method recommended by EPP. (1983). Oil has characteristic odor and sharp taste was obtained. The oils were dried over anhydrous sodium sulphate to remove traces of moisture and stored in refrigerator in dark at 4°C until use.

### Diets:

Basal diet was prepared according to (Reeves et al., **1993**). HF,HFr diet, consisted of basal diet containing 20% fat (15% beef tallow + 5% oil) combined with corn fructose added in drinking water at 13% w/v which is similar to concentration of soft drinks (Light et al., 2009).

Experimental Design:

Male rats were randomly assigned into six groups (6 rats) as following: Group (I): normal rats (-ve control). Group (II): received basal diet contained chamomile powder 20 g/kg/dietGroup (III): received basal diet contained chamomile essential oil 2 ml/kg/ diet Group (IV): high fat, high fructose-fed group (HF,HFr) (+ve control). Group (V): (+ve control) and received chamomile powder 20 g/kg/dietGroup (VI): (+ve control) and received chamomile oil 2 ml /kg/ diet

*Oral glucose tolerance tests:* (OGTT), twelve hours prior to day 40, rats were fasted overnight and were subjected to OGTT. Fructose added in drinking water in groups 4, 5 and 6 instead of water for the overnight fasting period to measure basal blood glucose concentrations from the tail vein blood The rats were given (2 g/kg b.w.) of glucose via

Lobna A. Shelbaya

oral gavage as a 40% solution, blood samples were collected at 0, 30, 60, 90, and 120 min after glucose administration. At the end of the period (6 weeks). rats were fasted overnight and blood the samples were collected into non-heparinized centrifuge tubes. Serum were separated and frozen at -20 °C for biochemical analysis.

### **Biochemical Parameters:**

Determination of serum insulin: Fasting serum insulin level was measured using the ultrasensitive rat insulin ELISA according to (Thorell and Lanner, **1973**). Determination of insulin resistance by the homeostasis model (HOMA-IR) assessment calculated as the following formula: insulin ( $\mu U/mL$ ) × glucose (mg/dl)/405(Matthews et al., 1985).

*Determination of serum lipids:* Serum TG, TC and HDL described by (Fossati and Prencipe, 1982, Allain, 1974 and Burstein *et al.*, 1970), respectively. Serum LDL levels were calculated according to the equation of Friedwald *et al.* (1972).

**Determination** of serum resistin. tumor necrosis factor alpha (TNF- $\alpha$ ) and leptin levels: Fasting serum resistin, TNF- $\alpha$  and leptin were measured by enzymelinked immunosorbent assay according to the methods that had previously described by (Thorell, 1973, Beutler et al., 1985 and Maffei et al., 1995), respectively.

Determinationofantioxidantparameters:Serum total antioxidant andoxidantcapacitiesweremeasured according to (Caoet al., 1993and Flohe andGunzler,1984),respectively.

### Statistical Analysis:

The obtained data were statistically analyzed using computerized SPSS

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. December 2017(50)103

Lobna A. Shelbaya

(Statistic Program Sigmastat, Statistical Soft-Ware, SAS Institute, Cary, NC). Effects of different treatments were analyzed by one way ANOVA (Analysis of using variance) test Duncan's multiple range test and p<0.05 was used to indicate significance between different groups and Cochran, (Snedecor 1967).

### **RESULTS & Discussion**

Polyphenolic compounds are very important constituents in activating lipid free radical chains and preventing hydroperoxide. Data in Table (1) showed that the main phenolic acids identified in chamomile powder were Epicatechen (2022.30),Salicylic (309.5).Ellagic (174.1)and Cinnamic (110.75) with high contents, followed by Chlorogenic, Ferulic and Caffeine. It was reported that the flowers of chamomile contained flavonoids. tannins and terpenoids which showed different pharmacological properties (Hoberg et al., 2000 and Eugenio et al., 2012). Tannins are the most antioxidants present in the human diet and they are involved in protection against degenerative diseases and oxidative stress, gallic acid showed potent antioxidant activity by preventing lipid peroxidation (Shahrzad et al., **2001**). Chamomile extracts rich in phenolic compounds as chlorogenic acid. umbelliferone, apigenin and apigenin-7-glucoside, and flavonoids as rutin or quercitrin. (Patricia et al. 2010)

Volatile components of chamomile were reported in Table (2) as  $\alpha$ -bisabolol (46.4), Terpinen – 4ol (22.1),  $\beta$  bisabolol, Viridiflorene, Trans trans farnesol , bisabolone, Cubebene, and other components

Chamomile volatile oil had components as (Camazulene 19.9%), (α-

### Lobna A. Shelbaya

bisabolol 20.9%), (A and B bisabolol-oxides 21.6% and 1.2%) and ( $\beta$ -farnesen 3.1%) as a major components. On the other hand,  $\alpha$ - and  $\beta$ -caryophyllene,

caryophyllene -oxide, spathulenol, and also some monoterpenes like  $\beta$ phellandrene, limonene,  $\beta$ ocymene and  $\gamma$ -terpinen had lower concentrations. (**Costescu et al., 2008**).

Volatile oils of chamomile including alphabisabolol and matricin were considered as antiinflammatory and antilipidemic. (Sakai and Misawa, 2015).

The results in Table(3) showed that. differences in feed intake and body weight gain between rats were insignificant in all groups except group IV (High fat, fructose-fed) high which showed significant reduction in feed intake (10.1g/day) in addition to significant increase in body weight gain (147g/6weeks)when compared to normal control. Tuomisto et al., (1999) explained that, high fat diet may induce anorexia in rats. Furthermore, Jurgens et al. (2015) reported that, rats reduce energy ingested from liquid than that intake from the solid diet. Saravanan and Leelavinothan (2006) that, reported chamomile enhances body weight loss due to its antihyperglycemic effect and improvement in secretion insulin and protective effect in controlling muscle wasting.

The weight gain was insignificant between groups treated with chamomile; this indicates the minor effect of chamomile powder on lowering the BMI and weight gain. (**Brown, 2014**)

The results in Table (4) showed that blood glucose level in group IV was significantly higher (133 mg/dl)than normal control (91 mg/dl).group Diabetes mellitus is a chronic disease that associated with a higher blood glucose level in

### Lobna A. Shelbaya

people (Duncan et al., 2003). However, the blood glucose level in groups HF&HFr and with treated chamomile powder and oil was improved to normal group this was due antihyperglycemic to the effect of chamomile powder and oil. The Serum insulin level was nearing to normal control in normal groups consumed chamomile powder and oil but group fed on HF&HFr was significantly higher  $(38\mu U/ml)$  than normal control group. Atsushi et al. (2008)suggested that antihyperglycemic action of chamomile extract is due to inhibition of hepatic glycogen degradation.

No significant difference in HOMA-index between groups consumed powder or oil of chamomile with normal control group. In addition, HOMA-index was significantly higher in group IV (HF&HFr) +ve control when compared to the other groups which indicate the effect of chamomile powder and oil on increasing the insulin sensitivity. There are different approaches for quantitative determination of insulin resistance as well as beta-cell function, however, HOMA-index is found to be the most suitable mode (Wallace and Matthews, 2002).

Lipid profile analysis shown in Table.(5) revealed that group IV (HF&HFr) had highest significantly the levels of triglycerides, total cholesterol, LDL-C and VLDL-C while had the lowest of HDL-C level which indicated the negative effect of HF&HFr diet on the lipid profile. On the other hand, the best group was chamomile powder followed bv chamomile oil which had significantly the lowest levels triglycerides, of total cholesterol and VLDL-C and had the highest level of HDL-C. The results indicate the great effect of chamomile powder in control of dyslipidemia. It was reported that high fat diet can induce abnormal increases in serum

Hypoglycemic and Hypolipidemic Effects of Chamomile Powder and Oil against High Fat High Fructose diet in rats

### Lobna A. Shelbaya

concentrations of triglycerides, total cholesterol, low-density lipoprotein cholesterol and lipid peroxidation, in addition to depressed antioxidant defense system (Yan et al., 2006). Dyslipidemia caused in male rats fed on high fat and high fructose diet consumption compared to control (Amin et al., 2016).

Fructose caused troubles in metabolism due to an increment in free fatty acids and triglycerides into tissues as (liver, pancreas and muscle). Stanhope et al., (2009) Mang et al., (2016)reported that. chamomile had hypoglycemic and hypolipidemic effects on diabetic animals.

High fat& high fructose group had high significant levels of Leptin, resistin, TNF- $\alpha$  and total oxidant capacity while had the lowest total antioxidant capacity compared to the other groups. Although, leptin, resistin and TNF- $\alpha$  levels in all groups were the best in chamomile powder followed by chamomile oil groups compared to normal control. These results confirm with Vincent et al., (2009) who reported that, the antioxidant effect of chamomile may be to positive effect of HOMAantioxidants on index has been shown in healthy people. Abnormal production of inflammatory cytokines is such as TNF-a and IL-6 known to induce insulin resistance (Nishimura et al., 2009). Controlling diabetes and insulin resistance can be achieved via modulation of inflammatory cytokines and adipokines (Zhang and Gao, 2016). Free radicles generation cause exhaustion in the endogenous antioxidants and can cause inflammation hepatic by activation of the inflammatory cytokines (Weisberg et al., 2008).

Leptin is a peptide hormone as an adipokine that

Lobna A. Shelbaya

regulate energy intake and expenditure (Brennan and Mantzoros, 2006). Leptin could inhibit the development of obesity via stimulation of the satiety centers in brain (DePaoli, 2014). Leptin is synthesized primarily in the adipocytes and its level is proportional to total body fat (Fischer et al., 2002). Most of obese peoples have deficiency in leptin receptors, which lead leptin resistance to (Tartaglia et al., 1995). Several investigations have shown that high leptin level is associated with increased risk of developing diabetes (Tong et al., 2005). TNF- $\alpha$ is an adipocytokine that involved in systemic inflammation (Moller, 2000) and is secreted bv macrophages and variety of cells including adipocytes and (Gimeno Klaman, **2005**). TNF- $\alpha$  inhibits insulin

transduction and affect on glucose metabolism (Zou and Shao, 2008).

Chamomile produced a significant protection against oxidative stress, it decreased malondialdehyde (MDA) increased level and antioxidant enzymes as superoxide dismutase (SOD), (CAT) catalase and glutathione peroxidase (GPx). (**Hichem et al., 2014**)

## CONCLUSION

powder Chamomile inhibitory and oil have effects on inflammatory cytokines such as TNF- $\alpha$ , and leptin in addition to resistin level. It also can improve the lipid profile, insulin sensitivity, hyperglycemia control and the total antioxidant capacity with relieving of the oxidative stress.

### REFERENCES

Allain CC (1974): Quantitative-enzymatic colorimetric

determination of total and HDL cholesterol in serum or plasma. *Clin. Chem.*, 20: 470.

### Amin KA; Kamel HH and Abd Eltawab MA (2011):

The relation of high fat diet, metabolic disturbances and brain oxidative dysfunction: modulation by hydroxy citric acid. *Lipids in Health and Disease*, 10:74-85.

### Atsushi K; Yuka M; JO Y; Isao A and Allson A (2008):

Protective Effects of Dietary Chamomile Tea on Diabetic Complications, J. Agric. Food Chem. 56, 8206– 8211.

### Beutler B; Greenwald D and Hulmes JD (1985):

Identity of tumor necrosis factor and the macrophage- secreted factor cachectin. *Nature, 316:552-554*. BrennanAMandMantzorosCS (2006):

Drug Insight: the role of leptin in human physiology and pathophysiology emerging clinical applications. Nat. *Clin. Pract. Endocrinol. Metab. 2: 318-327.* 

BrownD(2014):Chamomileclinicalmonograph.QuarterlyReviewofNaturalMedicine94:111-121.

Burstein M; scholnick HR and Morfin R (1970): Rapid method for isolation of lipoproteins from human serum by precipitation with polyanions. Lipid Res., 11: 583-595.

### Cao, G.; Alessio, H. and Cutler, R. (1993):

Oxygen - radical absorbance capacity assay for antioxidants.

Lobna A. Shelbaya

Free Radic. Biol. Med., 14:303-311.

### Costescu CI; Hadaruga NG; Rivis A; Hadaruga DI and Lupea A (2008):

AntioxidantactivityevaluationofsomeMatricariachamomillaL.extracts.JournalofAgroalimentaryProcessesandTechnologies.14:432.

# Crevin JK and Philpott J (1990):

Herbal medicine past and present. Vol. II Duke University Press.

### DePaoli A (2014):

Leptin in common obesity and associated disorders of metabolism. J. Endocrinol. 223: T71-81.

## Duncan BB; Schmidt MI; Pankow JS; Ballantyne CM; Couper D; Vigo A;

Hoogeveen R; Folsom AR and Heiss G (2003):

> Low grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. *Diabetes 52: 1799-1805.*

Eugenio JG; Tatiane LO; Severino MA; Alessandra R; Alessandro L and Rosa HMG (2012):

Antioxidant Activity byDPPHAssayofPotentialSolutionstobe Applied on Bleac+edTeeth.BrazDentZ3(1): 22-27.Z2-27.Z2-27.

# European pharmacopeia procedure (1983):

Maissoneuve, S. A.; Sainte Ruffine. *Part 1, p 4.5.8.* 

Fischer S; Hanefeld M; Haffner SM; Fusch C; Schwanebeck U; Kohler C; Fucker K and Julius U (2002):

Lobna A. Shelbaya

Insulin-resistant patients with type 2 diabetes mellitus have higher serum leptin levels independently of body fat mass. *Acta. Diabetol. 39: 105-110.* 

# Flohe L and Gunzler WA (1984):

Oxygen radicals in biological systems. *Methods Enzymol.*, 105: 114-212.

# Fossati P and Prencipe L (1982):

Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. *Clin. Chem.*, 28: 2077-2080.

# Friedewald WT; Levy RI and Frerickson DS (1972):

Estimation of the concentration of lowdensity lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. *Clin. Chem.*, 18: 499-502.

### Galleano M; Verstraeten SV; Oteiza PI and Fraga CG (2010):

Antioxidant actions of flavonoids:

thermodynamic and kinetic analysis. Archives of Biochemistry and Biophysics, 501, 23-30.

# Gimeno RE and Klaman LD (2005):

Adipose tissue as an active endocrine organ: recent advances. *Curr. Opin. Pharmacol. 5:* 122-128.

## Hadaruga NG; Hadaruga DI; Tatu C; Gruia A and Costescu C (2009):

Multivariate analysis (PCA) in Compositae biocompounds class. J. of Agroalimentary Processes and Technologies. 15: 201-210.

Lobna A. Shelbaya

Harbourne N; Jacquier J and O'Riordan D (2009):

> Optimisation of the extraction and processing conditions of chamomile (Matricaria L.) chamomilla for incorporation into а beverage. Food Chemistry, 115, 15-19.

### HichemS ; Mohamed A; Jabriab A and Soulib K (2014):

Antidiarrheal and antioxidant activities of chamomile (*Matricaria recutita L.*) decoction extract in rats, *J. of Ethnopharmacology*, *152, 2, 327-332.* 

### Hoberg E; Meier B and Sticher O (2000):

Quantitative high performance liquid chromatographic analysis of diterpenoids in Agni-casti Fructose. *Planta Med 66: 352– 355.*  Jurgens H; Haass W; Castaneda TR; Schurmann A; Koebnick C and Tschöp MH (2015):

Consumingfructose-sweetenedbeveragesincreasesbodyadiposity in mice.Obes.Res., 13:1146–1156.

### Light HR; Tsanzi E; Gigliotti J; Morgan K and Tou JC (2009):

The Type of Caloric Sweetener Added to Water Influences Weight Gain, Fat Mass, and Reproduction in Growing Sprague-Dawley Female Rats. Exp. Biol. Med., 234: 651-666.

### Maffei M; Burghen GA; Li H; Hudson MM and Kun LE (1995):

Leptin levels in human and rodent: measurement of plasma leptin and ob RNA and weightreduced subjects.

|                          | 415                      |
|--------------------------|--------------------------|
|                          | Lobna A. Shelbaya        |
| Nature Med., 1:1155-     | Inhibition of human      |
| 1161.                    | cAMP                     |
|                          | Phosphodiesterase as a   |
| Mang B; Wolters M;       | mechanism of the         |
| Schmitt B; Kelb K;       | spasmolytic effect of    |
| Lichtinghagen R;         | Matricaria recutita L.   |
| Stichtenoth DO and Hahn  | Journal of Agricultural  |
| A (2006):                | and Food Chemistry,      |
| Effects of a chamomile   | 56, 5015-5020.           |
| extract on plasma        |                          |
| glucose, Hb A, and       | Mladěnka P;              |
| serum lipids in diabetes | Zatloukalová L; Filipský |
| mellitus type 2. Eur. J. | T and Hrdina R (2010):   |
| Clin. Invest., 36:340–   | Cardiovascular effects   |
| 344.                     | of flavonoids are not    |
|                          | caused only by direct    |
| Matthews DR; Hosker JP;  | antioxidant activity.    |
| Rudenski AS; Naylor BA;  | Free Radical Biology &   |
| Treacher DF and Turner   | Medicine, 49, 963–975.   |
| RC (1985):               |                          |
| Homeostasis model        | Moller DE (2000):        |
| assessment: insulin      | Potential role of TNF-   |
| resistance and beta-cell | alpha in the             |
| function from fasting    | pathogenesis of insulin  |
| plasma glucose and       | resistance and type 2    |

the sulin type 2 diabetes. Trends. Endocrinol. Metab. 11: 212-217.

Nishimura S; Manabe I and Nagai R (2009):

| Adipose      | tissue |
|--------------|--------|
| inflammation | in     |

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. December 2017(50)113

insulin concentrations

in man. Diabetologia,

Maschi O; Dal Cero E;

Galli G V; Caruso D;

Bosisio E and Dell' Agli M

28: 412-9.

(2008):

#### Lobna A. Shelbaya

obesity and metabolic syndrome. *Discov. Med.* 8: 55-60.

# Patricia M; Tiago G and Petr S (2010):

Development and application of UHPLC– MS/MS method for the determination of phenolic compounds in Chamomile flowers and Chamomile tea extracts, 82, 4, 1271-1280.

# Pushparay P; Tan CH and Tan BK (2000):

Effect of Averrhoea bilimbi leaf extract on blood glucose and lipid in STZ-diabetic rats. *J. Ethanopharmacol.* 72: 69–76.

# Ramachandran A; Ma RC and Snehalatha C (2010):

Diabetes in Asia. Lancet. 375(9712): 408–418.

Reeves PG; Nielsen FH and Fahey GCJr (1993):

AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN 76A rodent diet. J. Nutr., 123:1939–1951.

# Sakai H and Misawa M (2015):

Effect of sodium azulene sulfonate on capsaicin-induced pharyngitis in rats. *Basic Clin Pharmacol Toxicol; 96:54–55.* 

### Saravanan G and Leelavinothan P (2006):

Effects of Syzygium Cumini Bark on Blood Glucose, Plasma Insulin and C-peptide in Streptozotocin induced Diabetic rats. Int. J Endocrinol Metab. 4: 96-105

Lobna A. Shelbaya

| LA          | Shahrzad S; Aoyagi K;           |
|-------------|---------------------------------|
| Mu          | Winter A; Koyama A and          |
| Mo          | Bitsch I (2001):                |
| Sm          | Pharmacokinetics of             |
| Wo          | gallic acid and its             |
| and         | relative bioavility from        |
|             | tea in healthy humans.          |
|             | J. Nut. 22: 1207-1210.          |
|             |                                 |
|             | Snedecor GW and                 |
|             | Cochran WG (1967):              |
| The         | Statistical Methods. 7th        |
| (19)        | Ed., The Lowa State             |
| -           | University Press.,              |
| ]           | Ames, Lowa, U.S.A.              |
| ;           |                                 |
|             | Stanhope KL; Schwarz            |
| ,           | JM; Keim NL; Griffen            |
| 1           | SC; Bremer AA and               |
|             | Zhang W (2009):                 |
|             | Consuming fructose-             |
|             | sweetened, not glucose-         |
| Tho         | adiposity and lipids and        |
|             | decreases insulin               |
|             | sensitivity in                  |
|             | overweight/obese                |
|             | humans. <u>J. Clin.</u>         |
|             | <u>Invest.</u> , 119:1322-1334. |
|             |                                 |
|             | Tartaglia LA; Dembski           |
|             | M. Wong V. Dong N.              |
| Tong        | wi, weng A, Deng N,             |
| Tong<br>Kah | Culpepper J; Devos R;           |

LA; Clark FT; Deeds J; Muir C; Sanker S; Moriarty A; Moore KJ; Smutko JS; Mays GG; Wool EA; Monroe CA and Tepper RI (1995):

Identificationandexpression cloning of aleptin receptor,OB-R.Cell 83: 1263-1271.

# Thorell JI and Lanner A (1973):

Influence of heparinplasma, EDTA-plasma and serum on the determination of insulin with three different radioimmunoassay. Scand. J. Clin Lab. Invest., 31:187-190.

### Thorell JI (1973):

A cysteine-rich adipose tissue-specific secretory factors inhibits adipocyte differentiation. Scand. J. Lab. Invest., 31:187.

Tong J; Fujimoto WY; Kahn SE; Weigle DS; McNeely MJ; Leonetti DL;

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. December 2017(50)115

Lobna A. Shelbaya

# Shofer JB and Boyko EJ (2005):

Insulin, C-peptide, and leptin concentrations predict increased visceral adiposity at 5and 10-year follow-ups in nondiabetic Japanese Americans. *Diabetes*, 54: 985-990.

# Tripathi SM and Singh DK (2000):

Molluscicidal activity of Punica granatum bark and Canna indica root. *Brazilian Journal* of Medical Biology Research 33:1351– 1355.

Tuomisto, J.T.; Pohjanvirta, R.; Unkila, M. and Tuomisto, J. (1999):

Effects of diet-induced obesity and nutrition. *Pharmacol. Biochem. Beha.*, 62: 735-42.

### Vincent HK; Bourguignon CM; Weltman AL; Vincent KR; Barrett E;

Innes KE and Taylor AG (2009):

Effects of antioxidant supplementation on insulin sensitivity, endothelial adhesion molecules. and oxidative in stress normal-weight and overweight young adults. Metabolism. 58: 254-262.

Wallace TM and Matthews DR (2002):

The assessment of insulin resistance in man. *Diabet. Med. 19:* 527-534.

Waskmundzka M; Wianowska D; Szewczyk K and Oniszczuk A (2007):

> Effect of sample preparation methods on the HPLC quantitation of some phenolic acids in plant materials. *Acta Chromatographica* (19): 227-237.

### Weisberg PS; Leibel R and Tortoriello VD (2008):

Lobna A. Shelbaya

Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity, *Endocrinology. 149 (7):* 3549-5.

## Yan MX; Yan-Qing L; Min M; Hong-Bo R and Yi K (2006):

Long-term high-fat diet induces pancreatic injuries via pancreatic microcirculatory disturbances and oxidative stress in rats with hyperlipidemia. *Biochem. Biophys. Res. Comm 347(1): 192.*  Zhang JQ and Gao BW (2016):

Critical role of FoxO1 in granulosa cell apoptosis caused by oxidative stress and protective effects of grape seed procyanidin B2. Oxid. Med. Cell. Longev. 16.

# Zou CH and Shao JH (2008):

Role of adipocytokines in obesity-associated insulin resistance. J. Nutr. Biochem. 19:277– 286.

| Phenolic compounds of | Ppm     |
|-----------------------|---------|
| chamonnie             |         |
| Gallic                | 22.02   |
| Syring                | 36.60   |
| 4-Amino-benzoic       | 5.89    |
| Epicatechen           | 2022.30 |
| Chlorogenic           | 89.91   |
| Catechein             | 27.56   |
| Caffeine              | 78.40   |
| Vanillic              | 28.53   |
| Ferulic               | 82.74   |
| Ellagic               | 174.10  |
| Salicylic             | 309.50  |
| Cinnamic              | 110.75  |

Table (1): Phenolic compounds of chamomile powder (ppm)

| Peak No. | Compounds             | Area % |  |
|----------|-----------------------|--------|--|
|          |                       |        |  |
|          |                       |        |  |
| 1        | α- pinene             | 1.4    |  |
| 2        | Sabinene              | 0.3    |  |
| 3        | β -pinene             | 0.1    |  |
| 4        | α- phellandrene       | 0.4    |  |
| 5        | α- terpinene          | 0.1    |  |
| 6        | T- terpinene          | 0.3    |  |
| 7        | Terpinen- 4 ol        | 22.1   |  |
| 8        | Methyl acetate        | 0.3    |  |
| 9        | α- cubebene           | 1.9    |  |
| 10       | Cis- β - farnesene    | 0.3    |  |
| 11       | β - bisabolone        | 2.1    |  |
| 12       | Trans – nerolidol     | 1.0    |  |
| 13       | Spathulenol           | 0.5    |  |
| 14       | Caryophyllene oxide   | 1.2    |  |
| 15       | Viridiflorene         | 6.6    |  |
| 16       | β - bisabolol         | 7.3    |  |
| 17       | α- bisabolol oxide A  | 1.4    |  |
| 18       | α- bisabolol          | 46.4   |  |
| 19       | Chamazulene           | 0.3    |  |
| 20       | Trans-trans- farnesol | 6.1    |  |
| 21       | Guaiazulene           | 0.6    |  |

### Table (2): Volatile components of chamomile essential oil

Table (3): Effect of chamomile powder and oil on feed intake and body weight gain in male rats fed on basal or high fat high fructose diets

| Parameters             | Feed intake         | Body                   |
|------------------------|---------------------|------------------------|
|                        | (g/day)             | weight                 |
|                        |                     | gain (g/6              |
| Groups                 |                     | weeks)                 |
| Control                | $13.2 \pm 1.1^{b}$  | 103±10.9 <sup>a</sup>  |
|                        |                     |                        |
| Control+Chamomile      | $12.1 \pm 1.1^{b}$  | $103 \pm 9.7^{a}$      |
| powder                 |                     |                        |
| Control+Chamomile oil  | $11.2 \pm 1.6^{ab}$ | 116±15.1 <sup>a</sup>  |
|                        |                     |                        |
| HF/HFr                 | $10.1 \pm 1.4^{a}$  | $147 \pm 14.2^{b}$     |
|                        |                     |                        |
| HF/HFr + Chamomile     | $11.6 \pm 1.1^{ab}$ | 123±11.9 <sup>ab</sup> |
| powder                 |                     |                        |
|                        |                     |                        |
| HF/HFr + Chamomile oil | $11.1 \pm 1.1^{a}$  | 122±9.8 <sup>ab</sup>  |
|                        |                     |                        |

The values are expressed as mean  $\pm$  SEM (n= 6 rats/ group). Values with the same letters indicate insignificant difference and vice versa.

Table (4): Effect of chamomile powder and oil on serum insulin and HOMA-index in male rats fed on basal or high fat high fructose diets

| Parameters             | Blood                 | Serum                | HOMA-                 |
|------------------------|-----------------------|----------------------|-----------------------|
|                        | Glucose               | Insulin              | index                 |
| Groups                 | (mg/dl)               | (µU/ml)              |                       |
| Control                | 91±11.09 <sup>a</sup> | 27±0.69 <sup>b</sup> | $6.05 \pm 0.85^{a}$   |
|                        |                       |                      |                       |
| Control+Chamomile      | 90±5.04 <sup>a</sup>  | 28±0.97 <sup>b</sup> | 6.2±0.35 <sup>a</sup> |
| powder                 |                       |                      |                       |
| Control+Chamomile oil  | 111±3.3 <sup>b</sup>  | 23±2.1ª              | 6.4±0.61 <sup>a</sup> |
|                        |                       |                      |                       |
| HF/HFr                 | $133 \pm 4.9^{cd}$    | 38±1.7 <sup>d</sup>  | $12.4\pm0.5^{\circ}$  |
|                        |                       |                      |                       |
| HF/HFr + Chamomile     | $113 \pm 3.3^{b}$     | 23±2.1ª              | $6.4 \pm 0.61^{a}$    |
| powder                 |                       |                      |                       |
| HF/HFr + Chamomile oil | 115±2.9 <sup>b</sup>  | $23\pm 2.9^{a}$      | $6.5 \pm 0.63^{a}$    |
|                        |                       |                      |                       |

The values are expressed as mean  $\pm$  SEM (n= 6 rats/group). Values with the same letters indicate insignificant difference and vice versa.

Table (5): Effect of chamomile powder and oil on serum lipid profile in male rats fed on basal or high fat high fructose diets

| Parameters  | Triglycerid        | Total              | HDL-              | LDL-               | VLDL-                |
|-------------|--------------------|--------------------|-------------------|--------------------|----------------------|
|             | es (mg/dl)         | Cholester          | Cholester         | Cholester          | Cholester            |
|             |                    | ol (mg/dl)         | ol (mg/dl)        | ol (mg/dl)         | ol (mg/dl)           |
| Groups      |                    | -                  | -                 | -                  | -                    |
| Control     | 76.7±              | 82.8±              | 15.9±             | 49.1±              | 15.1±                |
|             | $0.99^{ab}$        | $0.5^{b}$          | 0.16 <sup>b</sup> | $0.6^{bc}$         | 1.01 <sup>bc</sup>   |
| Control+Ch  | 71.9±              | 72.1±              | 15.8±             | 40.5±              | 14.3±                |
| amomile     | 0.91 <sup>a</sup>  | 0.53 <sup>a</sup>  | $0.09^{b}$        | $0.62^{a}$         | 0.35 <sup>ab</sup>   |
| powder      |                    |                    |                   |                    |                      |
| Control+Ch  | 77.7±              | 81.6±              | 15.7±             | 49.6±              | 15.5±                |
| amomile oil | 0.91 <sup>ab</sup> | 0.46 <sup>b</sup>  | 0.24 <sup>b</sup> | $0.46^{ab}$        | 0.29 <sup>bc</sup>   |
| HF/HFr      | 88.1±              | 91.4±              | 13.3±             | 57.2±              | 17.7±                |
|             | 1.09 <sup>c</sup>  | 0.92 <sup>c</sup>  | 0.15 <sup>a</sup> | 1.01 <sup>d</sup>  | 0.41 <sup>d</sup>    |
| HF/HFr +    | 68.5±              | 78.1±              | 14.8±             | 49.1±              | 13.7±                |
| Chamomile   | $0.89^{a}$         | 0.43 <sup>ab</sup> | $0.19^{ab}$       | 1.09 <sup>bc</sup> | $0.72^{a}$           |
| powder      |                    |                    |                   |                    |                      |
|             |                    |                    |                   |                    |                      |
| HF/HFr +    | 76.9±              | 80.1±              | 14.5±             | 52.3±              | 15.6±                |
| Chamomile   | 1.13 <sup>b</sup>  | $0.611^{ab}$       | $0.25^{a}$        | $0.68^{cd}$        | $0.49^{\mathrm{bc}}$ |
| oil         |                    |                    |                   |                    |                      |
|             |                    |                    |                   |                    |                      |

The values are expressed as mean  $\pm$  SEM (n= 6 rats/group). Values with the same letters indicate insignificant difference and vice versa.

Table (6): Effect of Chamomile powder and oil on serum Leptin, Resistin, TNF- $\alpha$ , Total antioxidant capacity and Total oxidant capacity in male rats

| Parameters  | Leptin              | Resistin             | TNF-α                | Total              | Total              |
|-------------|---------------------|----------------------|----------------------|--------------------|--------------------|
|             | (pg/ml)             | (ng/ml)              | (pg/ml)              | antioxida          | oxidant            |
|             |                     |                      |                      | nt                 | capacity           |
| Groups      |                     |                      |                      | capacity           | (mmol/L)           |
|             |                     |                      |                      | (mmol/L)           |                    |
| Control     | 2.73±               | 3.75±                | 3.8±                 | 1.76±              | 0.236±             |
|             | $0.1^{a}$           | $0.04^{ab}$          | 0.11 <sup>a</sup>    | $0.04^{\circ}$     | 0.012 <sup>a</sup> |
| Control+Cha | 2.98±               | 3.71±                | 3.73±                | 1.78±              | 0.235±             |
| momile      | 0.31 <sup>ab</sup>  | $0.06^{ab}$          | $0.17^{a}$           | $0.06^{\circ}$     | $0.01^{a}$         |
| powder      |                     |                      |                      |                    |                    |
| Control+Cha | 3.55±               | 4.18±                | 3.8±                 | 1.73±              | $0.227\pm$         |
| momile oil  | 0.131 <sup>bc</sup> | $0.047^{bc}$         | $0.16^{a}$           | $0.07^{c}$         | $0.009^{a}$        |
| HF/HFr      | 4.86±               | 4.85±                | 4.7±                 | 1.14±              | $0.465\pm$         |
|             | $0.066^{d}$         | $0.04^{\circ}$       | 0.126 <sup>c d</sup> | 0.013 <sup>a</sup> | $0.014^{\circ}$    |
| HF/HFr +    | 3.05±               | 3.81±                | 3.30±                | 1.54±              | 0.286±             |
| Chamomile   | $0.11^{ab}$         | $0.47^{\mathrm{ab}}$ | $0.05^{ab}$          | 0.02 <sup>cb</sup> | $0.01^{ab}$        |
| powder      |                     |                      |                      |                    |                    |
|             |                     |                      |                      |                    |                    |
| HF/HFr +    | 3.55±               | 4.2±                 | 3.46±                | 1.68±              | $0.277 \pm$        |
| Chamomile   | 0.131 <sup>bc</sup> | $0.044^{bc}$         | $0.07^{ab}$          | $0.06^{\circ}$     | $0.006^{ab}$       |
| oil         |                     |                      |                      |                    |                    |
|             |                     |                      |                      |                    |                    |

The values are expressed as mean  $\pm$  SEM (n= 6 rats/group). Values with the same letters indicate insignificant difference and vice versa.

Lobna A. Shelbaya

التأثيرات الخافضة لمسحوق و زيت أزهار البابونج على سكر و دهون الدم في الفئران المغذاه على حمية عالية في الدهون والفركتوز لبنى احمد محمد شلباية

قسم الاقتصاد المنزلي -كلية التربية النوعية - جامعة المنصورة ا**لملخص العربي** 

يهدف هذا البحث الى دراسة تأثيرات مسحوق ازهار و زيت البابونج على مستوى السكر و الدهون في الفئران وتحليل المركبات الفينوليه و الزيوت العطرية المتواجدة في از هار البابونج. تم تقسيم الجرذان الى 6 مجموعات وتغذت لمدة 6 أسابيع كالآتي: المجموعة الأولى تم تغذيتها بالوجبة القياسية، كمجموعة ضابطة سالبة. المجموعة الثانية تم تغذيتها بالوجبة القياسية، وتحتوى على20جر إم/كجم من مسحوق از هار البابونج المجموعة الثالثة تم تغذيتها بالوجبة القياسية، وتحتوى على2جرام/كجم من زيت ازهار البابونج المجموعة الرابعة تم تغذيتها بالوجبة القياسية بالإضافة الى نسبة عالية من الدهون و الفركتوز كمجموعة ضابطة موجبة المجموعة الخامسة كالمجموعة الضابطة الموجبة مع اضافة 20جر ام/كجم من مسحوق از هار البابونج المجموعة السادسة كالمجموعة الضابطة الموجبة مع اضافة 2جرام/كجم من زيت از هار البابونج وقد أظهرت النتائج إحتواء از هار البابونج على نسب عالية من المركبات الفينوليه و الزيوت الطيارة المضادة للأكسدة. كما أدى تناول الحمية العالية في الدهون والفركتوز إلى زيادة الوزن وارتفاع مستوى السكر وكذلك مستوى الأنسولين في الدم مع ارتفاع مؤشر امقاومة الأنسولينHOMA IR وكذلك ارتفاع مستوى الجليسريدات الثلاثية والكولسترول الكلي وكولسترول البروتين الشحمي منخفض الكثافة والليبتن والريسيستين . إجمالي قدرة الأكسدة مع انخفاض في نسبة كولسترول البروتين الشحمي عالى الكثافة وإجمالي القدرة المضادة للأكسدة مقارنة بالمجموعة الضابطة. ومن جهة أخري فإن إضافة مسحوق و زيت از هار البابونج إلى الحمية العالية في الدهون والفركتوز قد ادى الى تحسن ملحوظ في جميع القياسات السابقة. توصى الدراسة : بتناول مسحوق و زيت از هار البابونج حيث أنه غنى بالمركبات الفينوليه والزيوت العطرية المضادة للأكسدة. كما أنه فعال في تحسين مستوي الدهون وتقليل مقاومة الأنسولين مما يعمل على ضبط نسبة السكر بالدم ، كما ان لها تأثير ملحوظ في تقليل نسبة السيتوكينات الالتهابية. وحمابة الجسم من مخاطر الأكسدة .

الكلمات المفتاحية: خغض السكر - الكاموميل – خفض الدهون – الالتهابات

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. December 2017(50)124