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ABSTRACT 
This article proposes the use of Output Error Model Predictive Control (OE-MPC) as  a standard 
MPC technique for temperature control applications. Least squares of an output error criterion 
embedded with MPC was implemented in the basis of the control law design.  The OE model was 
exploited to minimize the plant-model mismatch, and therefore the controller accuracy is 
significantly improved.  The paper compares the performance of the suggested controller with the 
performance of MPC based ARX (Autoregressive with exogenous input) model, and Generic 
Model Control (GMC) in temperature control of an exothermic batch process simulation. The 
work identifies the features of the considered algorithms in a comparative approach. 
 

,  OE)(مبنيا  علي نم�وذج ف�روق  المخرج�ات ) MPC(هذا المقال يقترح استخدام أسلوب التحكم التنبؤي  
كطريقة معيارية  لتطبيقات التحكم التوقعي ف�ي درج�ة ) OE- MPC( وقد أطلق علي التقنية المقترحة اسم 

 batch(المس��تمر  ح��رارة برن��امج محاك��اة  لمفاع��ل كيمي��ائي ط��ارد للح��رارة يعم��ل بأس��لوب الإغ��لاق غي��ر
process . ( حيث طبقت قاعدة  المربعات الدنية)least squares ( والت�ي ض�منت ف�ي , لاستنباط النموذج

لتقلي�ل الف�رو ق�ات ب�ين )  ( OEبحي�ث اس�تخدم نم�وذج ,  اشتقاق العلاقة الرياضية لتصميم ق�انون الس�يطرة 
ظ ف�ي أداء العملي��ة وقل��ل نس�بة الخط��أ ب��ين النم�وذج الرياض��ي والمنظوم�ة الحقيق��ة  ، مم��ا وف�ر تحس��ن ملح��و

كما عرضت الورقة أداء التقنية المقترحة مقارنةً م�ع  أس�لوبي ال�تحكم . المخرج المطلوب والمخرج الواقعي
وق��د , ) GMC(ونم��وذج المراقب��ة العام��ة ) ARX(الق��ائم عل��ي النم��وذج التك��راري  ذو الم��دخل الخ��ارجي 

 .ة في مجالي دقة التتبع وتقليل نسبة الخطأأظهرت المقارنة تفوق التقنية المصمم
 
Keywords: Batch process, adaptive control, model predictive control, nonlinear control, system 
identification 
 

1. INTRODUCTION 
 
Batch control is an active area of research, and it has 
received much of concern in the literature. A batch 
process is one in which a sequence of operations are 
carried out over a period of time on a specific item or 
mass of material. It differs from a continuous 
process, in which all operations occur simultaneously 
and the material being processed is not divided into 
units. Batch processes are considered to be an 
economically effective approach to manufacturing as 
they are able to respond to varying product 
quantities. Consequently they are best suited for the 
manufacture of low volume, high value products 
such as speciality chemicals, polymers, 
pharmaceuticals, food, multiphase materials and 
blends. To maintain efficient batch production and 
consistent operation from shift to shift, it is necessary 
for the process parameters to be precisely supervised. 
Having multiple products with several stages from 

the same vessel may significantly complicate 
operations due to the varying dynamic nature of the 
batch processing. A strict control for reactor 
temperature is a key requirement in many batch 
manufacturing to ensure the production quality and 
to fulfil safety instructions. However, this is usually 
not easy task due to the fact that the batch processes 
are typically highly nonlinear processes with 
complex dynamic behavior. 
 
Implementation of MPC methodology in batch 
process control was presented by several articles 
over the past two decades. These including 
Rafalimana et al. (1992), Rho et al. (1998), and 
Bindlish and Rawlings (2003). Flores-Cerrillo and 
MacGregor (2005) developed Latent Variable Model 
Predictive Control (LV-MPC) where imputation of 
missing data using of a dynamic Principle 
Component Analysis (PCA) model was utilized to 
determine the control moves. The authors argued that 
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the proposed control law could provide a control 
action similar to the standard MPC.  Golshan et al., 
(2010) mentioned that in LV-MPC, a PCA model 
can be built either in moving window style where the 
constructed model is applicable to every time point 
along the batch-wise unfolded dataset, or in a 
multiphase criterion in which the batch is divided 
into a number of phases and a specific PCA model 
should be identified for each particular phase. 
Thereby, during the batch control these models are 
employed within their respective phases. Shamekh 
and Lennox (2010) discussed the issue of LV-MPC 
stability and displayed that the controller 
performance cannot be consistent for all batches. The 
article attributes the controller instability to the loss 
of orthogonality of the PCA model loading matrix 
that resultant from the data decomposition.         
 
In this paper, the effect of incorporating various 
models within the model based control framework 
was investigated and conclusion drawn. The design 
of a standard MPC coupled with OE model for 
temperature control of an exothermic batch process 
is presented. The work also   implements ARX 
model included with MPC (ARX-MPC) and reviews 
GMC technique with on-line released heat estimate. 
A comparison   has been made in the sense of 
minimizing a mean absolute error (MAE) statistic 
index for the used algorithms.  The remaining of this 
work is organized as; section 2 discusses the OE-
MPC algorithm with ARX-MPC. In section 3, GMC 
is briefly reviewed, whereas section 4 presents 
design considerations and results with appropriate 
analysis. Ultimately, section 5 summaries the 
conclusions. 
 
2.  OE-MPC DESIGN 
 
2.1 OE Model structure and identification 
 
Linear MPC requires an explicit model of the 
process which is used to estimate the process outputs 
in specified time instants in the future (prediction 
horizon). These estimates are then used to determine 
appropriate control actions (MPC moves) in a 
predefined range (control horizon). The MPC moves 
are computed such that they will drive the controlled 
system to a certain mode of operation which is pre-
specified by the set points for the control variables 
(reference trajectories).  
 
The issue of estimator bias is an appealing  problem 
in control engineering. The identification of model 
parameters can be achieved using many techniques 
including Ordinary Least Squares (OLS), recursive 
least squares, or partial least squares. OLS is an 
unbiased technique, which assumes that a linear 
relationship describes the system variables. 
However, this does not mean that the unbiased 
regression coefficients have minimum variance 

errors (Frank, 1987). The output error method creates 
an unbiased model by assuming that an undisturbed 
output, )(ˆ ty , can replace the output 
signal )(ty during the identification stage. However, 
this is normally valid provided that input and output 
signals are not mutually correlated (Ljung, 1999). In 
this article the following OE model transfer function 
was utilized in the model structure (Zhu, 2001): 
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To avoid the problem of input-output being 
correlated under feedback action, independent 
components of PRBS were added to the system input 
at the stage of model training. However, this should 
be performed such that the process constraints are 
not violated. Flores-Cerrillo and MacGregor (2005) 
used MAE index to assess the amplitude of the 
PRBS to ensure that is quite small so that operation 
of the batch was not significantly upset. This 
criterion was applied in this work, whereas PID 
control of settings (Aziz et al, 2000)  

406.0 ,75.28 ,5381.13 === DIcK ττ  was 
employed to supervise the batch during the collection 
of the training data. The resultant model was then 
integrated with MPC algorithm to calculate the 
control profile that is required to drive the system to 
follow the desired trajectory. As mentioned before 
and to emphasize the improvement of using OE 
model, MPC embedded with an ARX structure is 
also investigated in this work. The ARX model of 
first order dynamic polynomial with forth order input 
polynomial was identified with one sampling interval 
delay based on the least squares principle. Generally,  
the ARX structure is given by (Ljung, 1999) 
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Where ( ) y t and ( )u t  are the output and input 
signals respectively. A and B are polynomials in 
the backwards shift operator ( 1−q ) as follows: 
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)(tε  is the residual or error signal  between the 
actual observed output and the estimated one. 
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2.2 MPC design 
 
In control design, MPC basically identifies future 
control action by minimizing a specific objective 
function, which is normally quadratic. Minimizing 
the error between the predicted output and set point 
and minimizing the control action that should be 
taken to achieve the first task is the essence 
mechanism of any MPC technique. The following 
cost function, as illustrated by Clarke et al. (1987), 
was implemented in the control law design. 

( ) ( )∑∑
==

−+∆++−+=
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Where J  is the index of the objective function to be 
minimized, k  is the sampling instant, p and m are 
the prediction and control horizons, respectively.  
The desired trajectory and estimated future output 
values in Equation (5), are represented by ry and ŷ  

respectively, while jα and jβ  denote the weighting 
parameters of the controlled and manipulated 
variables respectively. Whereas u∆  represents the 
change in manipulated variable from a time instant to 
another. The objective function in this design is 
subjected to two types of constraints that are 
typically given as (Camacho, 2005): 
 
Input constraints (actuator limitations), which 
describe saturation and minimum and maximum rate 
of change of the manipulated signals.  
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Output constraints (operation limitations) which 
usually address constraints on product qualities and 
other issues relating to safety.  
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3.  GMC CONTROL 

 
Lee and Sullivan (1988) proposed GMC as a 
nonlinear control algorithm. The technique is based 
on the on-line heat released estimation method, 
which was presented by Jutan and Uppal (1984). 
Cott and Macchietto (1989) reported several 
advantages of using GMC in the temperature control 
for batch processes, which are as: 1) it is a model-
based control strategy, where the process model is 
used directly in the control law algorithm;2) 
linearization is not necessary; 3) the GMC algorithm 
uses the rate of change in controlled variable directly 
in the feedback control. It is therefore able to track 
the heat-up and cool-down periods effectively; 4) it 

provides feed forward action, which is explicitly 
integrated with the feedback control. The use of a 
neural network model to update the GMC was 
implemented by Aziz et al., (2000) in batch 
temperature control.  Mujtaba et al., (2006) 
compared the performance of a dynamic neural 
network (NN) estimator coupled with GMC, direct 
inverse control (DIC), and internal model control 
(IMC) for controlling the temperature of an 
exothermic batch reactor. This work utilizes the 
same estimate technique that was applied by Cott 
and Macchietto (1989) to identify the realised heat. 
However, it implements a different profile trajectory. 
 
A dynamic process model is used by the GMC 
method. The control law is obtained by solving the 
estimated process model of the derivative of the 
controlled variable ( rT ). By setting this estimate 
equal to proportional-integral action operating on the 
process error signal ( rrsp TT − ). rspT  represents the 
desired set-point trajectory.  The algorithm as 
introduced by Cott and Macchietto (1989), is as 
follows: 
 

∫ −+−=
t
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r dtTTKTTK

dt
dT

0
21 )()(    (6) 

where 1K and 2K are the GMC's tuning parameters. 
By neglecting the amount of heat retained in the 
reactor walls, the energy balance around the reactor 
contents can be expressed as: 
 

WCp
TTUAQ
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where W is the weight of the reactor contents, 
Cp is the mass heat capacity of the reactor contents, 

U is the heat transfer coefficient, A  is the heat 
transfer area, jT is the jacket temperature 

(manipulated variable), and Q is the heat released by 
the reaction. By substituting equation (6) into 
equation (7), this yields: 
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                                                               (8) 
Equation (8) gives the desired manipulated variable 
trajectory for the reactor temperature to follow the 
desired set-point. In order to implement this 
algorithm in the digital form, the integral action 
should be approximated by an arithmetic summation 
process as: 

tTTdtTT kr
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where t∆ is the sampling period, and k is the 
sampling instant. From equation (9), equation (8) can 
be rewritten as:  
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            (10) 
 
Cott and Macchietto (1989), Arpornwichanop et al. 
(2005), Aziz et al., (2000), and Mujtaba et al., (2006) 
stated that equation (8) does not take into account the 
jacket dynamics, and this might cause  sluggish 
control, therefore a first order model, which 
illustrated in equation (11) is used in order to obtain 
the jacket set point.  
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It is important to mention that this procedure was 
also implemented in application of MPC 
applications. 
 
Similarly to the work of Cott and Macchietto (1989), 
the deterministic on-line energy balance was utilized 

in this work to estimate
UA
Q

. Using this, the number 

of parameters to be calculated is minimized into a 

single term 







UA
WCp

. The heat released is obtained 

from equation (7) as follows: 
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Where 
dt

dTr is estimated from the direct 

measurement of rT . Cott and Macchietto (1989) 
stated that numerical differentiation is very sensitive 
to measurement errors and therefore it may have a 
detrimental effect on the performance of the 
estimator. They suggested using a high order 
difference equation for calculating the derivative, 
and then a low pass filter to cut-off the high 
frequency components. The authors applied a three 
term difference equation that was used by Jennings 
(1964) and exponential filters with time constants of 

min1=fτ  in both the temperature measurements 

and the estimate of 
UA
Q . The filtering signals were 

applied for estimation purposes only, whereas the 
GMC control law uses the real observed values of 

rT and jT . The estimator details (subscript f indicates 
the filtered signals), as described by Cott and 
Macchietto (1989) are as follows: 
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It is important to note that with this version of GMC 
there is no off-line training for model building as in 
the former techniques and instead the released heat 
estimate is performed on-line in coherently with 
control law calculation.     
 
The GMC algorithm is normally tuned with 
consideration of the desired controlled variable 
profile. Lee and Sullivan (1988) proposed two 
parameters ( τξ  and ) for tuning 1K and 2K , which 
were defined as follows: 

21
1
τ

=K      (18) 

τ
ξ2

2 =K      (19) 

Cott and Macchietto (1989) specified 10=ξ  
and min80=τ , which was based on the chart 
provided by Lee and Sullivan (1988). In this study, 
however a different temperature set-point profile was 
used and for these conditions, an improved control 
was obtained with =ξ  6105.3 −×  

and min1=τ . This was achieved by conducting 
few experiments. 

 
4.  DESIGN CONSIDERATIONS AND 

SIMULATION RESULTS  
 
4.1 Design considerations  
This work uses simulation of the mechanistic 
description of an exothermic batch reactor that was 
described by Cott and Macchietto (1989) and then 
exercised by several authors including Aziz et al., 
(2000), Arpornwichanop et al. (2005), Flores-
Cerrillo and MacGregor (2005), and Mujtaba et al., 
(2006). Briefly, in this process, two reactants A and 
B are mixed in a reactor to produce a product, C. A 
secondary reaction produces D, which is an 
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undesired product. The reactions taking place in this 
process are described as follows: 
 

CBA k→+ 1  
and  

DCA k→+ 2  

1k  and 2k are the Arrhenius constants. The process 
model is listed in appendix A. In the simulation of all 
control techniques, 150 min was selected for the 
batch duration with 0.5 min sampling period. The 
reactor temperature was corrupted with normally 
distributed random noise with a standard deviation of 

2.0=σ in the case MPC designs. In OE-MPC, a 
first order output error model for the dynamic and 
input polynomial was identified from three batch 
training. The reactor temperature ( rT ) and jacket 

temperature set point ( jspT ) were used as the output 
and input signals respectively for the system 
identification. 40 and 15 were used for the prediction 
and control horizons respectively, non-weighted 
control moves were performed with 10 for the output 
weight. The upper ( C120 ) and lower ( C15 ) jacket 
temperature limits were considered as the system 
constraints. It should be noted that these design 
specification were also applied for the ARX-MPC 
design. 
 
For persistence excitation purposes in model training 
data, as discussed before, PRBS was added to the 
PID output according to MAE statistic. In the 
excitation assessment, the MAE index was calculated 
firstly for the reactor temperature controlled by PID 
without PRBS excitation, and then compared with 
others, which were subjected to the PRBS excitation. 
The MAE is given by (Flores-Cerrillo and 
MacGregor, 2005): 
 

∑
=

−
=

N

i

ispicv

N
yy

1

,,MAE    (25) 

icvy ,  denotes the controlled variable whereas 

ispy , signifies set- point signal, and N denotes the 
number of samples. In this application,  MAE=34% 
was utilized. 
 
4.2 Simulation results and remarks 
 
Figures (1) and (2) show the performance of the 
designed MPC based OE and ARX models for 10 
batches respectively. Obviously from the figures, 
OE-MPC does its task better than ARX-MPC. In 
quantitative sense, Table (1) compares MAE indices 
of OE-MPC and ARX-MPC. It demonstrates the 
suitability of using OE (unbiased) structure (the less 
MAE index value means the control loop has a better 
performance) over ARX (biased) one in control 

design problems. This is because unbiased models 
are usually capture the actual system behavior and 
hence provide a significant improvement in 
modeling accuracy over the biased models, which 
are typically highly inaccurate.  
 
Figures (3) to (5) display the results of the GMC 
design. Figure (3) explains that GMC with on-line 
heat release estimate can provide acceptable results 
in the presence of very little noise. However,  it is 
evident, from the MAE indices, that as the 
disturbance level increased the GMC accuracy is 
severely affected as shown in Figure (4) and (5). 
This could be regard as a weak point in this 
identification approach (numerical differentiation), 
although it is on- line technique and does not need 
dither signals and off-line training.  

 
Fig.1 OE-MPC reactor temperature (10 batches) 

 
Fig.2 ARX-MPC reactor temperature (10 batches) 

 
Fig.3 GMC reactor temperature 

(MAE= 0.48 at Std=0.01) 



A. Shamekh and A. Altowati "A Performance Comparison of Three Approaches in………" 

Engineering Research Journal, Minoufiya University, Vol. 34, No. 4, October 2011 
 

358 

        
Fig.4 GMC reactor temperature 

(MAE=1.13at Std=0.15) 

 
Fig.5 GMC reactor temperature 

(MAE=1.61 at Std=0.2) 
 

Table 1, MAE indices for OE-MPC and ARX-MPC 
  

Batch No. MAE 
OE-MPC 

MAE 
ARX-MPC 

Batch 1     0.5968     0.7060 
Batch 2     0.5630     0.9232 
Batch 3     0.6724     1.4526 
Batch 4     0.5735     0.6934 
Batch 5     0.6263     0.6386 
Batch 6     0.5541     1.1557 
Batch 7     0.6446     1.0050 
Batch 8     0.6177     1.0225 
Batch 9     0.5913     0.6859 

Batch 10     0.5915     1.0887 
 
5.  CONCLUSIONS 

 
OE-MPC was introduced as an effective control 
technique that can provide a robust approach to 
temperature control in batch processes The control 
law synthesis and model construction procedure for 
OE-MPC were illustrated in a systematic and 
straightforward manner. Using the least squares 
output error method as the underlying model 
structure showed an adequate degree of robustness 
and   reliability compared to ARX-MPC and GMC. 
The obtained results have indicated the feasibility of 
OE-MPC control which encourages implementation 
of this approach.  
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APPENDIX A 
The full dynamic model of the process is defined as 
follows: 
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The Arrhenius terms are given by 
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Table (A.1), the model parameters 
Parameter value 

31.75=ACp
) /( oCkmolkJ  

1000=jρ
3/ mkg  

36.167=BCp
) /( oCkmolkJ  

1000=ρ
3/ mkg  

57.217=CCp
) /( oCkmolkJ  

9057.201
1 =k  

73.334=DCp
) /( oCkmolkJ  

10002
1 =k  

30=AMW kmolkg /  9057.381
2 =k  

100=BMW kmolkg /  170002
2 =k  

130=CMW kmolkg /  6921.0=jV 3m  

160=DMW kmolkg /  42.6=A 2m  

418401 −=∆H kmolkJ /  5=jτ  

251052 −=∆H kmolkJ /  5.0=∆t min  

8828.1=jCp

) /( oCkgkJ  

5.0=r m  

842.40=U
)  /(min o2 CmkJ  

348.0=jF

min/3m  
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